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Abstract 16 

 Wildfire affects the ecosystem services of watersheds, and climate change will modify 17 

fire regimes and watershed dynamics. In many eco-hydrological simulations fire is included as 18 

an exogenous force. Rarely are the bi-directional feedbacks between watersheds and fire regimes 19 

integrated in a simulation system because the eco-hydrological model predicts variables that are 20 

incompatible with the requirements of fire models. WMFire is a fire-spread model of 21 

intermediate complexity designed to be integrated with the Regional Hydro-ecological 22 

Simulation System (RHESSys). Spread in WMFire is based on four variables that a) represent 23 

known influences on fire spread: litter load, relative moisture deficit, wind direction, and 24 

topographic slope, and b) are derived directly from RHESSys outputs. The probability that a fire 25 

spreads from pixel to pixel depends on these variables as predicted by RHESSys. We tested a 26 

partial integration between WMFire and RHESSys on the Santa Fe (New Mexico) and the HJ 27 

Andrews (Oregon State) watersheds. Model assessment showed correspondence between 28 

expected spatial patterns of spread and seasonality in both watersheds. These results demonstrate 29 

the efficacy of an approach to link eco-hydrologic model outputs with a fire spread model. 30 

Future work will develop a fire effects module in RHESSys, for a fully-coupled, bi-directional 31 

model.  32 

 33 

Brief Summary: Fire spread is integrated with an eco-hydrological model designed to predict 34 

physical and biological watershed dynamics. The challenges of matching the requirements of 35 

predicting fire spread with the outputs of a model not designed for fire are evaluated and 36 

overcome in model design.   37 
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Introduction 38 

Wildfire affects both the structure and function of watersheds, including rock weathering, 39 

modifications to vegetation, microbial and faunal activity, and changes to the soil that affect 40 

hydrological processes (Shakesby and Doerr 2006; Hyde et al. 2013). In turn, the spatial and 41 

temporal patterns of fuels and moisture in a watershed modify fire regimes. These multi-42 

directional influences necessitate the dynamic integration of fire and eco-hydrological modeling, 43 

in order to project future watershed processes adequately.  44 

Eco-hydrological models forecast watershed processes and water resources under 45 

changing climates and management (Tague and Dugger 2010; Fatichi et al. 2016) by combining 46 

physical hydrological processes with biological dynamics (Hannah et al. 2004; Wood et al. 47 

2007). However, disturbance regimes are rarely linked dynamically to eco-hydrological 48 

projections, and eco-hydrological models often ignore disturbance events (Hannah et al. 2007). 49 

This is problematic, especially for projections of future dynamics, because fires are predicted to 50 

become more extensive and severe in many regions (Flannigan et al. 2009; Littell et al. 2010; 51 

Stavros et al. 2014). This presents an increasing risk to natural resources, property, and 52 

ecosystem services (Hurteau et al. 2014; Rocca et al. 2014).  53 

It is a challenge to integrate a model of fire with an established eco-hydrological model. 54 

Eco-hydrological models are not designed from the outset to quantify biomass in a manner 55 

compatible with the requirements of the most-used fire models. For example the Regional 56 

Hydro-Ecological Simulation System (RHESSys) is an eco-hydrology model that has been 57 

applied widely in forested watersheds to estimate streamflow, forest productivity, and mortality 58 

risk (Tague and Band 2004; Zierl et al. 2007; Tague, Choate, et al. 2013; Tague, McDowell, et 59 

al. 2013; López-Moreno et al. 2014). Processes in RHESSys are spatially nested (Figure 1), and 60 
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patches are the smallest unit of spatial aggregation. Patches aggregate soil-moisture and land-61 

cover characteristics. Within a patch, there may be canopy strata (vertical layers of biomass that 62 

aggregate processes such as photosynthesis and respiration); within these strata individual 63 

organisms (e.g., trees and shrubs) are not simulated. In RHESSys, as in many ecosystem carbon 64 

cycling models (Fatichi et al. 2016), biomass components such as leaves and stems are simulated 65 

en masse, in pools of carbon. This is also true for the litter layer below the canopy strata, which 66 

receives input of biomass from the overlaying canopy layers within a patch. The goal of 67 

RHESSys, and other similar models of biogeochemical cycling and eco-hydrology, is to simulate 68 

ecosystem processes rather than demographics, succession, or competitive interactions (Tague 69 

and Band 2004). 70 

If we compare the variables used to describe biomass in RHESSys to the requirements of 71 

structurally complex fire models we see that there is an incompatibility (Figure 1). For example, 72 

semi-empirical models of fire spread that use Rothermel (1972) equations (e.g., Finney 2004) 73 

require specific characteristics of the fuelbed, usually represented by stylized fuel models (Scott 74 

and Burgan 2005). Fuel models quantify fuel loading and arrangement by size classes of dead 75 

fuels (e.g., litter, and 1-hr, 10-hr, 100-hr time lags), live non-woody and woody (herbs, grasses, 76 

shrubs), and spatial properties (surface area to volume ratio, fuel bed depth, packing ratio). 77 

Because RHESSys does not quantify these fire-relevant properties of biomass, reconciling the 78 

mismatch in relevant variables between fire models and eco-hydrological models is not trivial. 79 

There are two strategies to couple fire-spread with eco-hydrology (Figure 1): integrate a 80 

structurally complex fire model with an adapted eco-hydrological model, or design a fire model 81 

of intermediate complexity to integrate with the existing eco-hydrological model.  82 



5 
 

Integrating a structurally complex fire spread model with the eco-hydrological model 83 

requires modifying the eco-hydrological model to predict fire-compatible detailed accountings of 84 

fuel loading and arrangement. This has the advantage of increasing physical realism and 85 

reducing prediction uncertainty associated with fire spread, if the eco-hydrological model can 86 

simulate the detailed fuels accurately. However, detailed descriptions of fuels aren’t required to 87 

simulate hydrological or ecophysiological processes (such as photosynthesis and 88 

evapotranspiration), which are the primary objectives of the eco-hydrological model. The 89 

outcome of this strategy would be to force a major re-engineering of the eco-hydrological model, 90 

requiring substantial new data sources for calibration and parameterization, with associated 91 

uncertainty in model structure and parameter estimation as well as a substantial increase in 92 

computational resources. We believe that modifying the eco-hydrological model to match the 93 

requirements of an existing fire model would add uncertainty to the predictions of the fire-eco-94 

hydrological model coupling. The cumulative effect of such uncertainty can be nonlinear; for 95 

example, a 10% error in parameter estimation can propagate to an order of magnitude greater 96 

error in prediction (O’Neill et al. 1980).  97 

Furthermore, it is imperative to define the model application niche (the domain over 98 

which the model is expected to perform well, and the domain over which model application is 99 

not appropriate; Environmental Protection Agency 2009) and to match the level of model 100 

structural complexity to the extent and quality of input data (Jackson et al. 2000; McKenzie and 101 

Perera 2015). The application niche of RHESSys is to predict aggregate patterns in watershed 102 

dynamics at time scales of decades to centuries, and how those respond to changes in climate and 103 

management. The application niche of RHESSys is not to predict specific events at a given 104 

location or time (e.g., timing and location of peak flows following a particular fire). It is 105 
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therefore sensible that RHESSys does not quantify the specific inputs required by a structurally 106 

complex model of fire spread, with an application niche including both the prediction of 107 

individual fire events and landscape-level burn probabilities. It is more appropriate to design a 108 

fire model of intermediate complexity that better matches the application niche of RHESSys and 109 

utilizes the existing RHESSys representation of ecosystem and hydrologic variables. Such a 110 

model uses the variables of RHESSys to simulate fire in a way that predicts aggregate spatial and 111 

temporal patterns of fire spread across the watershed, over decades and centuries. 112 

The model WMFire (Kennedy and McKenzie 2017) is designed to accept the inputs of 113 

the eco-hydrological model and use them to predict aggregate spatial patterns of fire spread, 114 

seasonality, and fire extent and frequency rather than the perimeters and timing of individual fire 115 

events. The target application niche of WMFire is to predict a plausible set of outcomes for how 116 

fire regimes and fire spread respond to the underlying template of topography, fuels, and 117 

moisture predicted by the eco-hydrological model. In this study we assess a partial coupling of 118 

RHESSys and WMFire with the goal to define the application niche of WMFire by elucidating 119 

the fire regime characteristics that are predicted adequately and the fire regime characteristics 120 

that are not predicted adequately. 121 

WMFire model assessment 122 

Model assessment is an iterative process (Reynolds and Ford 1999), and in our ongoing 123 

work we are assessing WMFire in three stages. At each stage we adapt the approach of 124 

Hornberger and Cosby (1985), where traditional statistical analyses of model fit to data are not 125 

feasible. The data on historical fire regimes are relatively sparse, with regimes assigned coarse 126 

characteristics such as seasonality, severity, frequency, and spatial patterns of fire size and 127 

spread. We are assessing WMFire against historical fire regimes, absent human interference, so 128 
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recent databases of fire occurrence are not applicable. In the approach of Hornberger and Cosby 129 

(1985) parameter values are identified that produce model results that are considered adequate 130 

according to some criterion (“behavioral” in the Hornberger and Cosby (1985) parlance). 131 

Uncertainty in parameter values is thereby characterized by the distribution of parameter values 132 

able to satisfy the criterion. 133 

In the first stage of WMFire assessment Kennedy and McKenzie (2017) identified 134 

parameter values that were considered adequate to replicate several aggregate spatial statistics of 135 

a recent wildfire. In this analysis they discovered the parameter value associated with fuel 136 

moisture had high uncertainty, which led us to improve WMFire to its current version. In the 137 

second stage of model assessment (presented here) we evaluate a partial integration of WMFire 138 

with RHESSys to assess the ability of WMFire to use RHESSys model outputs to adequately 139 

satisfy several criteria associated with historical fire regimes for two watersheds (HJ Andrews 140 

watershed in Oregon, USA (HJA), and Santa Fe watershed in New Mexico, USA (SF); Figure 141 

2). This stage of model assessment does not incorporate fire effects for two main reasons. The 142 

fire effects module for RHESSys is still under development, and in this second stage of 143 

assessment we want to isolate the uncertainties associated with the fire spread model before 144 

assessing the full integration with RHESSys including fire effects (to be completed in the third 145 

stage of model assessment). Through each stage of model assessment we are able to characterize 146 

the application niche of the model integration. 147 

Methods 148 

Study sites description 149 

The upper Santa Fe River watershed (SF; Table 1) is the water supply catchment for 150 

Santa Fe, New Mexico. It is a steep, largely forested watershed with elevations ranging from 151 
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2300 to 3800m. Dominant vegetation is ponderosa pine at lower elevations (hereafter PP), mixed 152 

conifer (Douglas-fir, ponderosa pine, white pine, quaking aspen; hereafter MC) at mid 153 

elevations, and spruce-fir (Engelmann spruce dominant) at higher elevations. Mean annual 154 

precipitation is approximately 700 mm/year (at the mid-elevation Elk Cabin SNOTEL station), 155 

including summer monsoonal rainfall input and winter snowfall. The HJ Andrews watershed 156 

(HJA; Table 1) is located in the Western Oregon Cascade Range. Elevation ranges from 430 m-157 

1600 m. The watershed is a mixed-conifer forest dominated by Douglas-fir and western 158 

hemlock. Mean annual precipitation is 2200 mm/year and falls primarily during the winter 159 

months, largely as rain at the lowest elevations and snow at the highest elevations.  160 

RHESSys study site calibrations 161 

As with most watershed scale hydrologic models, in RHESSys subsurface drainage 162 

parameters usually need to be calibrated by comparison of modeled with observed streamflow 163 

using observed historical weather and climate data (Tague, Choate, et al. 2013; Garcia and 164 

Tague 2015). The implementation and calibration of RHESSys for SF has not been previously 165 

published; this calibration is described in supplementary material (S1). The implementation and 166 

calibration of RHESSys for HJA used in this study is described in Garcia et al. (2013), and 167 

summarized in supplementary material (S1).   168 

Historical fire regime characteristics at each site 169 

We use published fire history data and the LANDFIRE fire regime group geospatial layer 170 

(LANDFIRE 2014; Supplementary S1) to characterize observed patterns in fire regime 171 

characteristics for each watershed. LANDFIRE is a project of multiple US federal agencies to 172 

produce data layers of landscape vegetation, fuels, and fire regimes. In SF Margolis and Balmat 173 

(2009) report mean fire return intervals between 4.3-31.6 years (Table 1) depending on how 174 
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many scars are used to indicate a fire and whether the fire is recorded in the PP or MC zone 175 

(Margolis and Balmat 2009). Among the fire scars for which season could be determined, most 176 

were in the beginning of the growing season (May-June). In the higher elevation spruce forest 177 

they found evidence for one stand replacing fire in 1685. Therefore a fire event in that portion of 178 

the watershed would not necessarily be expected over the simulation period. These patterns are 179 

corroborated by the LANDFIRE fire regime group data layer (see Figure S2), where there is a 180 

low-mixed severity fire regime inferred for the lower to middle watershed with mean fire return 181 

intervals ≤ 35 years, or 35-200 years depending on location (Figure S2; Table S2). LANDFIRE 182 

also predicts stand replacement fire severity in the upper SF watershed.  183 

For HJA fire history studies and LANDFIRE document a mixed- or high-severity fire 184 

regime, with few small fires and the occasional large stand-replacing fire (Teensma 1987; 185 

Weisberg 1998; LANDFIRE 2014). The fire-return interval is on the order of decades to 186 

centuries, with a natural fire rotation ranging from approximately 50 years to approximately 200 187 

years (Table 1; Figure S1; Table S2). Therefore over the period for the simulation (50 years) we 188 

would expect at most one large fire for a single realization, regardless of whether fire effects are 189 

included in the model simulation. In mixed-severity fire regimes such as HJA fires more likely 190 

occur later in the growing season, as the fuels dry throughout the summer (Bartlein et al. 2008).  191 

 The documented fire history and LANDFIRE fire regime groups determine assessment 192 

criteria for this stage of WMFire assessment. For SF the criteria are (Table 1): 193 

SF1. Spatial gradient in fire size and occurrence from the lower to upper watershed 194 

SF2. Fire spread peaks in May-July  195 

SF3. Fire-return interval 4.3-31.6 years 196 

For HJA the criteria are (Table 1): 197 
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HJA1. No spatial gradient in fire size and occurrence 198 

HJA2. Fire spread peaks in July-September 199 

HJA3. Natural fire rotation 50-200 years.  200 

WMFire-RHESSys description 201 

Each month RHESSys calculates the monthly mean for litter carbon (kg*m-2), and actual 202 

and potential evapotranspiration (ET and PET, respectively; mm*m-2*day-1; Stephenson 1998), 203 

then passes those values as well as the digital elevation model to WMFire (Figure 3). (Note, 204 

RHESSys computes these values daily but we aggregate to a monthly time step as a compromise 205 

between allowing for sub-monthly changes in fire season, and the computational burden of 206 

running WMFire). Details on RHESSys estimates of litter carbon, ET, and PET can be found in 207 

Tague and Band (2004). As a surrogate for fuel moisture WMFire calculates the relative 208 

moisture deficit, 1-ET/PET (Swann et al. 2012; Kennedy McKenzie 2017). Given that our goal 209 

is to predict plausible futures rather than specific events, and that fire is driven by stochastic 210 

processes such as weather events, we designed WMFire to be a stochastic model that subsumes 211 

in the probability calculation the uncertainty associated with the natural variability in fire events. 212 

When WMFire is called the following sequence of events occurs (Figure 3), described in more 213 

detail below: 214 

1. Draw a random number of ignition sources. If this number is greater than 0, locate 215 

each ignition source randomly on the landscape.  216 

2. For each ignition source located randomly on the landscape, test the chosen pixels for 217 

fire start based on the fuel and moisture conditions of the pixel.  218 

3. For each successful fire start simulate fire spread based on the fuel, moisture, 219 

topographic, and wind conditions.  220 
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4. Return to RHESSys which pixels, if any, were burned during the simulation. 221 

1. Ignition sources  222 

A successful fire ignition occurs when two events happen in sequence: first there is an 223 

ignition source located on a landscape (such as lightning, a campfire, etc.), then that ignition 224 

source successfully ignites a wildfire. While the instance of an ignition source that successfully 225 

starts a wildfire is observable, observations of ignitions that do not lead to wildfires are severely 226 

limited. Thus, the full sample space of ignition source rates, those that both do and do not result 227 

in a wildfire, is essentially unobservable. Adherence of ignition source rate to a particular 228 

historical frequency of ignition sources (for which there are few reliable data sources) introduces 229 

false precision into simulations and ignores the high uncertainty in determining ignition sources 230 

on a landscape. Even if ignition rates are known they are poor predictors of area burned at almost 231 

any scale (Krause et al. 2014; Faivre et al. 2016). 232 

In WMFire, we compute a successful fire ignition as a function of the ignition source rate 233 

and the probability that a given ignition leads to a fire. The latter variable is a function of 234 

landscape and climatic variables that can be readily computed by RHESSys (described in detail 235 

below). As noted above, the lack of observable data limits the development of predictive models 236 

of ignition source rates. Given this uncertainty, for WMFire we assume a simple mean rate of 237 

ignition sources (λ), informed by the area of the watershed (a larger watershed is given a larger 238 

ignition source rate). The number of ignition sources to be tested for fire start is drawn from a 239 

Poisson distribution, with the ignition source rate as the Poisson rate parameter. Given that data 240 

are not available for the ignition source rate we conduct a local sensitivity analysis on the mean 241 

ignition source rate for each watershed (0.10, 0.25, and 0.5 mean ignition sources per month for 242 

HJA, and 1, 1.5, and 2 mean ignition sources per month for the larger SF watershed; Table 2). 243 
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2. Test for fire start 244 

A random pixel in the watershed is chosen for each ignition source to test for successful 245 

fire start. In WMFire the probability of a successful ignition (pi), given the presence of an 246 

ignition source, depends on the RHESSys predicted values of litter load (l), and relative deficit 247 

(d). First individual probabilities are calculated associated with each variable (pi(l), pi(d); 248 

described below), then the final probability of successful ignition is the product of the 249 

component probabilities:  250 

pi(l,d) = pi(l)*pi(d)     (1) 251 

3. Fire spread given successful fire start 252 

The spread model in WMFire is based on a system of dynamic percolation (Caldarelli et 253 

al. 2001; Kennedy and McKenzie 2010; McKenzie and Kennedy 2012). The basic sequence of 254 

fire spread is (Figure 3): if an ignition source successfully ignites a pixel, then WMFire tests the 255 

orthogonal neighbors of that pixel against the probability of spread (ps), independently. For each 256 

pixel to which spread is successful, spread to each of its neighbors is tested in the next iteration. 257 

Previously burned pixels can no longer spread fire.  258 

In WMFire the value of ps is determined by the RHESSys-predicted value of litter load 259 

(l), relative deficit (d), topographic slope (S) and the orientation of spread relative to wind 260 

direction (w). A probability associated with each of those components is calculated (ps(l), ps(d), 261 

ps(S) and ps(w) for the probability of spread associated with fuel load, deficit, slope, and wind, 262 

respectively). The final probability of spread (ps(l,d,S,w)) is calculated as the product of the 263 

component probabilities:  264 

ps(l,d,S,w) = ps(l)ps(d)ps(w)ps(S)   (2) 265 
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In this formulation, if any of the components predicts a probability of zero for spread (is a barrier 266 

to spread), then spread cannot happen. Conversely, of all components predict a probability of 1 267 

for spread (no barriers to spread), then spread will happen. Next we describe how each 268 

component probability for fire start and fire spread are calculated. 269 

Litter load and relative deficit 270 

 We assume that the probability associated with litter load and relative deficit increases 271 

with increasing values of each of those, and this relationship takes a sigmoid shape. The function 272 

that associates ps and pi with litter load (l) and relative deficit (d) takes the form: 273 

𝑝𝑠(𝑙) =
1

1+𝑒−𝑘1_𝑙(𝑙−𝑘2_𝑙)
;     (3) 274 

𝑝𝑠(𝑑) =
1

1+𝑒
−𝑘1_𝑑(𝑑−𝑘2_d)

     (4) 275 

k1 defines the shape of the curve (its steepness), k2 defines where along the x-axis the function 276 

crosses a value of 0.5 (Figure 4a,b; Table 2), which is near the value of the percolation threshold 277 

estimated for this kind of dynamic percolation (Kennedy and McKenzie 2010).  278 

Wind 279 

 We assume that the probability of fire spread is highest in the wind direction, then 280 

decreases as the angle of spread deviates from the wind direction. We adapt a trigonometric 281 

function used by Weisberg et al. (2008): 282 

ps(w)= k1_wind (1+cos(γ-ω))+k2_wind,     (5) 283 

where k1_wind controls the reduction of ps(w) as the angle of spread deviates from the wind 284 

direction, ω is the wind direction (rad), γ is the orientation of the neighbor pixel relative to the 285 

pixel spreading fire (rad) and k2_wind is the probability of spread against the direction of the wind 286 

(Figure 4c; Table 2). This function can take values >1.0, in which case ps(w) is set to 1. The 287 

empirical modeling of wind distributions is described in supplementary material.  288 
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Slope 289 

The probability of fire spread increases uphill and decreases downhill from the source 290 

pixel. We adapt our curve from the model LANDSUM (Keane et al. 2002): 291 

𝑝𝑠(𝑆) = 𝑘1_𝑠𝑙𝑜𝑝𝑒𝑒
𝐼𝑘2_𝑠𝑙𝑜𝑝𝑒𝑆

2
,    (7) 292 

where k1_slope gives the value of ps at zero slope, k2_slope defines the steepness of the curve, and 293 

I=1 if S>0, -1 otherwise (Figure 4d; Table 2).  This function can take values >1.0, in which case 294 

ps(S) is set to 1. The slope relative to the direction of fire spread is calculated from the digital 295 

elevation model. 296 

WMFire parameter values 297 

 The values of the eight WMFire parameters were selected by continuing the first 298 

assessment procedure described by Kennedy and McKenzie (2017), and the chosen values are 299 

given in Table 2. Note that the parameter values for pi(l) and pi(d) are the same as those for ps(l) 300 

and ps(d). 301 

Assessing WMFire against criteria 302 

To assess the fire spread model we generate RHESSys-predicted grids of mean monthly 303 

fuel load and mean monthly relative deficit over the historical period for each watershed. These 304 

are used as a time series of input grids for WMFire, along with the DEM and the empirical wind 305 

distributions (Figure 3). We conducted 500 Monte Carlo (MC) replicate simulations for each 306 

time series of deficit and load resulting in 300,000 total WMFire calls for HJA and 396,000 for 307 

SF. For all fire regime characteristics we count fire spread both at a threshold of successful 308 

ignition (>0 ha burned) and at a threshold of minimum successful spread (>100 ha burned). We 309 

chose the first threshold to represent any successful start, then the second threshold to represent 310 

successful spread given fire start. The 100 ha threshold is relatively arbitrary, but we believe 311 
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sufficient for the purpose of comparing simulations to fire history data, where fire size is difficult 312 

to determine. 313 

To assess the spatial distribution of fire spread (criterion 1 for each watershed) we 314 

determine pixel-level probabilities of fire activity by calculating, for each month, the proportion 315 

of times an individual pixel experiences fire across replicate simulations. We then create maps of 316 

those probabilities and compare the patterns to the criterion for each watershed (Table 1).  317 

To assess the seasonality of fires in the regime (criterion 2 for each watershed) we 318 

calculate the proportion of replicates that experience fire (>0 ha burned, or >100 ha burned) each 319 

month through all simulation years. We then compare the maximum month of fire occurrence to 320 

the criterion for each watershed (Table 1). We also record fire sizes to characterize the simulated 321 

fire size distribution.  322 

To compare against the third criterion for each watershed we calculate the fire-return 323 

interval the mean number of years between fires (> 0 ha burned and >100 ha burned) for each 324 

replicate simulation. The natural fire rotation (NFR; Heinselman 1973) is also calculated for each 325 

replicate.  326 

 𝑁𝐹𝑅 =
𝐴𝑠

�̅�
,      (8) 327 

where As is the total area of the watershed, and �̅� is the mean annual area burned throughout the 328 

individual time series (Swetnam et al. 2011). We then compare the distributions of fire return 329 

interval and NFR to the criterion for each watershed (Table 1). 330 

Results 331 

Empirical wind distributions and RHESSys-predicted values of litter load and relative 332 

deficit for each watershed are given in supplementary material (S1; Table S1, Figures S3-S4). 333 
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Here we focus on comparing WMFire predictions to the assessment criteria for each watershed, 334 

which are derived from site-specific literature and LANDFIRE data, and are listed in Table 1. 335 

Criterion 1: Spatial distribution of fire spread 336 

 Simulated pixel-wise probabilities of fire in SF increase from the lower to the middle 337 

watershed, then decline in the upper portion of the watershed (Figure 5), and this spatial pattern 338 

is not sensitive to the ignition source rate (Figures S8-S10). This spatial pattern satisfies criterion 339 

SF1 (Table 1). Simulated pixel-wise probabilities of fire in HJA do not show an obvious spatial 340 

gradient, although there is patchiness in fire probability (Figure 6). These spatial patterns are not 341 

sensitive to the ignition source rate (Figures S5-S7), and satisfy criterion HJA1. 342 

Criterion 2: Seasonality of fire occurrence 343 

 For SF the proportion of replicates that achieve a fire size > 100 ha shows a distinct 344 

seasonality with a peak in June. All months show a small probability of fire activity, but most 345 

activity is in the months May – July (Figure 7). This pattern in seasonality of fire spread is not 346 

sensitive to the value of ignition source rate (Figures S8-S10), and it satisfies criterion SF2. The 347 

value of the proportion of successful fire is sensitive to the mean ignition source rate. WMFire 348 

predicts that fire activity for HJA increases as the growing season progresses, peaking in the late 349 

summer and early fall (Figure 7). In the HJA fire is predicted to be absent in the late winter and 350 

early spring months, and it rarely occurs in the late fall and early winter. This pattern in 351 

seasonality of fire spread is not sensitive to the value of ignition source rate (Figures S5-S7), and 352 

it satisfies criterion HJA2. The value of the proportion of successful fires in HJA is sensitive to 353 

ignition source rate, and it is near zero when the ignition source rate is 0.1 per month.  354 

Criterion 3: Fire return interval 355 
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 In both watersheds metrics of fire return are sensitive to the mean ignition source rate. 356 

For mean ignition source rates of 1, 1.5, and 2 per month, respectively, in SF the mean values of 357 

NFR are 84.3, 54.5, and 40.9 years; the mean return interval for successful ignition is 1 year for 358 

all mean ignition source rates; the mean return intervals for fires that achieve a size at least 100 359 

ha are 9.1, 6.5, and 5.2 years (Figure 8). For all tested mean ignition source rates criterion SF3 is 360 

satisfied. For mean ignition source rates of 0.1, 0.25, and 0.5 per month, respectively, in the 361 

smaller HJA watershed the mean values of NFR are 314431.9, 9.9, and 4.6 years; the return 362 

intervals for successful ignition are 13.6, 1.4, and 1.1 years; the mean values for return intervals 363 

for fires > 100 ha are 19.3, 4.4, and 2.5 years (Figure 8). The closest match between model 364 

prediction and criterion HJ3 is for a mean ignition source rate of 0.1 per month. 365 

Fire size distribution 366 

 For fires that achieve at least 100 ha the distributions of fire sizes are right-skewed 367 

(Figure 8) in SF. The largest fires occur in the early summer fire season. The fire-size 368 

distribution in HJA is relatively symmetric. Maximum fire sizes are slightly larger in HJA than 369 

in SF, with more fires achieving the larger fire sizes (Figure 8).  370 

Discussion 371 

By matching the level of complexity and application niche of RHESSys, WMFire is able 372 

satisfy the first two assessment criteria (spatial distribution of fire spread and seasonality of fire 373 

occurrence) when compared to documented fire histories for HJA and SF (Figures 5- 6; Table 1). 374 

The ability of WMFire to satisfy these two criteria is not dependent on the value of the ignition 375 

source rate (Figures S5-S10).  376 

WMFire application niche 377 
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For SF WMFire predicts a peak in fire spread during the late spring and early summer, 378 

which is expected given the fire history recorded for that watershed (Margolis and Balmat 2009; 379 

LANDFIRE 2014). For HJA WMFire predicts a peak in fire spread during the late summer, also 380 

consistent with the observations of fire history in that watershed (Teensma 1987; Weisberg 1998; 381 

LANDFIRE 2014). These observed patterns in historical seasonality are not sensitive to the 382 

value of ignition source rate, indicating that there is little uncertainty in the seasonality of fire 383 

spread predicted by WMFire.  384 

For SF WMFire predicts a spatial gradient where the highest density of fire occurrence is 385 

in the middle portion of the watershed. This pattern matches the fire history data (Margolis and 386 

Balmat 2009) and LANDFIRE predictions (Figure S2; Table S2). LANDFIRE predicts that the 387 

lowest return intervals (and thereby the greatest expected fire occurrence) are in the lower to the 388 

middle portion of the watershed, and fire history data show that the middle portion of the 389 

watershed is expected to have a mixed-severity fire regime.  390 

The simulated fire size distribution in SF is right-skewed and heavy-tailed (Figure 8), 391 

which follows other estimated empirical fire size distributions (Malamud et al. 2005). The 392 

simulated fire size distribution in HJA shows larger values and is more symmetric, implying that 393 

when a fire does burn in HJA it tends to be large, and smaller fire sizes are rare (Figure 8). 394 

LANDFIRE predicts a mixed to high severity fire regime for HJA, which is expected to have 395 

larger fires of higher severity than SF. For any individual fire simulated in HJA, the spread 396 

pattern follows what is expected in this fire regime—a relatively large fire supported by high 397 

relative deficits and fuel loading (Teensma 1987; Weisberg 1998; Fiorucci et al. 2008). This is 398 

consistent with WMFire predictions of fire size for HJA. The fire size distribution in both 399 
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watersheds is not sensitive to the ignition source rate, indicating that there is little uncertainty in 400 

the fire size distribution predicted by WMFire.  401 

In this stage of model assessment we find that the outcomes of successful ignitions— 402 

fires that spread, their seasonality, and extent—are metrics of the fire regime for which our 403 

current model structure is adequate. However, sensitivity analysis of ignition source rate shows 404 

that the ability of WMFire to satisfy the third criterion for each watershed (fire frequency 405 

measured by return interval and natural fire rotation) is sensitive to the value of ignition source 406 

rate (Figure 8). Therefore some calibration of ignition source rates is necessary (as with some 407 

processes in the partner model RHESSys) to ensure that fire frequency per se is in line with 408 

historical observations. Our procedure is one level of abstraction (McKenzie and Perera 2015) 409 

above trying to replicate specific historical realizations of this stochastic process, in that our 410 

application niche is to characterize plausible distributions of the future rather than individual 411 

outcomes. As such, we believe it to be more robust to future projections, the principal goal of 412 

RHESSys/WMFire, than would be any attempt to model future changes in ignition rates. 413 

WMFire prediction uncertainty 414 

The sensitivity of fire frequency to ignition source rate is non-linear, with the strongest 415 

sensitivity at lower values of mean ignition source rate. An ignition source rate of 0.10 ignitions 416 

per month predicts a natural fire rotation and fire return interval that match fire history data and 417 

LANDFIRE data for HJA (Figure 8), whereas WMFire is able to match fire history and 418 

LANDFIRE data for SF with multiple values of ignition source rate. For SF this results in a 419 

mean ignition test rate of 0.00013 to 0.00026 *ha-1*month-1 and for HJA this results in a mean 420 

ignition test rate of 0.000016*ha-1*month-1. These values of mean ignition source rate do not 421 

scale consistently with watershed size, which indicates that there is some uncertainty in fire 422 
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occurrence that is not explained by WMFire when integrated with RHESSys absent fire effects. 423 

These rates per ha can help to narrow the calibration space when WMFire is applied to a new 424 

watershed in a similar vegetation type. To further calibrate the mean ignition source rate in a new 425 

watershed the RHESSys-WMFire model should be run with multiple ignition source rates 426 

commensurate with those found here, and the rate that adequately matches expected patterns of 427 

fire occurrence should be chosen.  428 

Future WMFire development and assessment 429 

We designed WMFire to be a model of fire spread that balances model complexity with 430 

data input uncertainty. The model assessment presented here shows that with this balance the 431 

model is able to predict seasonality and spatial patterns of fire occurrence, with a documented 432 

uncertainty in model predictions of fire frequency that is associated with the mean ignition 433 

source rate. 434 

 The uncertainty in WMFire predictions of fire occurrence metrics such as fire return 435 

interval and natural fire rotation gives a pathway for improving the model integration. In 436 

WMFire fire frequency predictions are sensitive to the mean ignition source rate, and the lower 437 

ignition source rate required for HJA may represent limitations in our current approach for 438 

estimating successful fire ignitions and spread. One possible limitation may be insufficient 439 

resolution of canopy structure because the current version of WMFire utilizes a single integrated 440 

canopy in the estimation of deficit; however, in denser canopies, such as those in HJA, 441 

understory deficit may be more relevant to the probability of fire start than the total vegetation as 442 

modeled here. Future work will explore this possibility.  443 

The absence of fire effects in RHESSys means that the integration of WMFire and 444 

RHESSys is not yet fully bi-directional, in that RHESSys dynamically modifies fire spread, but 445 
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the fire spread does not dynamically modify watershed characteristics. RHESSys is in the 446 

process of being updated to estimate fire effects. An important predictor of fire effects is the 447 

vertical stratification of the canopy fuels, with an understory canopy acting as ladder fuels to the 448 

upper canopy. The increased resolution of canopy structure that will be implemented for fire 449 

starts can also be used to estimate canopy-level fire effects. In our third stage of model 450 

assessment we will evaluate the improved simulation of fire starts with the fully-coupled fire 451 

effects model against detailed fire regime characteristics for several watersheds in the Western 452 

US. We then will determine the application niche of the fully bi-directional coupled eco-453 

hydrological and fire spread model. 454 
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Tables 588 

Table 1. Characteristics of the study sites including expected fire regimes. Area gives the area of 589 

each watershed (ha). Expected fire regime characteristics for Santa Fe (SF) and HJ Andrews 590 

(HJA) are based on published fire histories for each site. 591 

 Area 

(ha) 

elevation annual 

precipitation 

Criterion 1: 

Spatial gradient 

fire occurrence 

Criterion 2:  

Seasonality of fire 

occurrence  

Criterion 3:  

Fire 

frequency  

SF 7559 2300 to 

3800m 

700 

mm/year 

Increasing from 

lower to middle 

watershed, then 

decreasing in 

lower watershed 

May-July 4.3-31.6 years 

(fire return 

interval) 

HJA 6175 430 m to 

1600 m 

2200 

mm/year 

No spatial 

gradient 

August-September 50-200 years  

(natural fire 

rotation) 

 592 

Table 2. WMFire parameter values and empirically estimated wind coefficients for both the 593 

Santa Fe (SF) and HJ Andrews (HJA) watersheds. k1_load controls the steepness of the probability 594 

of spread with increasing litter load, k2_load defines the litter load (kg*m-2) at which the associated 595 

probability of spread crosses a value of 0.5, k1_def controls the steepness of the probability of 596 

spread with increasing relative deficit (1-ET/PET), k2_def defines the relative deficit at which the 597 

associated probability of spread crosses a value of 0.5, k1_wind controls the wind direction at 598 

which the associated probability falls below 1, k2_wind gives the associated probability of spread 599 

against the wind direction, k1_slope gives the associated probability of spread on a flat slope, 600 

k2_slope controls the steepness of the probability of spread with increasing or decreasing slope. λ is 601 

the mean ignition source rate (per month) 602 

WMFire 

parameters 

k1_load k2_load k1_def k2_def k1_wind k2_wind k1_slope k2_slope λ  

SF & HJA 3.9 0.07 3.8 0.27 0.87 0.48 0.91 1.0 HJA:  

0.1,0.25,0.5  

SF: 1,1.5,2 
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Figure Captions 603 

Figure 1. Rationale for a model of intermediate complexity in watershed-scale projections of the 604 

effects of climate change on ecosystems (RHESSys coupled with WMFire).  A fire model of 605 

high complexity and physical realism introduces extra uncertainty and computational burden 606 

when integrated with existing eco-hydrological model, without increased accuracy (in fact, 607 

probably false precision) for longer-term projections.  The multi-scale RHESSys outputs would 608 

have to be collapsed (across scales) and disaggregated (into fuel size classes and fine-scale fire 609 

weather) to be used with a structurally complex fire model.  Stochastic semi-mechanistic 610 

modeling allows us to match the complexity of the fire module to RHESSys outputs and inputs, 611 

thereby minimizing uncertainty and focusing on fire-regime characteristics rather than individual 612 

fires. 613 

Figure 2. Location of the two study sites, HJ Andrews in Oregon, and the Santa Fe Watershed in 614 

New Mexico, and topography and spatial distribution of litter fuel loads (kg*m-2) predicted by 615 

RHESSys for each watershed, given as a pixel-wise mean value across all years in the 616 

simulation. 617 

Figure 3. Flow diagram for WMFire fire spread.  618 

Figure 4. Function shapes for WMFire at the chosen parameter values. (a) Fuel load; (b) relative 619 

moisture deficit; (c) wind direction relative to spread direction (d) slope relative to spread 620 

direction. Horizontal line at ps = 0.5. 621 

Figure 5. Proportion of replicates where model simulates fire in each pixel across all years, 622 

calculated as the proportion of times each pixel experiences fire relative to the number of 623 

ignitions tried (reps * years) for HJA with an ignition rate of 0.5 per month. Note different scales 624 

for Figures 6 and 7. 625 
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Figure 6. Proportion of replicates where model simulates fire in each pixel across all years, 626 

calculated as the proportion of times each pixel experiences fire relative to the number of 627 

ignitions tried (reps * years) for SF with an ignition rate of 2 per month. Note different scales for 628 

Figures 6 and 7. 629 

Figure 7. Proportion of replicates with fire size > 100 ha each month. Sources of variability are 630 

years and replicates. (a-c) HJA ignition rates of 0.10, 0.25 and 0.5 per month. Peak fire activity is 631 

predicted in the late summer and early fall months. (d-f) SF ignition rates of 1, 1.5, and 2 per 632 

month. Peak fire activity is predicted in the late spring and early summer months.  633 

Figure 8. Natural fire rotation, fire return intervals, and fire size distributions (for fires that 634 

achieve size > 100 ha) for (a-c) the HJA and (d-f) SF watersheds. Source of variability is 635 

replicates (one value calculated per replicate simulation). Note different y-axis scales between 636 

SF and HJA. 637 
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