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【論題】：Fabrication of Smart Hydrogel Actuators for Chemomechanical Systems 

（ケモメカニカルシステムのための機能性ハイドロゲルアクチュエータの創製） 

 

【概要】 

 近年，温度や pH などの外部刺激に応答して体積変化する刺激応答性ゲルの研究が精力的に行

われている。これらの刺激応答性ゲルは，センサー機能・プロセッサー機能・エフェクター機能

を併せ持つスマートマテリアルとして，ドラッグデリバリーシステム（DDS）や細胞培養基材と

した医療材料だけでなく，形状記憶材料や自己修復材料などの新たな高機能材料として幅広い分

野での応用が期待されている。本研究では，この高分子ゲルの特異的な性質を効果的に利用した

ケモメカニカルシステムへの応用を目指した。ケモメカニカルシステムとは，化学エネルギーを

力学エネルギーに直接変換するシステムであり，外部環境変化を自律的に認識し，機械的応答を

示すスマートシステムである。そこで，特定の化学物質にのみ自律的に体積変化を示す分子応答

性ゲルや化学振動反応により自律的かつ連続的に体積変化を示す自励振動ゲルを設計し，それら

の化学構造または形状を変えることによって新たなケモメカニカルシステムの創製を試みた。 

 

【各章の要旨】 

第１章では，研究の背景と意義を述べ，さらに本論文を理解するための基本的な知識をまとめた。

自然界で行われているケモメカニカルシステムについて述べ，本研究で用いた分子応答性ゲルお

よび自励振動ゲルの基本的設計およびその機能について記した。さらに，これらを用いたケモメ

カニカルシステムへの展開とその特長について記した。 

 

第２章では，分子応答性ゲルの微細化とそれを用いたマイクロ流体制御デバイスへの応用を述べ

た 1)。内分泌攪乱物質の疑いのある bisphenol A (BPA)は β-cyclodextrin (β-CD)と 1:2 で抱接するこ

とが知られている。そこで，光重合を利用して，高分子ゲルにリガンドとして CD を導入するこ

とにより，BPA 応答性ゲルを合成した。このゲルは，BPA 存在下では CD と BPA と複合体形成

により形成する架橋点により収縮することが明らかになった。また，ゲル内の CD の導入率の増

加によって，ゲルの収縮率も増加した。これらの微細化した BPA 応答性ゲルでは応答速度が向上

した。さらに，微細化した BPA 応答性ゲルをマイクロ流路内に合成することにより，BPA に応答

してマイクロ流路内の自律応答な流量制御に成功した。 

 

第３章では，生体分子応答性ゲルを用いた人工筋肉への応用を述べた。レクチンである

concanavaline A(ConA)は glucose と 1:4 で特異的に結合することが知られている。側鎖に糖を有す

る poly(2-glucosyloxyethyl methacrylate)(PGEMA)ゲルは ConA 存在下では側鎖の glucose と ConA が

複合体を形成し，新たな架橋点となり収縮する。ここで，われわれは PGEMA ゲルと PAAm ゲル

を貼り合わせたゲルを調製した。貼り合わせたゲルは ConA 含有水溶液では PGEMA ゲル層のみ

が収縮することにより屈曲率が変化した。また，その後，貼り合わせたゲルを glucose 水溶液に浸

漬させると，ConA が GEMA の複合体が崩壊することによりゲルの屈曲率がさらに変化した。 



 

第４章では，自律的に連続応答を示す管状自励振動ゲルの設計およびその応答挙動について述べ

た 2)。温度応答性高分子である poly(N-isopropylacrylamide)(PNIPAAm)と BZ 反応の金属触媒である

Ru(bpy)3 の共重合体である P(NIPAAm-co-Ru(bpy)3)ゲルは BZ 反応下で自律的な体積振動を示す。

われわれは，自励振動ゲルを管状に形成し，BZ 反応下で振動挙動を観察した結果，管状自励振動

ゲルは大腸のような蠕動運動を示した。また，ゲルの応答速度を向上させるために，ミクロゲル

の凝集構造を有する管状自励振動ゲルを合成した。ミクロゲルの凝集構造を有する管状自励振動

ゲルは従来の自励振動ゲルに比べて素早い応答を示した。さらに，ゲルの強度を高めるため，相

互網目侵入（IPN）構造を有する管状自励振動ゲルを合成した。相互網目侵入（IPN）構造を有す

る管状自励振動ゲルは BZ 反応下では外径はほぼ変化せずに内径のみ変化した。 

 

第５章では，前章で合成した管状自励振動ゲルを用いた自律輸送機能について述べた 3)。輸送対

象物質として気泡を用いた場合，気泡は管状ゲルの蠕動運動に従って，間欠的な運動を繰り返し

ながら移動した。また，管状自励振動ゲル内にトレーサー粒子としてラテックスビーズを用いた

場合，ラテックスビーズはゲルの蠕動運動に従って，振動的に速度を変えて移動した。このこと

から，管内には自律的な流動が生起していることが明らかとなった。さらに，流体解析ソフトを

用いて，管内の流動を詳細に解析した結果，流速が最も速い点は，管状ゲルの肉厚が収縮状態か

ら膨潤状態に移るところであり，ゲルのキネティクスが内部流体の速度変化に大きく関係してい

ることが明らかとなった。 

 

第６章では，本論文の総括を述べた。特定分子に応答して自律的に体積変化を示す分子応答性ゲ

ルは，微細化することによって，マイクロ流路デバイスの自律的な流量制御システムとして役立

つことが示された。また，分子応答性ゲルを非応答性ゲルと貼り合わせることによって，特定分

子に応答して屈曲運動を示す分子応答性ゲルアクチュエータとなることが示された。一方，化学

振動反応により，自律的に連続応答を示す自励振動ゲルは，管状に形成することによって，気泡

や液体の輸送が可能な物質輸送システムとして利用することが明らかとなった。これらのような

ゲルアクチュエータは化学エネルギーを力学エネルギーに非連続的または連続的に変換するケモ

メカニカルシステムとして機能する。また，制御部と駆動部が一体化となっているため，より小

型なマイクロ流体デバイスの創製が期待できる。より小型なマイクロ流体デバイスはポータブル

な診断・分析システムとして医療・環境分野に貢献することが期待できる。 

 

以上 
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1.1  Scope of the research 

The living organisms act by converting from chemical energy to mechanical energy. 

A muscle as biological actuator has hierarchical structure. The muscle is assembled the 

muscle fascicles. The muscle fascicle is assembled muscle fibers. Furthermore, muscle 

fiber is assembled sarcomere as the basic unit (Figure 1-1a). Their structure act 

autonomously and coordinately and generated huge energy. The sarcomere consists of 

numerous myosin as the mortar protein and actin filament (Figure 1-1b). A myosin 

moves on an actin filament, autonomously. The mortar protein obtains the chemical 

energy from the hydrolysis of adenosine triphosphate (ATP), and generates the 

mechanical energy for moving (Figure 1-1c). By their systematic structure, we are 

enjoying our life. 

 
Figure 1-1. Hierarchically muscle structure; (a) muscle, (b) sarcomere (c) interaction 

between actin and myosin. 
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In contrast, standard materials are based on hard and stable structures and most 

materials systems are electrically regulated. However, biomimetic materials that have 

autonomous systems by themselves are very useful as smart soft materials to develop 

medical and biological technology. Such biomimetic materials attract much attention as 

not only useful materials but also smart systems. We have focused on unique properties 

of the hydrogel that can communicate with external. 

The goal of this study is to fabricate smart hydrogel actuators with chemomechanical 

systems that mimic biological systems. To achieve the goal, two strategies were 

employed as follows: (1) Fabrication of autonomous and uncontinuous 

chemomechanical systems in response to a target molecule. (2) Fabrication of 

autonomous and continuous chemomechanical systems without external stimuli. 

The strategy (1) uses biomolecule-responsive hydrogel exhibits the autonomous and 

uncontinuous changes in volume by formation and dissociation of molecular complexes 

as dynamic crosslinks in response to target biomolecule. In this study, 

biomolecule-responsive microsized hydrogels were designed for smart microchannel 

microvalves that regulated flow rate in response to a target molecule. Furthermore, 

biomolecule-responsive hydrogels that exhibit bending-stretching motion in response to 

biomolecule were strategically designed for actuator applications. The strategy (2) uses 

self-oscillating hydrogels exhibit the autonomous and continuous changes in volume by 

coordinately phenomena of chemical oscillation reaction and thermo-responsive 

polymer. In this study, micropump and microconveyer using self-oscillating hydrogel 

were designed by forming tubular. 
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This thesis describes the preparation of novel chemomechanical actuators using smart 

hydrogels such as biomolecule-responsive hydrogels and self-oscillating hydrogels. The 

smart properties of these hydrogels were evaluated as chemomechanical actuators for 

microdevices such as microvalves and micropumps. 
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1.2 Chemomechanical systems 

General actuators are operated by converting electric energy to mechanical energy. In 

contrast, biological systems such as mortar proteins, i. e. actin and myosin, convert 

chemical energy derived from ATP hydrolysis to mechanical energy. Such systems are 

called chemomechanical systems. The chemomechanical systems enable 

miniaturization of devices because they can act by themselves using chemical energy. 

However, chemomechanical systems are not so popular in the social world because we 

mainly use electric energy as source energy. Recently, the actuators based on the 

chemomechanical systems attracted much attention as smart soft materials for 

fabricating autonomous systems. For instance, Kokufuta et. al. developed 

biochemomechanical systems by combining the enzymatic reactions with 

stimuli-responsive polymers (Figure 1-2a).1 The bioconjugated hydrogels with urease as 

an enzyme exhibited the volume change in presence of urea or glucose because some 

chemical compounds produced by enzymatic reaction resulted in changes in osmotic 

pressure. Yoshida et. al. developed autonomous transport system using actin and 

myosin hydrogel (Figure 1-2b).2 This system transported actin on myosin fiber by 

utilizing the interaction between actin and myosin. He et. al. developed self-regulated 

mechanochemical adaptively reconfigurable tunable system (SMARTS) (Figure 1-2c).3 

SMARTS were composed of the microstructures with a catalyst or reagent affixed to the 

tips that reversibly actuate as the hydrogel swells or contracts in response to a chemical 

stimulus. When this system is immersed in a liquid bilayer, this mechanical action 

moves the catalyst into and out of a top layer of reactants, such that a chemical reaction 
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turned on when the microstructures straighten and turned off when they bend, realizing 

a synchronized cascade of chemomechanical energy interconversions. 

 

 

Figure 1-2. Chemomechanical system; (a) biochemomechanical system,1 (b) 

autonomous transport system,2 (c) SMARTS.3 
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1.3  Smart hydrogels 

Hydrogels are three dimensionally crosslinked polymer networks swollen with 

aqueous solutions. Some hydrogels undergo reversible changes in volume in response to 

external stimuli such as temperature, pH, light, electric field, etc. Such unique hydrogels 

are called smart hydrogels or stimuli-responsive hydrogels. The stimuli-responsive 

swelling/shrinking behavior of these hydrogels is mainly caused by changes in the 

affinity of polymer chains for water or in osmotic pressure induced by charged groups. 

For example, a poly(N-isopropylacrylamide) (PNIPAAm) hydrogel, which is a most 

popular thermo-responsive hydrogel, undergoes a drastic change in volume at a volume 

phase transition temperature (VPTT) because of a changes from hydrophilic to 

hydrophobic polymer chains. A pH-responsive poly(acrylic acid) (PAA) hydrogel 

exhibits volume change in response to a change in pH because the osmotic pressure 

changes drastically by dissociation or association of charged groups. The fascinating 

properties of stimuli-responsive hydrogels suggest that they have many future 

opportunities as smart soft materials for constructing drug delivery systems, cell culture 

systems, sensors, actuators, and microdevices. For instance, Osada et. al. developed a 

gel fish, which can swim by itself, using an electric field-responsive hydrogel (Figure 

1-3a).4 Rechiter et. al. fabricated a diaphragm micropump using a thermo-responsive 

hydrogel (Figure 1-3b).5 Satoh et. al. developed a hydrogel actuator and microconveyer 

using photo-responsive hydrogel (Figure 1-3c).6 
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Figure 1-3. Stimuli-responsive hydrogel actuator; (a) gel fish using ionic conductive 

hydrogel,4 (b) diaphragm micropump using thermo-responsive hydrogel,5 (c) 

microconveyer system using photo-responsive hydrogel.6 
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1.4 Biomolecule-responsive hydrogel 

Biomolecule-responsive hydrogels exhibit swelling and shrinking behavior in the 

presence of a target biomolecule.7-13 The biomolecule-responsive hydrogels are 

classified to two types, i.e. biomolecule-crosslinked hydrogel and 

biomolecule-imprinted hydrogel. The strategy for designing such 

biomolecule-responsive hydrogels uses biomolecular complexes as dynamic crosslinks. 

In the presence of a target biomolecule, biomolecule-crosslinked hydrogels swell 

because their crosslinking densities decrease upon dissociation of the biomolecule 

complexes that act as dynamic crosslinks (Figure 1-4a). In contrast, 

biomolecule-imprinted hydrogels shrink because the formation of biomolecular 

complexes between ligands and a target biomolecule resulted in an increase in the 

crosslinking densities (Figure 1-4b). Biomolecule-crosslinked hydrogels involving 

antigen–antibody complexes as dynamic crosslinks undergo reversible changes in 

volume in response to stepwise changes in target antigen concentration (Figure 1-5a). 

As other biomolecule-crosslinked hydrogels, glucose-responsive hydrogels prepared 

using ConA and a monomer with a pendent glucose exhibited glucose-responsive 

swelling (Figure 1-5b). In contrast, when exposed to the tumor marker α-fetoprotein 

(AFP) as a target biomolecule, biomolecule-imprinted hydrogels using anti-AFP and 

concanavalin A (ConA) as ligands shrank (Figure 1-5c). As other 

biomolecule-imprinted hydrogels, bisphenol A (BPA)-imprinted hydrogels with 

cyclodextrin (CD) ligands that can form CD-BPA-CD complexes as dynamic crosslink 

exhibited the BPA-responsive shrinkage (Figure 1-5d). Thus, a variety of 
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biomolecule-responsive hydrogels that undergo changes in volume in response to a 

target biomolecules have been designed strategically, based on the strategy using 

biomolecular complexes as dynamic crosslinks. The biomolecule-responsive hydrogels 

have many potential applications as smart biomaterials for self-regulated DDS and 

molecular diagnosis. 

 

 

Figure 1-4. Responsive behavior of biomolecule-crosslinked (a) and the 

biomolecule-imprinted hydrogels (b). 

 

 
Figure 1-5. Swelling-shrinking behavior of the various biomolecule-responsive 

hydrogels; (a) antigen-responsive hydrogels, (b) glucose-responsive hydrogels, (c) 

tumor marker-responsive hydrogels, (d) BPA-responsive hydrogel. 
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1.5 Self-oscillating hydrogels 

Self-oscillating hydrogels exhibit autonomous volume oscillation without stimuli.14-20 

The self-oscillating hydrogels are crosslinked copolymers consisted of 

poly(N-isopropylacrylamide) (PNIPAAm) and ruthenium tris(2,2'-bipyridine) 

(Ru(bpy)3) complex (Figure 1-6a). PNIPAAm is a thermo-responsive polymer with a 

lower critical solution temperature (LCST) of 32 °C. Therefore, PNIPAAm is 

hydrophilic at a temperature of less than 32 °C and becomes hydrophobic at a 

temperature of more than 32 °C. Ru(bpy)3 complex is a metal catalyst of 

Belousov-Zhabotinsky (BZ) reaction that is a chemical oscillating reaction. In the BZ 

reaction, Ru(bpy)3 repeats a reduced Ru(II) state and an oxidized Ru(III) state (Figure 

1-6b). P(NIAAm-co-Ru(bpy)3) that is a copolymer consist of NIPAAm and Ru(bpy)3 

has difference LCSTs in a reduced Ru(II) state and an oxidized Ru(III) state, because 

the hydrophilicity of its polymer chain strongly depends on the state of charged groups. 

Furthermore, P(NIPAAm-co-Ru(bpy)3) hydrogel has difference VPTT in a reduced 

Ru(II) state and an oxidized Ru(III) state (Figure 1-6c). Therefore, by the BZ reaction at 

the constant temperature, P(NIPAAm-co-Ru(bpy)3) hydrogel exhibits an autonomous 

volume oscillation such as a biomimetic pulsatile motion of hearts (Figure 1-6d). 

Furthermore, when the bulk type self-oscillating hydrogels exhibit the volume 

oscillation, a chemical wave propagates within the hydrogels and the autonomous 

volume change occurs spatiotemporally. 
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Figure 1-6. Autonomous volume oscillation mechanism of self-oscillating hydrogels: 

(a) chemical structure of self-oscillating hydrogels. (b) Belousov-Zhabotinsky (BZ) 

reaction in gel system. (c) Temperature dependence of self-oscillating the hydrogels. (d) 

Temporal change of the self-oscillating hydrogels in the BZ reaction.  
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1.6 Overview of this thesis 

Figure 1-7 shows overview of this thesis. 

 

Figure 1-7. Overview of this thesis. 
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This thesis is composed of six chapters. Figure 1-7 shows overview of this thesis. 

Chapter 1 is general introduction describing chemomechanical systems. Here 

chemomechanical systems using artificial materials were summarized. Furthermore, the 

fundamentals of biomolecule-responsive hydrogels and self-oscillating hydrogels were 

introduced.  

Chapter 2 describes the preparation of molecule-responsive microsized hydrogel via 

photopolymerization and the application as microchannel microvalve. -Cyclodextrin 

(CD) and bisphenol A (BPA) were used as a ligand and a target molecule, respectively. 

The preparation of the molecule-responsive microsized hydrogels using a fluorescence 

microscope was described. Furthermore, the different shrinkage of nonimprinted and 

BPA-imprinted hydrogel were estimated and the flow regulation using a 

molecule-responsive microsized hydrogel in the microchannel was shown. 

Chapter 3 describes the design of the biomolecule-responsive hydrogels that exhibit 

a unique bending-stretching motion in response to a target biomolecule. Concanavalin 

A (ConA) and 2-glocosyloxymethacrylate (GEMA) were used as ligands and a target 

biomolecule, respectively. The bending-stretching motion of the hydrogels in response 

to a target biomolecule was shown. 

Chapter 4 describes the preparation of tubular self-oscillating hydrogels and their 

autonomous peristaltic motion. The preparations of three type tubular self-oscillating 

hydrogels that are normal, high-speed responsive, and high-mechanical type were 

described. Furthermore, the autonomous transport function of the tubular self-oscillating 

hydrogel was estimated. 
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Chapter 5 evaluates the autonomous fluid performance of the tubular self-oscillating 

hydrogels. The flow velocity in tubular self-oscillating hydrogel was estimated using 

microparticles. Furthermore, the fluid performance was evaluated using image analysis 

soft. 

Chapter 6 is the conclusion of this thesis. The features of the chemomechanical 

system using smart hydrogels are summarized, and their applications are proposed. 
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2.1 Introduction 

Ultrasmall devices that integrate chambers and channels on a micro- or nanosized 

chip, such as micro total analysis systems (µ-TAS) and lab-on-a-chip, have attracted 

much attention for a variety of medical and environmental applications because they 

enable a rapid analysis of minute amounts of sample. In these highly integrated chips, 

the portable analysis system achieves a sequence of steps, such as sample extraction, 

condensation, separation, and detection. However, miniaturizing and incorporating 

various devices for each step are difficult because microfluidic control technologies 

require diaphragm pumps and check valves to control flow rate and flux direction, 

respectively. 

Stimuli-responsive hydrogels that exhibit reversible swelling/shrinking behavior in 

response to an external environmental change such as temperature, pH, electric field, 

and light find many medical and environmental applications as smart materials for drug 

delivery, cell cultures, sensors, actuators, and microdevices.1–10 In general, this 

stimuli-responsive swelling/shrinking behavior is based on changes in the affinity of 

polymer chains for water or in osmotic pressure induced by charged groups. Recently, 

pH-responsive hydrogels have shown usefulness as pH-regulated microvalves for 

controlling the microfluid direction in a microchannel.11,12 Their reports demonstrate 

that stimuli-responsive hydrogels are promising smart materials for fabricating 

self-regulated microsystems. Microdevices designed for practical environmental 

pollution monitoring need to detect specific pollutants such as dioxins. On the other 

hand, medical diagnostic and therapeutic applications demand microsystems that sense 
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biomolecules, such as proteins, polysaccharides, and nucleic acids. However, very few 

studies have addressed molecule-responsive hydrogels that exhibit volume changes in 

response to a target molecule despite their potential applications. We have developed 

several biomolecule-responsive hydrogels that undergo volume changes in the presence 

of target biomolecules, such as glucose and proteins.13–18 The swelling/shrinking 

behavior of hydrogel is governed by the hydrophilicity of the polymer chains, osmotic 

pressure induced by charged groups, and the number of crosslinks. Therefore, by 

focusing on the number of crosslinks, our team has prepared biomolecule-responsive 

hydrogels using biomolecular complexes as dynamic crosslinks. This strategy has 

provided biomolecule-crosslinked and biomolecule-imprinted hydrogels. In the 

presence of a target biomolecule, biomolecule-crosslinked hydrogels swell because their 

crosslinking densities decrease upon dissociation with the biomolecule complexes that 

act as dynamic crosslinks. In contrast, biomolecule-imprinted hydrogels shrink because 

the formation of biomolecular complexes between ligands and a target biomolecule 

resulted in an increase in the crosslinking densities. Biomolecule-crosslinked hydrogels 

involving antigen–antibody complexes as dynamic crosslinks exhibited reversible 

swelling/shrinking in the presence and absence of the target antigen.14–16 When exposed 

to the tumor marker α-fetoprotein (AFP) as a target, biomolecule-imprinted hydrogels 

using anti-AFP and concanavalin A as ligands shrank.17,18 

Bisphenol A (BPA) has been widely used as a monomer for the synthesis of 

polycarbonate and epoxy resins. However, the recent discovery of its high potential 

ability to disrupt human endocrine systems has made the development of smart systems 
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and microdevices for its detection and removal necessary.19 The macrocyclic 

D-glucopyranose heptamer β-cyclodextrin (β-CD) presents a unique structure consisting 

of an apolar cavity and hydrophilic exterior. Some papers reported that CDs are very 

useful tools for designing-responsive materials.20,21 It also forms a complex with a 

phenol derivative such as BPA.22 Molecule-responsive hydrogels that undergo volume 

changes in response to target BPA have been synthesized by molecular imprinting using 

CDs as ligands.23,24 These hydrogels shrank gradually in the presence of BPA because 

their crosslinking density increased as a result of CD–BPA–CD dynamic crosslink 

formation that acted as dynamic crosslinks. However, they reached equilibrium over a 

long time upon BPA-responsive shrinking. This slow response was attributed to the low 

diffusivity of crosslinked polymer chains in hydrogel networks. In general, the kinetics 

of hydrogel swelling/shrinking depends on several parameters, such as size, surface area, 

and porosity. Specifically, stimuli-responsive microsized hydrogels (micro-hydrogels) 

undergo rapid volume changes in response to environmental factors because of their 

large surface areas.25,26 This suggests that the kinetics of the BPA-responsive and other 

biomolecule-responsive hydrogels can be improved by their miniaturization.  

Here, BPA-responsive microsized hydrogels exhibiting rapid volume changes were 

prepared on a glass substrate via photopolymerization using a fluorescence microscope. 

The BPA-responsive micro-hydrogels were utilized as self-regulated microvalves to 

control flow in a microchannel (Figure 2-1). The flow rate in the microchannel can be 

regulated by the concentration of a target molecule because a molecule-responsive 

micro-hydrogel quickly undergoes a volume change in the presence of this target 
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molecule. Therefore, the volume changes of the new molecule-responsive 

micro-hydrogels and the flow rates in the microchannel were investigated. 

 

 
Figure 2-1. Smart microchannel microvalve using molecule-responsive microsied 

hydrogel. 
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2.2 Experimental 

2.2.1 Materials 

β-Cyclodextrin (β-CD), bisphenol A (BPA), p-toluenesulfonyl chloride, 

p-toluenesulfonic acid monohydrate, sodium azide (NaN3), triphenyl phosphine, 25% 

ammonia solution, acryloyl chloride, acrylamide (AAm), N, N'-methylenebisacrylamide 

(MBAA), 2, 2'-azobis(2-methylpropionamidine) dihydrochloride (V-50), 

dichloromethane, diisopropyl ether, sodium hydroxide (NaOH), hydrogen chloride 

(HCl), acetone, N, N'-dimethylformamide (DMF), and hydrogen carbonate (NaHCO3) 

were purchased from WAKO Pure Chemical Industries (Osaka, Japan). 

3-Acryloxypropyltrimethoxysilane was acquired from Shin-Etsu Chemical Co., Ltd. 

(Tokyo, Japan). All materials were used without further purification, except for β-CD, 

which was recrystallized from deionized water before use. Y-Shaped microchannels 

were purchased from Fluidware Technologies Inc. (Saitama, Japan). 

 

2.2.2 Synthesis of acryloyl-modified β-cyclodextrin (acryloyl-CD) 

The acryloyl-modified β-cyclodextrin was synthesized in five steps (Scheme 2-1). 

(1) Synthesis of p-toluenesulfonic anhydride (Ts2O) 

p-Toluenesulfonyl chloride (16 g, 83.9 mmol) and p-toluenesulfonic acid 

monohydrate (4.0 g, 21.2 mmol) were dissolved in dichloromethane (100 mL). The 

reaction mixture was stirred overnight and the unreacted p-toluenesulfonyl chloride was 

subsequently removed by filtration. The filtrate was dried and the residue was 

recrystallized from isopropyl ether to yield Ts2O as a white solid; yield, 10.8 g (78 %). 
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(2) Synthesis of 6-O-monotosyl-6-deoxy-β-cyclodextrin (TsO-CD) 

β-CD (22.39 g, 19.7 mmol) and Ts2O (9.43 g, 28.9 mmol) were dispersed in 

deionized water (200 mL) and the resulting suspension was stirred for 2 h. NaOH 

solution (2.5 M, 100 mL) was added to the reaction mixture and, after 10 min, the 

unreacted Ts2O was removed by filtration. The filtrate was neutralized by HCl addition 

to afford TsO-CD, which was collected after cooling overnight at 4 °C; yield, 11.12 g 

(44 %). 1H NMR (400 MHz, DMSO-d6 δ): 7.75 (d, J = 8.0 Hz, 2 H; Ar H), 7.44 (d, J = 

8.0 Hz, 2 H; Ar H), 5.86–5.66 (m, 13 H; OH of CD), 4.84–4.19 (m, 14 H; CH of CD), 

4.59–4.19 (m, 7 H; O6H of CD), 3.36–3.48 (m, overlaps with HOD), 2.09 (s, 3 H; CH3 

Ar).  

 

(3) Synthesis of 6-deoxy-6-azide-β-cyclodextrin (CD-N3) 

TsO-CD (1.68 g, 1.30 mmol) and NaN3 (1.07 g, 16.52 mmol) were dissolved in 

deionized water (25 mL) and allowed to react under stirring for 2 h at 80 °C. The 

mixture was poured into acetone to precipitate CD-N3, which was subsequently dried in 

vacuo; yield, 1.41 g (93 %). 1H NMR (400 MHz, DMSO-d6 δ): 5.74 (br, 14 H; OH), 

4.88–4.54 (m, 14 H; CH of CD), 3.85–3.29 (m, overlaps with HOD). 

 

(4) Synthesis of 6-deoxy-6-amino-β-cyclodextrin (CD-NH2) 

CD-N3 (1.40 g, 1.21 mmol), triphenylphosphine (0.70 g, 2.68 mmol), and 25% 

ammonia solution (5 mL) were dissolved in DMF (25 mL) and the reaction was allowed 

to proceed for 4 h. The reaction mixture was poured into acetone to precipitate CD-NH2 
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as a white powder, which was further dried in vacuo; yield, 1.26 g (92 %). 1H NMR 

(400 MHz, D2O δ): 5.04 (s, 7 H; C1H of CD), 3.93–3.55 (m, 42 H; C2, 3, 4, 5, 6H of CD). 

 

(5) Synthesis of acryloyl-6-amino-6-deoxy-β-cyclodextrin (acryloyl-CD) 

CD-NH2 (2.1 g, 1.89 mmol) was dissolved in aqueous NaHCO3 (pH 11, 30 mL) and 

the solution was chilled using an ice bath before acryloyl chloride (1.75 g, 19.4 mmol) 

addition. The reaction mixture was stirred for 2 h and poured into acetone. The 

precipitated acryloyl-CD was dried in vacuo to give a white powder; yield, 1.00 g 

(44 %). 1H NMR (400 MHz, DMSO-d6 δ): 6.32–6.14 (m, 2 H; CH2=CH), 5.80–5.75 (m, 

1 H; CH2=CH), 5.05 (s, 7 H; C1H of CD), 3.94–3.29 (m, 42 H; C2, 3, 4, 5, 6H of CD). 

 

 

Scheme 2-1. Synthesis of acryloyl-CD. 

 

2.2.3 Synthesis of BPA-imprinted micro-hydrogels by photopolymerization 

The feed compositions of BPA-imprinted micro-hydrogels are summarized in Table 

2-1. AAm, acryloyl-CD, BPA, the crosslinker MBAA, and the photoinitiator V-50 were 
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dissolved in deionized water (0.8 mL). The total concentration of AAm, acryloyl-CD, 

and MBAA amounted to 25.8 wt%. The solution was injected into a glass template 

assembled from two glass substrates with and without silane coupling treatment and a 

300 μm-thick silicon sheet acting as a spacer. An arbitrary region of the glass template 

containing the reaction mixture was exposed to UV light (λ = 365 nm) focused using an 

inverted fluorescence microscope (IX70, OLYMPUS) for 5 s. One of glass substrates 

was removed and micro-hydrogels were immersed in 30% aqueous acetone for 2 weeks 

to eliminate BPA and unreacted monomers from the networks. Finally, they were 

immersed in deionized water for acetone removal until the equilibrium swelling state 

was achieved. 

 

Table 2-1. Feed compositions of BPA-imprinted micro-hydrogels 

Samplea) AAm (mg) β-CD (mg) BPA (mg) MBAA (mg) V-50 (mg) 

BIPCD1 171.4   28.6   2.74 6.50 37.8 

BIPCD3 133.2   66.8   6.40 6.50 37.8 

BIPCD5 109.0   91.0   8.68 6.50 37.8 

BIPCD10   75.0 125.0 12.10 6.50 37.8 

a) BPA-imprinted micro-hydrogels are labeled BIPCDx, where x indicates the CD content 

of the feed (mol% relative to AAm). 

 

2.2.4 Synthesis of nonimprinted micro-hydrogels 

Feed compositions of nonimprinted micro-hydrogels are listed in Table 2-2. AAm, 

acryloyl-CD, MBAA, and V-50 were dissolved in deionized water (0.8 mL). The total 

monomer concentration of AAm, acryloyl-CD, and MBAA equaled 25.8 wt%. The 
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solution was injected into a glass template comprising two glass substrates with and 

without silane coupling treatment and a 300 μm-thick silicon sheet as a spacer. An 

arbitrary position of the glass template containing the reactive mixture was exposed to 

UV light (λ = 365 nm) focused using an inverted fluorescence microscope (IX70, 

OLYMPUS) for 5 s. Once one of the glass substrates was removed, micro-hydrogels 

were immersed in deionized water to eliminate unreacted monomers from the network 

until the equilibrium swelling state was reached. 

 

Table 2-2. Feed compositions of nonimprinted micro-hydrogels 

Samplea) AAm (mg) β-CD (mg) MBAA (mg) V-50 (mg) 

NIPCD1 171.4   28.6 6.50 37.8 

NIPCD3 133.2   66.8 6.50 37.8 

NIPCD5 109.0   91.0 6.50 37.8 

NIPCD10   75.0 125.0 6.50 37.8 

a) Nonimprinted micro-hydrogels were labeled NIPCDx, where x represents the CD 

content of the feed (mol% relative to AAm). 

 

2.2.5 Synthesis of PAAm micro-hydrogels 

AAm (200 mg, 2.81 mol), MBAA (6.50 mg, 42.2 mmol), and V-50 (37.8 mg, 139 

mmol) were dissolved in deionized water (0.8 mL). The solution was injected into a 

glass template composed of two glass substrates with and without silane coupling 

treatment and 300 μm-thick silicon sheet as a spacer. An arbitrary position of the 

solution-filled glass template was photoirradiated for 5 s by UV light (λ = 365 nm) 

focused using an inverted fluorescence microscope (IX70, OLYMPUS). One of the 
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glass substrates was removed and micro-hydrogels were immersed in 30% aqueous 

acetone solution for 2 weeks to eliminate unreacted monomer from their networks. One 

of the glass substrates was removed and micro-hydrogels were immersed in deionized 

water to eliminate unreacted monomers from their networks until the equilibrium 

swelling state was achieved. 

 

2.2.6 Swelling ratio measurements 

BPA-imprinted, nonimprinted, and PAAm micro-hydrogels were kept immersed in 

deionized water until they reached their equilibrium swelling state at 25 °C. Next, they 

were transferred into aqueous BPA solution (120 µg mL–1) at 25 °C and kept immersed 

in this solution. Their swelling ratio (V/V0) was determined from their diameter ratio 

using Equation 1. Hydrogel diameters at equilibrium swelling in deionized water (d0) 

and in aqueous BPA (d) were measured by optical microscopy. 

Swelling ratio  V

V0

 d

d0











3

    (1) 

 

2.2.7 Preparation of a BPA-imprinted micro-hydrogel in a Y-shaped microchannel 

AAm (75.0 mg, 1.06 mol), acryloyl-CD (125 mg, 105 mmol), BPA (12.1 mg, 53.0 

mmol), MBAA (6.50 mg, 42.2 mmol), and V-50 (37.8 mg, 139 mmol) were dissolved 

in deionized water (0.8 mL). The solution was injected into the Y-shaped microchannel 

that was surface-modified by a polymerizable 3-acryloxypropyltrimethoxysilane 

derivative. The microchannel containing the reaction mixture was exposed to UV light 
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(λ = 365 nm) for 5 s using an inverted fluorescence microscope (IX70, OLYMPUS). 

30% aqueous acetone was pumped in the microchannel using a high-performance liquid 

chromatography (HPLC) pump (INTELLIGENT PUMP 301, AS ONE) to remove BPA 

and unreacted monomer from the micro-hydrogel network and deionized water was 

pumped in microchannel using HPLC pump for acetone removal until the equilibrium 

swelling state was achieved. 

 

2.2.8 Flow rate measurements in a microchannel 

Deionized water was flowed in microchannel for 6 min at 0.1 mL min−1 using an 

HPLC pump (INTELLIGENT PUMP 301, AS ONE). Next, an aqueous BPA solution 

(120 µg mL−1) was flowed in the microchannel at 0.1 mL min−1 using the HPLC pump. 

Flow rates in channels A and B were determined by measuring the weight of aqueous 

solution collected at each channel output every 2 min. 
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2.3 Results and discussion 

The BPA-imprinted micro-hydrogels were synthesized by molecular imprinting using 

CDs as ligands and BPA as a template (Scheme 2-2). First, a polymerizable acryloyl 

group was introduced into CD and the resulting acryloyl-CDs formed sandwich-like 

CD–BPA–CD complexes using BPA as a molecular template. Acryloyl-CDs involved 

in the CD–BPA–CD complexes were copolymerized with acrylamide (AAm) and N, 

N'-methylenebisacrylamide (MBAA) as a crosslinker using 

2,2'-azobis(2-methylpropionamidine) dihydrochloride (V-50) as a photoinitiator under 

UV light exposure at 365 nm of wavelength using a standard fluorescence microscope. 

The BPA-imprinted micro-hydrogels were obtained by extracting the BPA template 

from the resulting networks. Similarly, a nonimprinted micro-hydrogel was also 

generated by photopolymerization of acryloyl-CD, AAm, and MBAA in the absence of 

the BPA template. 

The photopolymerization was conducted at an arbitrary position on the glass plate 

(Figure 2-2a) and produced BPA-imprinted micro-hydrogels in the UV-exposed region 

within 5 s of irradiation of the monomer mixture. The resulting micro-hydrogels 

consisted of cylinders with a diameter of 200 µm. In addition, a BPA-imprinted 

micro-hydrogel containing 10 mol% CD was prepared at a predetermined position near 

the branch point of a Y-shaped microchannel with a width of 200 µm and a depth of 50 

µm. This micro-hydrogel formed near the microchannel branch point within 5 s of UV 

exposure of the monomer mixture (Figure 2-2b). This demonstrates that 

photopolymerization quickly and easily generates the micro-hydrogels at arbitrary 
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positions using the fluorescent microscope. 

 

 

Scheme 2-2. Synthesis of BPA-imprinted (a) and nonimprinted micro-hydrogels (b) by 

photopolymerization. 

 

 

Figure 2-2. Phase-contrast microscope images of the BPA-imprinted micro-hydrogels 

on a glass plate (a) and in a microchannel (b) generated by photopolymerization using a 

fluorescence microscope. 
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Figure 2-3a shows swelling ratio changes of BPA-imprinted and nonimprinted 

micro-hydrogels in the presence of 120 μg mL−1 BPA. The swelling ratio corresponds to 

the ratio between hydrogel volumes in the presence and absence of BPA. Both 

micro-hydrogels shrank rapidly in response to BPA. However, the BPA-imprinted 

micro-hydrogel exhibited a greater BPA-responsive shrinkage than the nonimprinted 

micro-hydrogel. In previous study,23 the compressive modulus measurements revealed 

that responsive shrinkage of BPA-imprinted macrosized hydrogels obtained by standard 

polymerization resulted from an increase in the apparent crosslinking density induced 

by the formation of CD–BPA–CD complexes as dynamic crosslinks. By analogy, 

BPA-imprinted micro-hydrogels prepared by the fluorescence microscope-enabled 

photopolymerization shrink in response to a target BPA because CD–BPA–CD complex 

formation increases the crosslinking density. Also, molecular imprinting organizes the 

CD ligands at optimal positions that facilitate CD–BPA–CD complex formation, 

explaining the larger BPA-responsive shrinkage of the BPA-imprinted micro-hydrogel 

compared to that of the nonimprinted counterpart. Interestingly, equilibrium was 

reached in less than 10 min for the BPA-imprinted micro-hydrogel but in more than 10 

h for the BPA-imprinted macrosized hydrogel synthesized by standard 

polymerization.23 In general, the relaxation time needed by the hydrogels to reach 

equilibrium state depends on their surface area and size.25,26 Therefore, the extremely 

rapid response of the BPA-imprinted micro-hydrogel stems from its small diameter 

(200 μm). The ultra-quick shrinkage of molecule-responsive micro-hydrogels is highly 

useful for the fabrication of smart open-close microvalve systems that switch or control 
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flow in microchannels. 

The effect of CD content on the responsiveness of BPA-imprinted and nonimprinted 

micro-hydrogels was also investigated. As shown in Figure 2-3b, both swelling ratios 

decreased gradually with increasing CD content, indicating that higher micro-hydrogel 

CD contents enhance BPA-responsive shrinkage. When the CD content increased to 10 

mol%, the BPA-responsive shrinkage of the imprinted micro-hydrogel surpassed that of 

the nonimprinted micro-hydrogel. This suggests that molecular imprinting effectively 

generates BPA-responsive micro-hydrogels because it provides an optimal arrangement 

of CD ligands for CD–BPA–CD complex formation. 

 

 
Figure 2-3. (a) Swelling ratio changes of the BPA-imprinted (closed circle) and 

nonimprinted (opened circle) micro-hydrogels with a CD content of 10 mol% and 

PAAm hydrogel (opened square) in aqueous BPA solution (120 µg mL−1) as a function 

of the time. (b) Effect of the CD content on swelling ratio of the BPA-imprinted (closed 

circle) and nonimprinted (opened circle) hydrogels in aqueous BPA solution (120 µg 

mL−1). 
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A BPA-imprinted micro-hydrogel was manufactured in one channel (A) of a 

Y-shaped microchannel, near the branch point, to assess its performance as a 

self-regulated microvalve for microchannel flow control. Flow rates in channels A and 

B were measured while deionized water without and with target BPA (120 μg mL−1) 

was pumped into the Y-shaped microchannel. Figure 2-4a shows the flow rate changes 

in channels A and B when water initially ran through the microchannel for 6 min and 

then was replaced by aqueous BPA solution. While deionized water flowed through the 

system, the flow rate was much smaller in channel A than in channel B because the 

micro-hydrogel inhibited water flow. However, soon after water was switched to 

aqueous BPA solution, the flow rate in channel A increased whereas that in channel B 

decreased. Interestingly, the flow rate in channel A followed an opposite trend of that in 

channel B. The imprinted micro-hydrogel began to shrink once the aqueous BPA 

solution replaced water (Figure 2-4b). The flow rate in channel A increased 

immediately (Figure 2-4a) because the BPA-responsive shrinkage of the micro-hydrogel 

opened this channel. The flow rate in channel B decreased in response to the enhanced 

flow rate in channel A because the total material balance did not change between the 

Y-shaped microchannel input and output. Therefore, the BPA-responsive 

micro-hydrogel prepared in the microchannel can autonomously regulate microchannel 

flow in the presence of BPA. Furthermore, the flow direction at the branching point of 

the Y-shaped microchannel can be autonomously switched by volume changes of the 

BPA-responsive micro-hydrogel. 
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Figure 2-4. (a) Flow rate change of channel A (closed circle) with a BPA-imprinted 

micro-hydrogel and channel B (opened circle) without micro-hydrogel as a function of 

the time when deionized water and aqueous BPA solution (120 µg mL−1) were flowed 

through the microchannel at a rate of 0.1 mL min−1. (b) Schematic of the flow change 

induced by responsive shrinkage of the BPA-imprinted micro-hydrogel in the Y-shaped 

microchannel. 
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2.4 Conclusions 

BPA-imprinted and nonimprinted micro-hydrogels comprising CD ligands were 

prepared at arbitrary positions by photopolymerization using a fluorescence microscope. 

The resulting cylindrical micro-hydrogels with a diameter of 200 µm shrank more 

greatly than their nonimprinted micro-hydrogels. Furthermore, these micro-hydrogels 

exhibited significantly faster volume changes than macrosized hydrogels when 

immersed in aqueous BPA solution. A BPA-imprinted micro-hydrogel acting as a 

self-regulated microvalve was also generated in the Y-shaped microchannel. The 

microchannel flow rate changed autonomously in response to target BPA because of the 

responsive shrinkage of the molecularly imprinted micro-hydrogel. Consequently, 

BPA-responsive micro-hydrogels may find applications as smart microvalves for 

autonomous microchannel flow regulation. Although these micro-hydrogels still require 

further research, their exceptional molecule-responsiveness provide promising 

self-regulated microvalves for microchannel flow control, facilitating the simplification 

and miniaturization of μ-TAS because they do not require spectroscopic analysis nor 

standard mechanical gate systems. 
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3.1 Introduction 

Soft actuators were made of stimuli-responsive soft material such as elastomer and 

polymer gels. In general, soft actuators based on stimuli-responsive polymer gels 

changed their shapes by their volume change in response to external stimuli such as 

temperature, pH, electric fields, light, redox, etc.1-10 Such smart gel actuators that 

exhibited biomimetic motion such as muscles are expected to have potential 

applications as artificial muscle. However, there have been few reports on smart soft 

actuators similar to real muscles that exhibited chemo-mechanical motion in response to 

chemical substance. 

Stimuli-responsive hydrogels composed of polymer chains, crosslinks, and a solvent 

undergo changes in volume in response to environmental stimuli. Their 

stimuli-responsive volume changes are caused by the changes in affinity of polymer 

chains for water or in osmotic pressure induced by charged groups. Recently, a novel 

strategy for designing stimuli-responsive hydrogels, which uses biomolecular 

complexes as dynamic crosslinks, was reported.11-17 Their hydrogels prepared by the 

strategy exhibited volume change in response to a target biomolecule because their 

crosslinking density increased or decreased by formation or dissociation of the 

biomolecular complexes as dynamic crosslinks. Such stimuli-responsive hydrogels that 

respond to a target biomolecule are called "biomolecule-responsive hydrogel". A variety 

of biomolecule-responsive hydrogels that undergo changes in volume in response to 

biomolecule such as saccharides, nucleic acids, and proteins have been strategically 

synthesized using biomolecular complexes as dynamic crosslinks.  
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Biomolecule-responsive hydrogels using biomolecular complexes as dynamic 

crosslinks are classified by responsive behavior; namely, biomolecule-crosslinked and 

biomolecule-imprinted hydrogels. The biomolecule-crosslinked hydrogels swell in the 

presence of target biomolecule because their crosslinking densities decrease upon 

dissociation with the biomolecule complexes that act as dynamic crosslinks. In contrast, 

biomolecule-imprinted hydrogels shrink in response to a target biomolecule because the 

formation of biomolecule complexes between ligands and a target biomolecule resulted 

in an increase in the crosslinking densities. For example, a glucose-responsive hydrogel 

prepared from a lectin (concanavalin A; ConA), which has four recognition sites for 

monosaccharide such as glucose and mannose, and a monomer with pendant glucose 

(2-glucosyloxyethyl methacrylate; GEMA) exhibited swelling change in response to 

free glucose and mannose.18-20 However, the volume change of the 

biomolecule-responsive hydrogel was not so large because introducing a large amount 

of biomolecular complexes into polymer networks is difficult. 

Here, a bending-extending motion of the hydrogels was achieved using the difference 

in swelling ratio changes between biomolecule-responsive and non-responsive 

hydrogels. Furthermore, the bending-extending motion depends on 2D change of it. 

Therefore, the bending-stretching motion can amplify a small change in volume of the 

biomolecule-responsive hydrogels in response to a target biomolecule. In this study, 

biomolecule-responsive hydrogels that exhibit a bending-stretching motion in response 

to lectin ConA and glucose were prepared by attaching a poly(2-glucosyloxyethyl 

methacrylate) (PGEMA) hydrogel to a PAAm hydrogel. The present chapter reports the 
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bending-stretching behavior of the resulting PGEMA-attached PAAm hydrogel in the 

presence of ConA and glucose. The PGEMA-attached PAAm hydrogel can not only 

sense ConA as the curvature change in an aqueous ConA solution, but also detect 

glucose as the curvature change in an aqueous glucose solution after the 

ConA-responsive behavior. 
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3.2 Experimental 

3.2.1 Materials 

GEMA was supplied as an aqueous solution of 53.5 wt% by Nippon Fine Chemical 

Co., Ltd. (Osaka Japan). Acrylamide (AAm), N,N'-methylenebisacrylamide (MBAA), 

ammonium persulfate (APS), N,N,N',N'-tetramethylethylenediamine (TEMED), and 

D-glucose were purchased from WAKO Pure Chemical Industries (Osaka, Japan). 

ConA was purchased from Vector Laboratories Inc. (Berlingame, CA). All other 

analytical grade reagents were used without further purification. 

 

3.2.2 Synthesis of PGEMA hydrogels 

GEMA, MBAA as a crosslinker, APS as an initiator and TEMED as a polymerization 

accelerator were dissolved in 1.0 mL of phosphate buffer solution (PBS; pH 7.4, 20 

mM) (Table 3-1). After the solution was injected into a glass tube with a diameter of 3.0 

mm, the copolymerization was carried out for 12 h at 25 °C. After the copolymerization, 

the hydrogel was taken out of the glass tube and was immersed in PBS to remove 

unreacted monomers from the resulting network until the equilibrium swelling state was 

reached  

Table 3-1. Feed compositions of PGEMA hydrogels 

Samplea) GEMA (M) MBAA (mM) APS (mM) TEMED (mM) 

GEMA(0.5) 1.0  5.0 60.0 60.0 

GEMA(1.0) 1.0 10.0 60.0 60.0 

GEMA(1.5) 1.0 15.0 60.0 60.0 

GEMA(2.0) 1.0 20.0 60.0 60.0 
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a) PGEMA hydrogels are labeled by GEMA(x), where x indicates the MBAA content of 

the feed (mol% relative to GEMA). 

 

3.2.3 Synthesis of PAAm hydrogels 

AAm, MBAA, APS, and TEMED were dissolved in 1.0 mL of phosphate buffer 

solution (PBS; pH 7.4, 20 mM) (Table 3-2). After the solution was injected into a glass 

tube with a diameter of 3.0 mm, the copolymerization was carried out for 12 h at 25 °C. 

After the copolymerization, the hydrogel was taken out of the glass tube and was 

immersed in PBS to remove unreacted monomers from the resulting network until the 

equilibrium swelling state was reached.  

 

Table 3-2. Feed compositions of PAAm hydrogels 

Samplea) AAm (M) MBAA (mM) APS (mM) TEMED (mM) 

AAm(0.1) 1.0 1.0 30.0 30.0 

AAm(0.2) 1.0 2.0 30.0 30.0 

AAm(0.3) 1.0 3.0 30.0 30.0 

AAm(0.4) 1.0 4.0 30.0 30.0 

a) PGEMA hydrogels are labeled by AAm(x), where x indicates the MBAA content of 

the feed (mol% relative to AAm). 

 

3.2.4 Synthesis of PAAm-attached PGEMA hydrogel 

AAm (71.1 mg, 1.0 mmol), MBAA (0.247 mg, 1.6 µmol), APS (6.85 mg, 30 µmol), 

and TEMED (4.47 µl, 30 µmol) were dissolved in 1.0 mL of PBS (pH 7.4, 20 mM). 

After the solution was injected into a template mold composed two glass substrates and 

a silicon sheet of a thickness of 300 µm as a spacer, the copolymerization was carried 
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out for 12 h at 25 °C. After the copolymerization, one of the glass substrates was peeled 

off and a silicon sheet of a thickness of 300 µm was stacked onto it. After 1.0 mL of 

PBS (pH 7.4, 20 mM) containing GEMA (298 mg, 1.0 mmol), MBAA (0.772 mg, 5.0 

mmol), APS (6.85 mg, 30 mmol), and TEMED (4.47 µl, 30 mmol) was injected into the 

template mold, the copolymerization was carried out for 12 h at 25 °C. After the 

copolymerization, the hydrogel was taken out of the template mold and was immersed 

in PBS to remove unreacted monomers from the resulting network until the equilibrium 

swelling state was reached. 

 

3.2.5 Measurements of amount of absorbed ConA 

PGEMA hydrogels were kept immersed in PBS containing 0.5 mg mL-1 of ConA. 

The amount of ConA adsorbed into the hydrogels was determined from equation (1):  

Amount  of  absorbed  ConA  (C0 C)V

W
  (1) 

where C0 is initial concentration, C is concentration after ConA adsorption, V is volume 

of solution, and W is weight of dried gel. The concentration of aqueous ConA solution 

was determined by measuring absorption at 280 nm using UV-Vis spectroscopy 

(UV2550PC; Shimazu Co., Ltd., Kyoto, Japan). 

 

3.2.6 Measurements of swelling ratio 

PGEMA hydrogels were kept immersed in deionized water until they reached their 

equilibrium swelling state at 25 °C. Next, they were transferred into aqueous ConA 
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solution (1.0 mg mL–1) at 25 °C and kept immersed in this solution. Their swelling ratio 

(V/V0) was determined from their diameter ratio using Equation (2). Hydrogel diameters 

at equilibrium swelling in deionized water (d0) and in aqueous ConA solution (d) were 

measured by optical microscopy. 

Swelling ratio  V

V0

 d

d0











3

    (2) 

 

3.2.7 Measurements of crosslinking density 

Compressive modulus of hydrogels was determined using a rheometer (Rheology Co., 

DVE Rheospectoler DVE-V4). The hydrogel that reached equilibrium swelling state 

was compressed by the crosshead of the apparatus, and then the relationship between 

the compressive stress and strain of the hydrogel was recorded. The compressive 

modulus was obtained by Equation (3) from the relationship between the compressive 

stress and strain of hydrogels. Moreover, the apparent crosslinking density of the 

hydrogel was calculated by Equation (4). 

)( 2  G     (3) 

3/1
2

3/2
0 VVRTG e      (4) 

where τ is compressive stress (Pa), G is compressive modulus (Pa), R is the gas constant, 

T is absolute temperature (K), α is the ratio of the thickness of the gel before and after 

compression, νe is the effective crosslinking density (mol/L), V0 is the volume fraction 

of the polymer during network formation and V2 is the volume fraction of the polymer 

in the hydrogel, which is obtained from the swelling ratio using Equation (5): 
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V 


 )(1

1

2

    (5) 

where ρg and ρs are the density of the dried gel and solvent, respectively. 

 

3.2.8 Evaluation of bending behavior of PAAm-attached PGEMA hydrogel 

PAAm-attached PGEMA hydrogels were kept immersed in deionized water until 

they reached their equilibrium swelling state at 25 °C. Next, they were transferred into 

aqueous ConA solution (1.0 mg mL–1) at 25 °C and kept immersed in the solution. The 

bending behavior of the hydrogels was evaluated from their curvature change. The 

curvature was determined from curvature radius (R) using Equation (6). 

Curvature 1/ R     (6) 
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3.3 Results and discussion 

Figure 3-1a shows the relationship between the MBAA content and the amount of 

ConA adsorbed into the PGEMA hydrogel in a buffer solution of 1.0 mg mL-1 ConA. 

ConA was adsorbed into the PGEMA hydrogels with various MBAA contents. ConA is 

the lectin with four binding sites for saccharides such as glucose and mannose. A 

PGEMA hydrogel was composed of polymer chains with pendant glucose moieties that 

interact with ConA. Therefore, the adsorption of ConA into the PGEMA hydrogel was 

attributed to specific interaction between ConA and pendant glucose moieties of 

PGEMA. With increasing MBAA content, the amount of ConA adsorbed into the 

PGEMA hydrogel decreased gradually. In the PGEMA hydrogel with the high MBAA 

contents, the diffusion of ConA is inhibited owing to its small network size. Therefore, 

a smaller amount of ConA was adsorbed into the PGEMA hydrogel with a high MBAA 

content than that with a low MBAA content. 

Figure 3-1b shows the relationship between the MBAA content and the swelling ratio 

change of the PGEMA hydrogel in a buffer solution of 1.0 mg mL-1 ConA. The 

swelling ratio of the PGEMA was determined by the ratio of its volume in a buffer 

solution with ConA to in a solution without ConA. Therefore, the swelling ratio of less 

than one means that the hydrogel shrank in response to ConA. The fact that the swelling 

ratio of the PGEMA hydrogels with various MBAA was less than one indicates that the 

PGEMA hydrogel shrank in responsive to ConA. The ConA-responsive shrinkage of 

the PGEMA hydrogel is attributed to an increase in crosslinks by the complex 

formation of ConA with four pendant glucoses of PGEMA. Furthermore, the PGEMA 
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hydrogel with a low MBAA content exhibited a greater shrinkage than that with a high 

MBAA content. MBAA and GEMA-ConA complex acted as the static and dynamic 

crosslinks, respectively. Covalent crosslinks based on MBAA inhibited a change in the 

swelling ratio by the dynamic crosslink change. Therefore, ConA-responsive shrinkage 

became greater with a decrease in MBAA content. 

 

 

Figure 3-1. (a) Effects of the MBAA content on the amount of ConA absorbed into the 

PGEMA hydrogels in PBS (pH 7.4, 20mM) with ConA (1.0 mg mL-1). (b) Effects of 

the MBAA content on the swelling ratio of the PGEMA hydrogels in PBS (pH 7.4, 

20mM) with ConA (1.0 mg mL-1). 

 

To clarify that GEMA-ConA complexes in the PGEMA hydrogels acted as dynamic 

crosslinks, the changes in their crosslinking densities were investigated by measuring 

the compressive moduli of PGEMA hydrogels before and after immersing in PBS with 

ConA. As shown Figure 3-2a, the crosslinking densities of the PGEMA hydrogels in the 

presence of ConA were a little higher than those in its absence. This means that ConA 
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played an important role in an increase in crosslinking density of the PGEMA hydrogels 

in response to ConA, followed by their ConA-responsive shrinkage. In addition, the 

crosslinking density change of the PGEMA hydrogels was estimated to clarify the 

suitable structures of the PAAm-attached PGEMA hydrogel exhibiting 

ConA-responsive bending behavior. The crosslinking density changes were closely 

related with the swelling ratios of the hydrogels. The crosslinking density change was 

determined by equation (5); 

Crosslinking density chnage  (e
ConA e

PBS ) /e
PBS   (5) 

which e
ConA and e

PBS are crosslinking densities of PGEMA hydrogels in a buffer 

solution with and without ConA, respectively. As shown in Figure 3-2b, the 

crosslinking density changes trended to decrease gradually with an increase in the 

MBAA content. Because the PGEMA hydrogels with a low MBAA content exhibited 

the high swelling ratio in a buffer solution without ConA owing to their low 

crosslinking density. Therefore, the crosslinking density of the PGEMA hydrogels with 

a low MBAA content increased more greatly that that with a high MBAA content when 

pendant glucose of GEMA formed the complexes as dynamic crosslinks with ConA in a 

buffer solution with ConA. This is why the PGEMA hydrogels with a low MBAA 

content trended to shrink more greatly in response to ConA than those with a high 

MBAA content. Thus, the PGEMA hydrogels are ConA-responsive hydrogels that 

shrink gradually in response to target ConA. 
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Figure 3-2. (a) Crosslinking densities of PGEMA hydrogels in PBS (pH 7.4, 20 mM) 

with (closed circle) and without ConA (opened circle). (b) Crosslinking density change 

between PGEMA hydrogels in PBS (pH 7.4, 20 mM) with and without ConA. 

 

Using PGEMA hydrogels exhibiting the ConA-responsive shrinkage, 

biomolecule-responsive hydrogels that exhibit a bending-stretching motion in response 

to ConA and glucose were prepared by attaching the PGEMA hydrogel to a PAAm 

hydrogel. Figure 3-3 shows the photographic image of PAAm-attached PGEMA 

hydrogel in PBS (pH 7.4, 20 mM). The PAAm-attached PGEMA hydrogel prepared in 

a glass plate mold had a straight shape before it was immersed in PBS. As shown in 

Figure 3-3, however, the PAAm-attached PGEMA hydrogel had a bended shape after it 

attained equilibrium swelling ratio in PBS. This indicates that the swelling ratio of the 

PGEMA hydrogel was lower than that of the PAAm hydrogel because of lower 

crosslinking density of the former than the latter in the PAAm-attached PGEMA 

hydrogel. 

Changes in curvature of the PAAm-attached PGEMA hydrogel were investigated to 
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quantitatively evaluate its bending behavior in response to ConA and glucose. Figure 

3-4 shows change in the curvature of PAAm-attached PGEMA hydrogel in PBS (pH 7.4, 

20 mM) with ConA (1.0 mg mL-1) and D-glucose (1.0 M). When the PAAm-attached 

PGEMA hydrogel was immersed in PBS with ConA, the hydrogel was gradually 

stretched in response to ConA. In PBS with ConA, the crosslinking density of the 

PGEMA hydrogel layer increased by formation of GEMA-ConA complexes as dynamic 

crosslinks. Therefore, as the swelling ratio of the PGEMA hydrogel layer became 

similar to that of PAAm hydrogel layer, the PAAm-attached PGEMA hydrogel changed 

to a stretched shape. Subsequently, when the PAAm-attached PGEMA hydrogel was 

immersed in PBS with D-glucose, its curvature increased drastically and it change to a 

more greatly bended shape. In PBS with glucose, the swelling ratio of the PGEMA 

hydrogel layer increased by dissociation of GEMA-ConA complexes and became much 

larger than that of the PAAm hydrogel layer. Therefore, the PAAm-attached PGEMA 

hydrogel changed to a more greatly bended shape in response to glucose. These results 

indicate that the PAAm-attached PGEMA hydrogel undergo changes in the shape 

between stretched and bended shapes in response to ConA and glucose. Such unique 

biomolecule-responsive bending-stretching motion of the PAAm-attached PGEMA 

hydrogel can provide useful tools for fabricating smart microsystems with a wide 

variety of uses, such as artificial muscles, microdevices for regulating microfluidics and 

sensor systems. Although the PAAm-attached PGEMA hydrogel requires further 

researches, it is likely to become important functional materials in the future. 
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Figure 3-3. Photographic image of PAAm-attached PGEMA hydrogel in PBS (pH 7.4, 

20 mM). 

 

 

Figure 3-4. Curvature of PAAm-attached PGEMA hydrogel in PBS (pH 7.4, 20 mM) 

with ConA (1.0 mg mL-1) or glucose (1.0 M). 
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3.4 Conclusions 

The PGEMA hydrogel shrank in response to ConA by the formation of GEMA-ConA 

complexes as dynamic crosslinks. The PGEMA hydrogel with a low MBAA content 

exhibited the greater shrinkage in PBS with ConA than that with a high MBAA content. 

A PAAm-attached PGEMA hydrogel was prepared by sequential network formation by 

polymerization of AAm and GEMA. The resulting PAAm-attached PGEMA hydrogel 

had a bended shape because of different swelling ratio between the PAAm and PGEMA 

hydrogel layers. The PAAm-attached PGEMA hydrogel underwent changes in shape 

between stretched and bended shapes in response to ConA and glucose because of 

association and dissociation of GEMA-ConA complexes, respectively. Therefore, the 

PAAm-attached PGEMA hydrogel that exhibited the stretching-bending motion in 

response to ConA and glucose will be expected as novel chemomechanical actuator 

such as an artificial muscle, microvalve, and glucose sensor. 
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4.1 Introduction 

Many kinds of mechanical devices for mass transport such as pumps and conveyers 

are driven by converting electric energy into mechanical energy. On the other hand, in 

biological transport systems, proteins such as actin and myosin convert chemical energy 

derived from ATP hydrolysis into mechanical energy to contract a muscle. In addition 

to motion of a voluntary muscle, in an involuntary muscle, autonomous and periodic 

contraction of the muscle is used for constructing macroscopic transport systems such 

as the circulation of blood by a heart and an excretion of digested foods by the intestine. 

There have been many studies on stimuli-responsive hydrogels that exhibit a 

reversible swelling-shrinking change in response to environmental changes such as 

solvent composition, temperature, and pH change.1-5 In contrast, we have developed a 

novel “self-oscillating” hydrogel that exhibits autonomous mechanical oscillation 

without an external control in a completely closed solution. For the design of the 

hydrogel, the Belousov-Zhabotinsky (BZ) reaction, which is well-known for exhibiting 

temporal and spatiotemporal oscillating phenomena,6,7 was focused. We attempted to 

convert the chemical oscillation of the BZ reaction into a mechanical change in 

hydrogels and generate an autonomous swelling-shrinking oscillation under 

non-oscillatory outer conditions. A copolymer hydrogel consisting of 

N-isopropylacrylamide (NIPAAm) and ruthenium tris(2,2’-bipyridine) (Ru(bpy)3), 

acting as a catalyst for the BZ reaction, was prepared.  When the 

poly(NIPAAm-co-Ru(bpy)3) hydrogel is immersed in the catalyst-free BZ solution, the 

reaction occurs in the hydrogel by the catalytic function of the polymerized Ru(bpy)3.  
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The redox changes of the polymerized catalyst moiety (Ru(bpy)3
2+ ⇄ Ru(bpy)3

3+) 

change the volume phase transition temperature as well as the swelling ratio of the 

hydrogel because the hydrophilicity of the polymer chains increases at the oxidized 

Ru(III) state and decreases at the reduced Ru(II) state. As a result, the hydrogel exhibits 

an autonomous swelling-shrinking oscillation with the redox oscillation in the closed 

solution under constant condition. Since being first reported in 1996 as a 

“self-oscillating hydrogel”,8 we have been systematically studying the self-oscillating 

polymer and hydrogel as well as their applications to biomimetic or smart materials.9-15 

In the hydrogel, a train of excited pulses of the oxidized state (i.e. “chemical waves”) 

spontaneously evolves and propagates by a reaction-diffusion mechanism when the 

hydrogel size is much larger than the wavelength of the chemical wave. In the case of a 

2-dimensional hydrogel sheet, concentric or spiral waves can be observed.  With the 

propagation of chemical waves, the self-oscillating hydrogel exhibits peristaltic 

motion,10-13 that is, the locally swollen (or shrunken) region corresponding to a locally 

oxidized (or reduced) state propagates in the hydrogel, similar to the locomotion of a 

living worm. Such macroscopic swelling-shrinking oscillation may lead to the creation 

of novel biomimetic actuators.14-16 

In this study, to construct autonomous mechanical pumping systems like an intestine 

(Figure 4-1), we fabricated the self-oscillating hydrogel in a tubular shape. Three kinds 

of tubular self-oscillating hydrogels that exhibit autonomous peristaltic motion were 

prepared. First, a tubular poly(NIPAAm-co-Ru(bpy)3) hydrogel adhered to the inner 

wall of a glass capillary was prepared and the periodic inner diameter changes during 
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the BZ reaction were analyzed.  Second, by removing the hydrogel from the glass 

capillary, a tubular hydrogel that can swell and shrink freely without a mechanical 

restraint was prepared. Then, a tubular hydrogel with interpenetrating polymer network 

(IPN) structure composed of self-oscillating and non-oscillating polymers was prepared. 

It was shown that these tubular self-oscillating hydrogels exhibited various behaviors of 

peristaltic motions. In addition, it was demonstrated that an object was autonomously 

transported in the hydrogel tube by the peristaltic pumping motion similar to an 

intestine. 

 

 

Figure 4-1. Schematic illustration of autonomous mass transport by peristaltic pumping 

of a tubular self-oscillating hydrogel. 
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4.2 Experimental 

4.2.1 Materials 

N-isopropylacrylamide (NIPAAm) was purchased from Kanto Chemical Co., Inc. 

(Tokyo, Japan) and purified by recrystallization in toluene/hexane.  

2-acrylamido-2’-methylpropanesulfonic acid (AMPS), N,N’-methylenebisacrylamide 

(MBAA) and were purchased from Sigma-Aldrich. Irgacure 651, Irgacure 2959 and 

methanol were purchased from Kanto Chemical Co., Inc. (Tokyo Japan). Acrylamide 

was purchased from Merck (Darm-stadt, Germany). All reagents mentioned above were 

of JIS special grade. Ruthenium(4-methyl-4’-vinyl-2,2’-bipyridine)bis(2,2’-bipyridine) 

bis(hexafluorophosphate) (Ru(bpy)3 monomer) was synthesized according to the 

procedure reported before. 

 

4.2.2 Fabrication of tubular poly (NIPAAm-co-Ru(bpy)3) hydrogel 

NIPAAm (93.0 mol%), Ru(bpy)3 monomer (1.0 mol%), MBAA (5.0 mol%) as a 

crosslinker, and Irgacure 651 (1.0 mol%) as a photoinitiator were dissolved in methanol 

(1000 μl). The pre-gel solution (2.0 M) was injected into a glass capillary with an inner 

diameter of 1.02 mm. The glass capillary containing the pre-gel solution was rotated on 

its axis by using an electric motor at 9 rpm and exposed to the UV light (14 mW/cm2) 

for 10 min by using an Hg lamp (LC5, HAMAMATSU). After photo-polymerization, 

the hydrogel with the glass capillary was washed with methanol several times to remove 

unreacted compounds for 1 day and was preserved in a 0.1 M HNO3 solution. 
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4.2.3 Fabrication of tubular poly(NIPAAm-co-Ru(bpy)3-co-AMPS) hydrogel 

NIPAAm (95.25 mol%), Ru(bpy)3 monomer (1.5 mol%), AMPS (0.5 mol%), MBAA 

(1.75 mol%), and Irgacure 2959 (1.0 mol%) were dissolved in 50% methanol solution 

(1000 μl). The pre-gel solution was (1.4 M) injected into a glass capillary with an inner 

diameter of 0.72 mm. Photopolymerization and washing the hydrogel were done in the 

same manner as mentioned above. The glass capillary was removed by dissolving it 

using hydrofluoric acid. 

 

4.2.4 Fabrication of tubular IPN hydrogel composed of poly(NIPAAm-co-Ru(bpy)3) 

and PAAm 

First, the tubular poly(NIPAAm-co-Ru(bpy)3) hydrogel was fabricated in the same 

manner as mentioned above. The tubular poly(NIPAAm-co-Ru(bpy)3) hydrogel was 

dried for 1 day at 50 °C. The pre-gel solution (2.1 M) containing AAm (99.8 mol%), 

MBAA (0.1 mol%) and Irgacure 2959 (0.1 mol%) was injected into the glass capillary 

to whose inner surface the poly(NIPAAm-co-Ru(bpy)3) hydrogel adhered. The glass 

capillary containing the second pre-gel solution was exposed to UV light, and after 

washing the hydrogel, the glass capillary was dissolved in the same manner as 

mentioned above. 

 

4.2.5 Observation of peristaltic motion of tubular self-oscillating hydrogel 

The tubular poly(NIPAAm-co-Ru(bpy)3-co-AMPS) hydrogel and the tubular IPN 

hydrogel composed of poly(NIPAAm-co-Ru(bpy)3) and PAAm were soaked in a 
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catalyst-free BZ solution containing 894 mM HNO3, 84.0 mM NaBrO3, and 62.5 mM 

CH2(COOH)2 at 18˚C. In the case of the tubular poly(NIPAAm-co-Ru(bpy)3) hydrogel 

with a glass capillary, both ends of the capillary were connected to a silicon tube. By 

using a syringe pump, the catalyst-free BZ solution containing 894 mM HNO3, 84.0 

mM NaBrO3, and 62.5 mM CH2(COOH)2 was fed into the hydrogel tube at 0.1 ml/hour.  

The peristaltic motion of the tubular self-oscillating hydrogels was recorded by a 

computer with a video capture board through a CCD camera (Allied Vision Tech., 

Marlin F-201C) attached to a microscope (Leica, MZ12). 
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4.3 Results and discussion 

4.3.1 Peristaltic motion of tubular poly(NIPAAm-co-Ru(bpy)3) hydrogel 

A tubular poly(NIPAAm-co-Ru(bpy)3) hydrogel was prepared through 

photopolymerization by irradiating a UV light onto the pre-gel solution in a glass 

capillary while rotating it on its axis (see Experimental Section) and washing away 

unreacted monomers after that. Figure 4-2 shows the behavior of peristaltic motion of 

the tubular self-oscillating hydrogel which remains adhered to the inner wall of a glass 

capillary. The inside of the gel tube is filled with the catalyst-free BZ solution which is 

forced to flow slowly at a constant rate by using a syringe pump. The green and orange 

colors indicate the oxidized Ru(III) and reduced Ru(II) states of the hydrogel, 

respectively. By the BZ reaction, a chemical wave was propagated from right to left.  

The direction was the same as the direction of flow of the inner fluid. The hydrogel 

layer at the oxidized region became thicker than of the reduced region. The locally thick 

layer moved with the propagation of the chemical wave. 

To show this peristaltic behavior more clearly, a time-series image analysis was done. 

Two spatiotemporal patterns were constructed by extracting one-line image along the x 

and y directions (Figure 4-3a) from each frame of the movie and lining it up 

sequentially with time, respectively (Figures 4-3b and 4-3c). Calculating from the slope 

of the stripes of the spatio-temporal pattern in Figure 4-3b, the wave velocity was 

estimated to be 0.42 mm/min. This value is much smaller than the flow rate of the 

catalyst-free BZ solution (4.77 mm/min). As shown in Figure 4-3c, the thickness of the 

hydrogel layer changed only toward the inner direction because the outer side of the 
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hydrogel layer was fixed to the glass capillary. Figure 4-3d shows the oscillation profile 

of the signal intensity of green color along the dotted line in Figure 4-3c, which 

indicates periodic redox changes at a fixed point in the hydrogel layer. The period of the 

redox changes was estimated to be 11.8 min. Figure 4-3e shows the change in the 

thickness of the hydrogel layer at the fixed point, which can be obtained from Figure 

4-3c. It is apparent that redox oscillation and swelling oscillation synchronize, which 

means that the peristaltic motion of the tubular hydrogel occurs with the propagation of 

the chemical wave. 

 

Figure 4-2. Time course images of the peristaltic motion of the tubular 

poly(NIPAAm-co-Ru(bpy)3 hydrogel which adheres to the inner wall of a glass 

capillary. Light green band moves from right to left with thickening of the sidewalls. 
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Figure 4-3. Time-series image analysis of the peristaltic motion of the tubular 

poly(NIPAAm-co-Ru(bpy)3 hydrogel shown in Figure 4-2. (a) One frame image 

extracted from the movie. (b) Spatio-temporal pattern constructed by lining up the x line 

time-sequentially. (c) Spatio-temporal pattern constructed by lining up the y line 

time-sequentially. (d) Redox changes at a fixed point in the hydrogel layer, which is 

expressed as an intensity of the green signal on the dotted line in (c). (e) Change in 

thickness of the hydrogel layer at a fixed point, which is drawn from Figure (c). 

 

4.3.2 Peristaltic motion of tubular poly(NIPAA-co-Ru(bpy)3-co-AMPS) hydrogel 

Then, to obtain a tubular hydrogel, the glass capillary was dissolved by using 

hydrofluoric acid. However, the obtained tubular poly(NIPAAm-co-Ru(bpy)3) gel was 
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fragile. To improve the mechanical strength of the hydrogel as well as the swelling 

response, we added another component into the polymer network. In a previous study, 

we reported that it is effective to copolymerize 2-acrylamido-2’-methylpropanesulfonic 

acid (AMPS) to a poly(NIPAAm-co-Ru(bpy)3) hydrogel network to change the physical 

properties and generate a large amplitude of volume change during self-oscillation.12 

The poly(NIPAAm-co-Ru(bpy)3-co-AMPS) hydrogel had a micro-aggregated structure 

when the AMPS’s feed ratio was less than 5 mol % due to the effect of the poor solvent 

in the polymerization process. The micro-aggregated structure highly improved the 

swelling-shrinking kinetics of the hydrogel, and consequently, larger swelling-shrinking 

amplitude approximately 10 times larger than that of the hydrogel with a homogeneous 

structure was obtained. 

Based on this knowledge, we fabricated a tubular 

poly(NIPAAm-co-Ru(bpy)3-co-AMPS) hydrogel (Figure 4-4). Not only was the 

hydrogel opaque due to the micro-aggregated structure, but also the thickness of the 

hydrogel tube became very thin because the UV light could not reach deep inside the 

capillary during photopolymization. Figure 4-4a shows the peristaltic motion of the 

tubular poly(NIPAAm-co-Ru(bpy)3-co-AMPS) hydrogel with the propagation of the 

chemical wave. (Here the wave propagates from left to right.) In this case, the 

catalyst-free BZ solution is not forced to flow through the tube, which is different from 

the case of Figure 4-1. Instead, the hydrogel is simply soaked in the solution. The gel 

exhibited drastic peristaltic motion with a remarkable deformation of its outer side 

while moving significantly. Figure 4-4b shows the spatio-temporal pattern and the 
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change in the outer diameter of the hydrogel. An approximately 20 % change in the 

outer diameter was observed. The wave velocity and the period were 1.1 mm/min and 

12.4 min, respectively. The wave velocity increased because the diffusivity of reaction 

intermediates in the hydrogel increased due to the porous structure. 

 

Figure 4-4. (a) Time course images of the peristaltic motion of the tubular 

poly(NIPAAm-co-Ru(bpy)3-co-AMPS) hydrogel. (b) Spatio-temporal pattern and 

change in outer diameter of the tubular hydrogel at a fixed point. 

 

4.3.3 Peristaltic motion of tubular IPN hydrogel composed of poly(NIPAAm-co-Ru(bpy)3) 

and PAAm 

Here remarkable changes in the outer diameter of the hydrogel tube result from the 
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reduced thickness of the hydrogel layer. Therefore, the next interest is to cause 

peristaltic motion only at the inner surface of the hydrogel tube while maintaining a 

constant outer diameter. For this purpose, it would be desirable to make the polymer 

network non-oscillatory at the outer surface and oscillatory at the inner surface. To 

create such a structure, we introduced an interpenetrating polymer network (IPN) 

structure (or so-called double-network (DN) structure) into the tubular hydrogel. That is, 

based on the tubular poly(NIPAAm-co-Ru(bpy)3) hydrogel, polyacrylamide (PAAm) as 

a non-oscillating polymer network was physically entangled mainly at the outer surface 

side. By employing the two-step photopolymerization method (see Supporting 

information), the IPN hydrogel was prepared. During photopolymerzation, the intensity 

of the UV light decays toward the inside of the pre-gel solution in a glass capillary. As a 

result, denser entanglement of the two polymer networks can be created mainly at the 

outer surface. 

As mentioned before, the tubular poly(NIPAAm-co-Ru(bpy)3) hydrogel itself is 

fragile. By introducing the IPN structure, the mechanical properties can also be 

improved, as it was reported by Gong et al. that DN hydrogels have high strength and 

toughness.17 The self-oscillating IPN hydrogel we prepared here became much tougher 

than the poly(NIPAAm-co-Ru(bpy)3) hydrogel. Interestingly, many cracks were 

observed in the hydrogel as shown in Figure 4-5a. 

Figure 4-5a shows the behavior of the peristaltic motion of the tubular IPN hydrogel. 

(In this case, the chemical wave propagates from right to left.) Similar to the case of 

Figure 4-4, the catalyst-free BZ solution is not forced to flow through the tube. The 
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hydrogel is simply soaked in the solution. In contrast to Figure 4-4a, a remarkable 

change in outer diameter was not observed. From the spatio-temporal pattern (Figure 

4-5b), it is clear that only the inner diameter changes while the outer diameter is kept 

almost constant. The wave velocity and the period were 2.0 mm/min and 7.4 min, 

respectively. The faster wave velocity may be due to many cracks in the hydrogel. 

 
Figure 4-5. (a) Time course images of the peristaltic motion of the tubular IPN hydrogel 

composed of poly(NIPAAm-co-Ru(bpy)3) and PAAm networks. (b) Spatio-temporal 

pattern and change in thickness of the hydrogel layer at a fixed point. 
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4.3.4 Transport of a CO2 bubble by Peristaltic motion of tubular self-oscillating 

hydrogel 

The BZ reaction usually generates CO2 gas as a product while the reaction proceeds.  

In our experiments, the generation of a CO2 bubble was observed inside a hydrogel tube 

after a while. The bubble gradually grew bigger with time. Figure 4-6a shows the 

behavior of a CO2 bubble which was generated in the tubular 

poly(NIPAAm-co-Ru(bpy)3) hydrogel adhered to the inner surface of a glass capillary, 

as in the case of Figure 4-2. When the bubble became large enough to contact the inner 

surface of the hydrogel layer, it started to move intermittently by repeated deformation 

and restoration in the direction of chemical wave propagation. Figures 4-6b and 6c 

show the changes in the position and the velocity of the bubble, respectively. The 

velocity was calculated by differentiating the position with time. It is obvious that a net 

movement of the bubble occurs by repeating backward and forward movements. In this 

case, the catalyst-free BZ solution is forced to flow at a constant rate by using a syringe 

pump, as mentioned in Figure 4-1. But considering the observed intermittent motion 

and comparing the moving rate of the bubble with the flow rate of the inner solution, the 

bubble is transported by the peristaltic pumping of the hydrogel, not by the convection 

of the flow of the inner fluid. 

When the chemical wave reaches the contact point, the bubble is squashed and 

deformed by swelling of the hydrogel layer at the point. Then the bubble is 

mechanically pushed forward by the peristaltic pumping mechanism. Since the 

catalyst-free BZ solution flows at a constant rate in the tube, an inner hydraulic pressure 
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behind the bubble increases by a reduction of inner diameter. The increased pressure 

may also help to push the bubble forward. After the wave passes through, the hydrogel 

layer shrinks and the squashed bubble returns back to the initial round shape. Due to a 

decrease in pushing force and a negative pressure, the bubble moves backward slightly. 

After that, the movement of the bubble stops for a while. As a result, the movement was 

intermittent. By repeating this process, the bubble is transported in the hydrogel tube. 

 

 
Figure 4-6. (a) The behavior of the autonomous transport of a CO2 bubble in the 

hydrogel tube by peristaltic pumping. (b) Change in the position of the bubble. (c) The 

velocity of the bubble. 
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4.4 Conclusions 

Tubular self-oscillating hydrogels were fabricated by photopolymerization. Different 

types of peristaltic motion were demonstrated by preparing a tubular hydrogel that 

adheres to an inner wall of a glass capillary, a tubular hydrogel that can swell freely 

without mechanical restraint, and a tubular IPN hydrogel consisting of self-oscillating 

and non-oscillating polymer networks. In the hydrogel tube, it was observed that a gas 

bubble was autonomously transported. Mass transport by peristaltic pumping of the 

tubular self-oscillating hydrogel was successfully demonstrated. Recently, controlled 

transport of small objects has become one of the hot topics in many areas of science and 

engineering including chemistry, physics, biology, etc. Small objects such as particles 

with self-propelled motion are being actively studied, which may be the beginning of a 

new research trend.18 The autonomous transport by chemomechanical locomotion of the 

hydrogel reported here is based on a different principle from the systems which have 

been reported so far. Potential applications to artificial intestines, artificial digestive 

tracts, etc. can be expected. Furthermore, there is a possibility of autonomous flow of an 

inner fluid. At present only the BZ solution can be pumped, but other inner fluids could 

be pumped without a bubble formation if the BZ substrates are fed from the outer 

surface of the hydrogel tube. The pumping speeds can be controlled by changing 

reactant concentration, temperature, or improving diffusivity in the hydrogel, etc. We 

are also investigating an application to a novel micropump for microfluidic systems. 
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5.1 Introduction 

In the field of materials science and engineering, development of biomimetic or 

bio-inspired materials has played an important role.  In particular, material design 

based on soft materials such as polymers and hydrogels has been actively studied by 

many researchers. A wide variety of smart polymers and hydrogels with 

stimuli-responsive function,1-6 self-healing function,7-10 highly mechanical strength,11-14 

etc. and their applications are exploited. Under such backgrounds, as a different type of 

smart hydrogels from stimuli-responsive hydrogels, we developed “self-oscillating” 

hysrogel which undergoes autonomous swelling-shrinking oscillation under constant 

condition. Since the first report,15 we have systematically studied the autonomous 

polymer and hydrogel systems on several scales from the order of polymer chains to 

bulk hydrogels.16-25 In addition, recently we have reported self-oscillating systems using 

block copolymer systems23 and the systems coupled with supramolecular chemistry.24,25 

Including theoretical simulations of chemomechanical behaviors,26,27 there are many 

related studies on the self-oscillating hydrogels.28 As a basic chemical structure, the 

self-oscillating hydrogel is composed of crosslinked network of temperature-responsive 

poly(N-isopropylacrylamide) (PNIPAAm) to which ruthenium tris(2,2’-bipyridine) 

(Ru(bpy)3), as a catalyst for the Belousov-Zhabotinsky (BZ) reaction, is copolymerized. 

The BZ reaction is a chemical oscillating reaction to cause spontaneous redox 

oscillation of the catalyst, showing periodic changes in the color of the solution under 

stirring conditions and propagating wave patterns (chemical waves) under stationary 

conditions.29,30 When the poly(NIPAAm-co-Ru(bpy)3) hydrogel is immersed in 
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catalyst-free BZ solution containing the substrates, the reaction occurs in the hydrogel. 

The redox changes of the polymerized catalyst change the volume phase transition 

temperature (VPTT) of the hydrogel as well as the swelling ratio because the 

hydrophilicity of the polymer chains increases in the oxidized Ru(III) state and 

decreases in the reduced Ru(II) state. As a result, the hydrogel exhibits an autonomous 

swelling-shrinking oscillation with the redox oscillation in the closed solution under 

constant conditions. We have evolved the self-oscillating hydrogels as novel functional 

materials for application to biomimetic actuators, mass transport systems, functional 

fluids, etc. As a biomimetic actuator, self-walking hydrogel,19 artificial cilia, etc. are 

reported. In addition, recently, we fabricated a tubular self-oscillating hydrogel with 

autonomous intestine-like motion.22 In the tubular hydrogel, it was observed that a CO2 

gas bubble adhering to the inner surface was autonomously transported with showing an 

intermittent motion by the peristaltic pumping of the hydrogel. From this result, it was 

expected that an autonomous pulsatile flow can be caused for the inner fluid. If such an 

autonomous flow can be realized, as novel autonomous hydrogel pump, application to 

microfluidic systems would be expected. In this study, we demonstrate that we can 

cause autonomous pulsatile flow in a tubular hydrogel by utilizing the peristaltic motion 

of the tubular self-oscillating hydrogel like intestine (Figure 5-1). The autonomous flow 

was proved by using latex beads as tracer particles and analyzing the motion. New 

possibility of the self-oscillating hydrogel as an autonomous chemomechanical hydrogel 

pump was exhibited. 
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Figure 5-1. Schematic illustration of autonomous pulsatile flow by peristaltic motion of 

a tubular self-oscillating hydrogel. 
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5.2 Experimental 

5.2.1 Materials 

NIPAAm was purchased from Kanto Chemical Co., Inc. (Tokyo, Japan) and purified 

by recrystallization in toluene/hexane. N, N’-methylenebisacrylamide (MBAA) was 

purchased from Sigma-Aldrich Co, LLC. (Missouri, USA). Irgacure651was purchased 

from Kanto Chemical Co., Inc. (Tokyo, Japan). Hydrofluoric acid was purchased from 

Morita Chemical Industries Co., Ltd. (Osaka, Japan). Latex beads with 3.0 μm of the 

diameter were purchased from Polysciences, Inc. (Pennsylvania, USA). All reagents 

mentioned above were of JIS special grade. Ruthenium (4-methyl-4’-vinyl- 

2,2’-bipyridine) bis (2,2’-bipyridine) bis (hexafluorophosphate) (Ru(bpy)3 monomer) 

was synthesized as mentioned previously. 

 

5.2.2 Preparation of tubular self-oscillating hydrogel 

Pregel solution was prepared by dissolving NIPAAm (94.3 mol%), Ru(bpy)3 

monomer (0.7 mol%), MBAA (5.0 mol%) as a crosslinker and Irgacure651 (0.02 M) as 

a photo-initiator in methanol. The pregel solution (2.0 M) was filled up a glass capillary 

with 1.0 mm of the inner diameter. To form a tubular hydrogel, the glass capillary was 

rotated at a constant speed during under UV light irradiation (14 mW/cm2) for 10 

minutes by using a Hg lump (LC5, HAMAMATSU). The tubular hydrogel with the 

glass capillary was washed several times by methanol for removing unreacted monomer. 

Then the glass capillary was dissolved and removed by using hydrofluoric acid and the 

tubular hydrogel was reserved in 0.1 M HNO3. 
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5.2.3 Analysis of fluid behavior in tubular self-oscillating hydrogel 

The tubular self-oscillating hydrogel (length; 5mm and diameter; 1 mm) was 

immersed in the catalyst-free BZ substrate solution composed of HNO3 (894 mM), 

NaBrO3 (120 mM) and CH2(COOH)2 (62.5 mM) including latex beads (diameter; 3.0 

m) as tracer particles. The peristaltic motion of the tubular hydrogel and the motion of 

the tracer particles were recorded by a video camera (Allied Vision Tech, Marlin 

F-201C) attached to a microscope (Leica, MZ12) and analyzed by PC software 

(StreamPix 5, Norpix Inc.). Period, propagation velocity of chemical wave, periodic 

changes in wall thickness as well as inner/ outer diameter of the tubular hydrogel were 

measured from the spatiotemporal image analyses by using PC software (Image J). The 

flow velocity in the tubular hydrogel was determined from the passing speed of the 

tracer particles. Further, the velocity vector and the flow line (streamline) in the tube 

were depicted by using PC software (Flow Expert 2C, Kato Koken Co., Ltd). 
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5.3 Results and discussion 

Figure 5-2 shows time-course images of the peristaltic motion of the tubular 

self-oscillation hydrogel in the catalyst-free BZ substrate solution. The peristaltic 

motion was synchronized with the propagation of the chemical wave of the BZ reaction. 

To show this peristaltic motion more clearly, a time-series image analysis was 

employed. Two spatiotemporal patterns were constructed by extracting one-line image 

along the x and y directions, respectively (Figure 5-3a; dashed lines) from each frame in 

the movie and lining it up sequentially with time (Figures 5-3b and 5-3c). From the 

slope of the stripes of the spatiotemporal pattern in Figure 5-3b and the interval of the 

stripes of the spatiotemporal pattern in Figure 5-3c, the wave velocity and the period of 

the redox changes were estimated to be 24.5 μm/s and 1420 s, respectively. 

As shown in Figure 5-3d, the wall thickness of the tubular hydrogel at a fixed point 

changed periodically. Figure 5-3e shows the moving velocity of the tracer particles in 

the inner fluid. It was found that the velocity oscillated periodically synchronized with 

the peristaltic motion of the tubular hydrogel. These two waveforms of wall thickness 

and velocity changes were superposed for the first cycle in the oscillation (Figure 5-3f). 

The maximum velocity of the tracer particles was not observed at the maximum swollen 

state, but on the way of swelling process. This phase difference is related to slow 

swelling kinetics of the hydrogel. Figure 5-4 shows the distribution of flow velocity 

vector in tubular hydrogel. The color stands for relative magnitude of velocity (red; 

higher, blue; lower). It was demonstrated that the velocity of the fluid increased around 

locally swollen region with the propagation of chemical wave. The velocity decreased 
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after passing of the locally swollen region. Before the flow velocity increased, stopping 

of flow or backflow was observed transiently. These are due to negative hydrodynamic 

pressure caused by water uptake with swelling of the hydrogel. 

 

 

Figure 5-2. Time-course images of the peristaltic motion of the tubular 

poly(NIPAAm-co-Ru(bpy)3) hydrogel. Light green band moves from right to left, 

indicating thickening of the wall thickness of the tubular hydrogel. 
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Figure 5-3. Time-series image analysis of the peristaltic motion of the tubular 

poly(NIPAAm-co-Ru(bpy)3) hydrogel shown in Figure 5-2. a) One frame image 

extracted from the movie. b) Spatiotemporal pattern constructed by lining up the dashed 

x line time sequentially. c) Spatiotemporal pattern constructed by lining up the dashed y 

line time sequentially. d) Change in the thickness of the hydrogel layer at a fixed point, 

which is derived from (c). e) The velocities of the tracer particles in the tubular 

self-oscillating hydrogel. f) Waveforms of wall thickness and velocity changes for the 

first cycle in the oscillation. 
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Figure 5-4. Distribution of the velocity vector in the tubular self-oscillating hydrogel 

during the autonomous peristaltic motion. 
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Figure 5-5a shows the stream line in the tubular hydrogel. The velocity showed the 

maximum at the center of the tube and the minimum near the inner wall with a nearly 

parabolic profile like poiseuille flow. To evaluate the flow behavior in the tubular 

hydrogel, we estimated the Reynolds number (Re) that is a dimensionless number 

defined by the ratio of inertial force and viscous force; Re = u(-)d/v, where u(-) is the 

average velocity of the tracer particle, d is the inner diameter of tubular hydrogel and ν 

is the kinematic viscosity of the catalyst-free BZ substrate solution at the room 

temperature. By using the following experimental values: u(-) = u/2 = 1.8 μm/s, d = 2r = 

600 μm, ν = 2.0 × 10-6 m2/s.  Re was calculated to be 5.5 × 10-4, which is much smaller 

than the critical value (ca. 2,300) for transition between laminar flow and turbulent 

flow. 

Moreover, we calculated the Womersley number (α) that is a dimensionless number 

defined by the ratio of transient inertial force to viscous force. α is often used in biofluid 

mechanics for estimation of periodic flow such as oscillatory flow and pulsatile flow; α 

= r(ω/ν)1/2, where ω is angular frequency of oscillation. By using the following 

experimental values: ω = 2π / τ = 4.5 rad/s (where τ is the period of the redox 

oscillations, τ = 1420 s), α was estimated to be 1.4 × 10-2.  The obtained value is much 

smaller than 1, which agrees with the result that a parabolic velocity profile was 

developed in Figure 5-5. Further, the order of the value (10-2-10-3) agrees with that for 

arterioles, capillaries, venules in biological systems. 
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Figure 5-5. a) The stream line in the tubular self-oscillating hydrogel. b) Definition of 

coordinate axis of the tubular self-oscillating hydrogel. r = 0 was defined as the center 

position of the tube. c) Radius position-dependent velocity change of the tracer particle 

in the tubular self-oscillating hydrogel. 
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5.4 Conclusions 

A tubular self-oscillating hydrogel that exhibits autonomous peristaltic motion was 

prepared and the autonomous fluidic behaviors inside the hydrogel were analyzed by 

using latex beads as tracer particles. Pulsatile flow was observed synchronized with the 

peristaltic motion of the tubular hydrogel. The velocity increased drastically with the 

propagation of the chemical wave and decreased slowly after passing of the wave. The 

flow velocity of the tracer particle exhibited the maximum value on the way of swelling 

process. Furthermore, the dimensionless Re and α numbers were theoretically estimated, 

which indicated that the flow state in the tubular hydrogel was complete laminar flow. 

To the best of our knowledge, this is the first example of causing an autonomous flow 

in a hydrogel tube under constant condition without on-off switching of external stimuli, 

which was achieved by autonomous peristaltic motion of the self-oscillating tubular 

hydrogel. The tubular self-oscillation hydrogel would be useful as novel autonomous 

micropump in microfluidics, etc. 
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The goal of this study was to fabricate autonomous chemomechanical actuators 

using smart hydrogels. The purposes were achieved by two strategies of discontinuously 

biomolecule-responsive hydrogels and continuously self-oscillating hydrogels. 

Autonomous microvalves were accomplished by using biomolecule-responsive 

hydrogels (Chapter 2). Autonomous soft actuators were developed by using 

biomolecule-responsive hydrogels (Chapter 3). Furthermore, autonomous 

microconveyer and micropump using autonomous volume change of the self-oscillating 

gel was proposed (Chapter 4 and 5).   

 

In Chapter 2, microsized bisphenol A (BPA)-responsive hydrogels were prepared 

with and without the molecular imprinting method by photopolymerization using 

fluorescence microscope. The microsized BPA-responsive hydrogels exhibited 

significantly faster volume changes than macrosized hydrogels in response to BPA. 

Furthermore, microsized BPA-imprinted hydrogels shrank more greatly than microsized 

nonimprinted hydrogels in response to BPA. When a microsized BPA-imprinted 

hydrogel was prepared in the microchannel, the microchannel flow rate changed 

autonomously in response to BPA. Therefore, the microsized BPA-imprinted hydrogels 

in microchannel can be used as autonomous microvalve. 

 

In Chapter 3, poly(2-glucosyloxyethylmethacrylate) (PGEMA) hydrogel that 

exhibited a great shrinkage in response to concanavaline A (ConA) were prepared. 

Furthermore, poly(acrylamide) (PAAm)-attached PGEMA hydrogels were prepared by 
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continuously polymerization. The PAAm-attached PGEMA hydrogel exhibited 

stretching and bending motion in response to ConA and glucose, respectively. 

PAAm-attached PGEMA hydrogel can be used as novel chemomechanical actuator 

such as artificial muscle, microvalve, and glucose sensor. 

 

In Chapter 4, different three types of tubular self-oscillating hydrogels were 

fabricated by photopolymerization with rotation. The tubular self-oscillating hydrogels 

exhibited intestine-like autonomous peristaltic motion in the Belousov-Zhabotinsky 

(BZ) reaction. In the case of a tubular self-oscillating hydrogel with aggregated 

structure of microgels, it exhibited drastic peristaltic motion. In the case of a tubular 

self-oscillating hydrogel with an interpenetrate polymer network (IPN) structure, it 

exhibited only a periodic inner diameter change. Furthermore, the tubular 

self-oscillating hydrogel transported a CO2 bubble. As results, tubular self-oscillating 

hydrogels have potential applications to artificial intestines, artificial digestive tracts, 

etc. 

 

In Chapter 5, autonomous flow behavior of a tubular self-oscillating hydrogel was 

evaluated by using latex beads as tracer particles. Pulsatile flow was observed 

synchronized with the peristaltic motion of the tubular hydrogel. Furthermore, the 

dimensionless Re and α numbers were theoretically estimated, which indicated that the 

flow state in the tubular hydrogel was complete laminar flow. The tubular 

self-oscillation hydrogel would be useful as novel autonomous micropump in 
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microfluidics, etc. 

 

In conclusion, we succeed in the applications to chemomechanical devices using 

discontinuous and continuous motion of hydrogels such as biomolecule-responsive 

hydrogels and self-oscillating hydrogels. Since, these smart hydrogel actuators have 

biomimetic functions such as artificial ion channel responding a target biomolecule and 

artificial hearts beating autonomously without external stimuli, they are promising 

materials for fabricating smart biomimetic systems. Even though smart hydrogel 

actuators for chemomechanical systems still require further research work into possible 

applications, they are likely to become quite important materials in the future. 
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