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Coarsening Dynamics of Domains in Lipid Membranes

Cynthia A. Stanich,” Aurelia R. Honerkamp-Smith,” Gregory Garbés Putzel,' Christopher S. Warth,"
Andrea K. Lamprecht,t Pritam Mandal,* Elizabeth Mann,* Thien-An D. Hua,™ and Sarah L. Keller'™

TDepartments of Chemistry and Physics, University of Washington, Seattle, Washington; and *Department of Physics, Kent State University,
Kent, Ohio

ABSTRACT We investigate isothermal diffusion and growth of micron-scale liquid domains within membranes of free-floating
giant unilamellar vesicles with diameters between 80 and 250 um. Domains appear after a rapid temperature quench, when the
membrane is cooled through a miscibility phase transition such that coexisting liquid phases form. In membranes quenched far
from a miscibility critical point, circular domains nucleate and then progress within seconds to late stage coarsening in which
domains grow via two mechanisms 1), collision and coalescence of liquid domains, and 2), Ostwald ripening. Both mechanisms
are expected to yield the same growth exponent, « = 1/3, where domain radius grows as time®. We measure o = 0.28 + 0.05, in
excellent agreement. In membranes close to a miscibility critical point, the two liquid phases in the membrane are bicontinuous.
A quench near the critical composition results in rapid changes in morphology of elongated domains. In this case, we measure

o = 0.50 = 0.16, consistent with theory and simulation.

INTRODUCTION

Lipid membranes embedded in water present rich dynamics.
Here, we measure the rate at which liquid domains within a
taut membrane coarsen after a quench to constant tempera-
ture, and we compare our results with both established and
recent predictions (1-7). Tackling this problem is simpler to
state than to execute; it involves experimental challenges of
achieving fast, discrete temperature quenches within giant
unilamellar vesicles (GUVs), and theoretical challenges
of understanding 2-dimensional (2D) diffusion and critical
phenomena.

It is convenient to start by considering the classic problem
of a single, solid inclusion diffusing within an infinite, flat,
uniform membrane with viscosity 7,p. The membrane is
bounded on both sides by bulk fluid of viscosity n;p. How
does the inclusion’s diffusion coefficient, D, vary with its
radius, r? In the limit of a small inclusion and/or high
N2p, Eq. 1 below applies (8). In the opposite limit, Eq. 2
(or Eq. 3) applies (9-11). In between, numerical (9) or
approximate (12) solutions apply.

Quantitative criteria for which of the three equations
applies emerge from comparisons of radius with a single
parameter, the hydrodynamic length L. Here, L, = n,p/
N3p, Where 7,p is in units of Pa s m (equivalent to 10°
surface poise) and 73p in units of Pa s. When the inclusion
is a single small solid disk for which r < Ly, its diffusion
coefficient is expected to be
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where T'is temperature, kg is Boltzmann’s constant, and y =
0.5572 (8). In the opposite limit, where » >> L, the contri-
bution of the membrane viscosity is negligible (9), and

Y
 16mpr

D(r)

or log D(r)x — (logr). 2)

A small correction (<10%) is made to Eq. 2 by assuming
that the single inclusion is fluid, with the same membrane
viscosity as the planar membrane through which it travels
(10,11). That correction yields:

Dy = T

© 3mnpr 3
Deep physical questions about membrane dynamics can
be posed if we allow the membrane to demix into two coex-
isting liquid phases such that domains enriched in one lipid
type diffuse within a background membrane enriched in a
different type (13-19). Differential partitioning of a dye-
labeled lipid between the phases renders the domains
straightforward to image on the surface of a GUV
(Fig. 1). The two phases have been historically termed
liquid-ordered (L,) and liquid-disordered (L,). The simplest
membranes that produce macroscopic liquid domains in
vesicles are composed of ternary mixtures: a lipid with a
high melting temperature, a lipid with a low melting temper-
ature, and cholesterol (20). The ratio of lipids and the tem-
perature determine the area fraction, ¢, of each phase.
When the area fraction of one phase is small (e.g., ¢ =
0.3), a quench into the 2-phase region nucleates many small
circular domains. During the early stage of domain growth,
the distribution of domain radii evolves with respect to an

http://dx.doi.org/10.1016/1.bpj.2013.06.013
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FIGURE 1 (a) Fluorescence micrograph of a free-floating GUV with
diameter of ~200 um and composition 25:45:30 of DiPhyPC:DPPC:chol.
The focus plane is at the vesicle equator. (b) Typical vesicle temperature
quench, showing time points of panels c—h. (c—h) Fluorescence micrographs
focused at the top surface of the GUV within the square in panel a. Circular
domains diffuse and coarsen. (i—k) Two domains merge over three consec-
utive frames recorded at 2 frames/sec.

average radius (21). During the late stage, which we study
here, domains grow within a membrane of small ¢ via
two mechanisms, both of which are called coarsening. In
the first mechanism, domains undergo Brownian motion,
collide with each other, and coalesce (Fig. 1). The second
coarsening mechanism is Ostwald ripening or evaporation-
condensation, in which individual lipids evaporate from
the boundary of small domains and condense onto larger
domains (1).

Domain radius grows with time as r o« * (4). To gain an
intuition for what the value of « should be, consider the sim-
ple case of a uniform population of many small domains
seeded uniformly on a membrane. When domains are small,
the distance between domains is also small. As domains
diffuse across the membrane, collide with other domains,
and coalesce, the average distance between domains in-
creases. This observation is quantitatively stated as domain
radius r(¢) is proportional to the distance between domains
[(¢). Diffusion coefficients, which are in units of lengthz/
time, provide a straightforward way to find «. The time
required for a domain to travel a distance I(f) via
Brownian motion is (l(t))2 o« D,t. Because r(f) o I(t), the
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diffusion equation can be recast as (r(t))2 o D,t. Equations
1, 2, and 3 show which variables should be substituted for
D,. Domains with radius of r < L, (Eq. 1) grow such
that —[r(#)*/In ()] =« f, and hence a = 1/2 if logarithmic
corrections are neglected. Similarly, domains with » >
Ly, (Eq. 2 or 3) grow such that r()® o 1, and hence a =
1/3 (4,7,22). These same exponents can be derived from
continuum stochastic hydrodynamic simulations of domains
that grow via coalescence (7). A growth exponent of o = 1/3
is also predicted when domains grow by evaporation-
condensation (1).

A different scenario arises when the two membrane
phases are bicontinuous and their area fractions are roughly
equal, such that membrane composition passes near a line of
miscibility critical points during the quench. Below the crit-
ical temperature, domain boundaries fluctuate with charac-
teristic correlation length £ (23-25). Interplay between
¢ and hydrodynamic length L, determines the rate at which
domains coarsen. During quenching, two regimes are
clearly distinguishable. In the first regime, soon after a
quench, domain dimensions change primarily because elon-
gated domains become more circular. This process is driven
by line tension, the energy/length along the domain bound-
ary. An analogy is that the domain is bounded by a stretched
rubber band. Intuition for what the value of the growth expo-
nent « should be in this case comes from assumptions that a
single value of « applies and that domains are so large that
r >> L. The goal is to find a relationship between length
and time that gives length « *. As in Egs. 2 and 3, when
domains are large, the viscosity of the three-dimensional
(3D) bulk solution dominates the domain’s diffusion, and
hence its growth. Combining line tension (in units of N),
3D viscosity (in units of Ns/mz), and time (in units of s),
the only way to arrive at a length (in units of m) is
by [(line tension X time)/n3p] 2. In other words, length o
t! 2, so a = 1/2. Within the scenario of elongated domains
becoming more circular, a growth exponent a« = 1/2 has
been seen in dissipative particle dynamics simulations
(4,5). Theory and simulations have explored how growth ex-
ponents at ¢ = 1/2 depend on experimental parameters,
including &, L;,, and domain size. Universal scaling is not
achieved; instead, apparent exponents are valid over limited
ranges of parameters. For example, in simulations that treat
membrane lipid composition and hydrodynamic flow to be
coupled to flow in the surrounding solvent, an apparent
growth exponent of & = 1/2 is seen at intermediate values
of viscosity and L, (e.g., Peclét number = 1 and L;, = 10)
(6). Similarly, when membranes and bulk fluid are modeled
in a creeping flow approximation or studied via continuum
stochastic hydrodynamic simulations, growth exponents of

= 1/3, 1/2, or 1 are seen, depending on attributes of the
membrane and bulk fluid (7).

Here, we measure diffusion coefficients, D(r), and growth
exponents, «, of liquid domains within taut membranes of
GUVs to test predictions of simulations and theory. Our

Biophysical Journal 105(2) 444—-454
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vesicles have diameters of 80-250 um, are embedded in
bulk aqueous fluid, and undergo fast temperature quenches
to a final, roughly constant temperature at which coarsening
rates are measured. Vesicles are formed of ternary lipid mix-
tures of diphytanoylphosphatidylcholine (DiPhyPC), dipal-
mitoylphosphatidylcholine (DPPC), and cholesterol (chol)
to minimize photooxidation of lipids and because inde-
pendent measurements of membrane viscosity have been
conducted for this system (26). We set the average area frac-
tion of one phase to be either low (¢ < 0.3) or closer to that
of the other phase (0.3 < ¢ < 0.7). We find results in good
agreement with current theory both for domains that grow
primarily by coalescence (for ¢ < 0.3, and for late times
of 0.3 < ¢ < 0.7) and for elongated domains (for early
times of 0.3 < ¢ < 0.7). Our experiments differ from
previous work in that we focus on a regime in which coales-
cence of domains dominates (14) and in our avoidance of
small vesicles, inconstant temperature, substrate interac-
tions, and/or photooxidation (15-17,19). Our measurements
of diffusion coefficients yield 2D membrane viscosities of
3 x 107 Pa s m, in excellent agreement with literature
values.

METHODS
Vesicle materials and preparation

We produced spherical GUVs by electroformation as previously described
(24). All phospholipids were from Avanti Polar Lipids, Alabaster, AL and
all vesicles incorporated 0.8% fluorescent dye Texas red dipalmitoylphos-
phatidyl-ethanolamine (TR-DPPE, Life Technologies, Carlsbad, CA).
When membranes were purposefully photooxidized, vesicles were formed
from molar ratios of 37% cholesterol (chol, Sigma, St. Louis MO), 35%
dioleoylphosphatidylcholine (DOPC), and 28% DPPC. All other vesicles
were formed from mixtures of chol with DiPhyPC and DPPC, in ratios as
in Table 1, with estimated uncertainty in composition <=*2%. When two
liquid phases are present in the membrane, the L, phase is rich in DPPC
and chol, and the L, phase is rich in DiPhyPC and dye (27). Vesicles
were formed in either low or high viscosity bulk solutions. Samples that
are labeled as samples in water were formed in 100 uM sucrose in water
and diluted ~40-fold in water immediately before observation. Samples

TABLE 1 Summary of Growth Exponent Data

Stanich et al.

that are labeled as samples in Dextran were formed in 4-5% (by weight)
dextran in 1 mM sucrose in water and diluted in 4—5% dextran. The
slightly higher osmotic pressure in the vesicle interior eliminated excess
membrane area and bulging of domains. Our results are not affected by
any shift in miscibility transition temperature Ty,;x caused by membrane
tension, where a 1 mN/m increase in tension decreases T, by a few °C
(28,29). Vesicles are free-floating in solution between two coverslips. Their
depth in solution is not known, but no vesicle membrane is closer than 10
pm or farther than 100 um from a coverslip surface.

Temperature quenches

Temperature was controlled as described previously (24) and recorded via
custom LabVIEW software (National Instruments, Austin TX). Tempera-
ture quenches were shallow T;,,iiar — Tpinar <5°C, where Tj, o is the equili-
brated temperature after hundreds of seconds (Table 1). All values for 75,
lie within the 2-phase L;-L, coexistence region; none lie within the 3-phase
L,L, solid region (27). A typical temperature record for ¢ < 0.3 is shown
in Fig. 1 b, with a fast quench followed by a long period of nearly constant
temperature. Data analysis was performed only within the latter period,
after each vesicle’s temperature reached a value within 0.5°C of T, It
is important to measure coarsening rates while maintaining a constant dif-
ference between miscibility transition temperature, Ty,ix, and sample tem-
perature to ensure that no new domains nucleate during experiments
(Fig. 2 and Fig. S1 in the Supporting Material). Likewise, it is important
to minimize light exposure and/or unsaturation in lipid acyl tails because
lipid photooxidation continuously alters Ti,x, and thereby continuously
alters the difference between T, and the sample temperature, even if
the sample temperature is constant. Empirically, we find that photooxida-
tion of membranes containing only saturated phospholipids lowers Tyix,
albeit very slowly (24) and that photooxidation of membranes containing
unsaturated lipids raises Tiix-

Movies and preanalysis

We recorded movies of vesicles with diameters ~80-250 um (Fig. 1 a,
Table S1). For all transitions initiated by a temperature quench, we mini-
mized light exposure by employing neutral-density filters and a SmartShutter
(Sutter Instrument, Novato CA) controlled through NIS-Elements (Nikon,
Melville, NY). Videos were collected at 2 frames/s. Each frame was exposed
for ~150 ms, with the shutter open 10 ms before and after each exposure. To
further minimize light exposure during long (>5 min) videos, data were
collected in bursts of ~30 s, separated by ~1 min dark periods.

For transitions initiated by lipid photooxidation, microscope focus was
achieved under the low-light conditions above. The experiment began

Lipid mol %
composition Postquench
(DiPhyPC: DPPC:chol) temperature **

Total number
of quenches

Average area
fraction (¢)

Number Bulk
of vesicles solution quench this subset («)* exponent («)* exponent (a)

Predicted
growth

Early Growth

vs. late  exponent for  Overall growth

¢ < 0.30 25:45:30 383 = 1.4°C 12
40:30:30 434 = 0.9°C 5

¢ < 0.30 25:45:30 38.1 = 3.1°C 8
40:30:30 42.04°C 1

0.30 < ¢ <0.70  25:20:55 to 30:20:50 29.2 £ 0.09°C 6
17.3 = 2.5°C 4

0.30 < ¢ < 0.70 30:20:50 28.2 = 0.8°C 2
194 = 2.1°C 6

5 water NA 0.29 + 0.05 0.28 + 0.05 1/3
3

6 dextran  NA 0.27 = 0.06

1

5 water late NA 0.31 = 0.05 173
2 dextran

2 water  early NA 0.50 = 0.16 172
3 dextran

Values with an asterisk * include standard deviations of all measured growth exponents. Measurement uncertainties for each individual exponent are an order
of magnitude smaller than standard deviations. Values with a double-asterisk ** include standard deviations of postquench temperatures for all experimental
runs, which are roughly an order of magnitude greater than variations in postquench temperature (0.02°C) throughout each movie. NA denotes not applicable.
The predicted growth exponent for 0.3 <¢ < 0.7 at early times can take a range of values, including 1/2. Average area fraction is over the viewing area rather

than over the entire vesicle.

Biophysical Journal 105(2) 444—-454
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a Slow quenches yield incorrect exponents. Too many small domains at end.
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FIGURE 2 Correct coarsening exponents result from measurements at a
constant temperature, after a single, fast temperature quench such that no
new domains nucleate at later times.

when neutral density filters (ND4 and ND8) were removed and the shutter
was disabled. Subsequent images were collected at 9.2 ms per frame.

Within our depth of field of <5 um, a spherical cap of the vesicle is in
focus, surrounded by a bright ring out of focus. We wrote MATLAB
code (The MathWorks, Natick, MA) to identify centers of vesicles whose
bright ring remained in the imaged area throughout each video. Centers
of other vesicles were identified by visual inspection. Vesicles are free-
floating. To correct for vesicle drift in the x-y plane, video frames were
stacked on vesicle centers, and then cropped to yield images as in Fig. 1,
c—h. Edges of square viewing areas ranged from ~18-60 um. To correct
for vesicle drift in z, microscope focus was periodically adjusted. Images
were thresholded such that L, phase appears white and L, appears black
as described in Cicuta, except that grayscale threshold values were chosen
through MATLAB’s Otsu function. All figure images are without contrast
enhancement.

Deletion of rolling vesicles

Movement of domains across a centered field of view is due to a combination
of domain diffusion within the vesicle membrane and rotation of the entire
vesicle within bulk solution. Fig. 3, a shows trajectories of domains within
rotating versus nonrotating vesicles. All vesicles with nonrandom motion
of the center of mass of domains (i.e., rotation) were deleted from our
sample set to avoid artifactually high diffusion coefficients. Remaining
vesicles may drift without rotation, with the background fluid.

Geometric correction

Corrections were applied to project 2D images onto 3D vesicle shells
using MATLAB code by Sarah Veatch (30). We measured vesicle radii
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FIGURE 3 (a) Domain trajectories are used to delete rotating vesicles.
First frames of movies are shown for two different vesicles. Trajectories
start at each domain’s center and end after 30.5 s (61 frames), marked by
a circle. Domains at frame edges are not tracked. Each inset shows the cen-
ter of mass over time of all tracked domains. Vesicle rotation does not
significantly influence the data set at the left so that set is retained, whereas
the data set on the right is deleted. (b) Original (leff) and corrected (right)
cropped, thresholded images of domains on a vesicle surface. The correc-
tion accounts for distortion that occurs when caps on a 3D sphere are
recorded within a flat, 2D image (30). (¢) Area versus time for a typical
group of domains illustrates that coarsening is dominated by collision
and coalescence, not by evaporation-condensation. Domain #2 and #3
diffuse into view at t = 50 s and merge by t = 90 s. Domain #4 appears
at 1 = 90s and then merges with domain #5. Domains < 1 um? elude
our tracking program and may merge with visible domains (e.g., Domain
#6 att = 75 s).

from micrographs of each vesicle’s equator. Given our large
vesicles and small viewing windows, corrections are small (Fig. 3 » and
Fig. S2).

Diffusion coefficients and membrane viscosities

Diffusion coefficients were found using original MATLAB code described
elsewhere (13) with the exception that runs were 10 frames long, the min-
imum diameter of accepted domains was >4 pixels, and the center of mass
of all domains was not subtracted. Domains touching frame edges were
not tracked. Temperature typically varied by ~0.02°C during each exper-
iment. Results from several experiments (at slightly different tempera-
tures, Table 1) were averaged to extract membrane viscosities.
Viscosities of water at average temperatures in Table 1 were calculated
from Egs. 15 and 16 of (31) using a viscosity of 1.0020 x 107> Pa s
at 20°C.

Biophysical Journal 105(2) 444—-454
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Growth coefficients («)

The area fraction of L, phase, ¢, is constant over the entire vesicle. In our
experiments, ¢ is straightforward to measure for the membrane region in
view, but not over the entire vesicle. Within each movie, area fraction
changes as domains diffuse into and out of view. Problems arise in
measuring unnormalized average domain radii through time: radii of
domains whose centers lie outside the area of view cannot be measured
accurately, and excluding those domains undercounts large domains.
Instead, we measure normalized domain size, R, the total area of all black
pixels divided by the total perimeter of all domains. The growth exponent,
a, is the slope of a log-log plot of R versus time, where R o« time®. We per-
formed statistical tests to confirm that data require no weighting: slopes of
residuals were on the order of 1074, whereas individual uncertainties in fits
of slopes were ~10’3, and standard deviations of fits were ~1072.

Line tension

Vesicles were made from 30 mol % DiPhyPC, 20% DPPC, and 50% chol.
They were diluted in water and imaged at 22.5°C. Movies were collected
at 5 frames/s. Sequential images of merging liquid domains were filtered
and thresholded within ImageJ (public domain http://rsbweb.nih.gov/ij/)
and then fit to simulated domain relaxation via original MATLAB code
by Jacob Wintersmith (32). The simulation assumes a single compact
domain within an infinite flat membrane embedded in an infinite 3D fluid,
and that n,p is negligible. The characteristic time for a domain to relax
from a noncircular to a circular shape is t* = 27;p (domain area)/(line
tension), where 7n3p is viscosity of the bulk fluid, with a value of
(0.9509 =.005) x 1073 Pa s. The factor of 2 accounts for liquid on
both sides of the membrane.

RESULTS
D(r) and np for ¢ < 0.3

Dashed lines in Fig. 4 a show that for membranes with
average area fractions of ¢ < 0.3, diffusion coefficients of
micron-scale L, domains within an L, background are qual-
itatively fit by D o r " as in Eq. 2 and Eq. 3, which apply
when r > L. However, diffusion coefficients are roughly
a factor of 2 slower than predicted by either Eq. 2 or Eq. 3.
To quantitatively fit the coefficients, it is necessary to use
equations valid between the limiting cases of » > L; and
r < Ly, as in the approximation in (12). We evaluate the fit
(solid lines in Fig. 4 a) by comparing the value of the mem-
brane viscosity that emerges from the fit with literature
values. For n5p = 0.652 x 1072 Pa s at 40.3°C (31), the
approximation yields 7,p = (3.3 = 1.1) x 107° Pa s m,
with a 95% confidence interval (CI) from n,p = 1.0 X
107°Pasmt05.6 x 10~° Pasm. This value is in good agree-
ment with 2D viscosities of membranes composed of the
same three lipids used here, albeit at different ratios. In pre-
vious work, temperatures and compositions were tuned to
place vesicles near membrane miscibility critical points.
Analysis of structure factors of membrane critical composi-
tion fluctuations yielded n,p = (5.5 = 1.5) x 107 Pasm
(26), and analysis of shape fluctuations of domain boundaries
yielded (4 £ 1) x 1077 Pa s m (33). The good agreement
suggests that the approximation in (12), which was formu-
lated for diffusion of a single inclusion within a uniform,

Biophysical Journal 105(2) 444—-454
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FIGURE 4 Diftusion coefficients of circular liquid domains are roughly
proportional to 1/(domain radius, r). Slopes of dashed lines are —1 to show
D o 1/r. Dashed black lines are fits to D(r) = 2 kBT/37r2 n3p + with no free
parameters, where T'is the average final temperature of all quenches in each
set. Translating this line downward by a factor of 2 gives the first dashed
gray line. Black curves are fits to an approximation valid between r < Ly,
and r > L, (12), and shaded regions are 95% Cls of those fits. Vertical un-
certainties are standard deviations. Measurement uncertainty in domain size
is at most two pixels, or 0.4 microns. Data are binned every 0.5 um in
radius. (a) Vesicles have average area fraction ¢ < 0.3 and compositions
of 25:45:30 or 40:30:30 DiPhyPC:DPPC:chol. Solid versus open triangles
represent vesicles diluted into water versus dextran solution. 7 3p for water
at 4053°c = 0.652 x 1072 Pa's (31). The lower dashed gray line is offset
by an additional factor of 3.2. The largest angle subtended by a domain
in this set is 20°. (b) Vesicles have 0.3 < ¢ < 0.7 and compositions between
25:20:55 and 30:20:50. Data were collected once domains became roughly
circular. 7 = 26.2°C and 13p = 7 water at 20°c = 0.864 X 1073 Pass.

flat membrane, adequately describes diffusion of a domain
within a curved GUV membrane containing multiple do-
mains, at least within experimental uncertainty. In Fig. 4 a,
we make three minor improvements on measurements by
Cicuta et al. (13)), namely, we confine our results to vesicles
with diameters >80 um, we correct for curvature, and we
exclude vesicle rotation without subtracting the center of
mass of domains.

Confirmation of the soundness of our approach is that
the membrane viscosity we find, 7,p = (3.3 £ 1.1) X
1077 Pa s m, leads to a hydrodynamic length L, = n,p/13p
of ~5 um, which is the same order of magnitude as domain
radius, . As such, we must indeed analyze our data in a
way that is applicable between the limiting cases of » >
Ly and r < L. Employing equations relevant to fluid rather
than solid domains would likely increase our value of 7, by
~10% because Eq. 2 and Eq. 3 differ by ~10%.

We confirm our results by varying the bulk solution vis-
cosity, specifically by placing vesicles in a dextran solution
with a viscosity 3.2 times that of water. We expect diffusion
coefficients to decrease by a factor of ~3.2, which they do
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(Fig. 4 a). A separate test is to compare 7,p for identical
membranes made in dextran versus water solutions; they
should be equivalent within experimental uncertainty,
which they are. To find 7,p for membranes in dextran,
we set 13p within the approximation in (12) to be 3.2 times
the viscosity of water at 38.1°C, i.e., n3p = 3.2 * (0.675 x
1073 Pa s), and find a best-fit value of n,p = (9.6 = 3.0) x
1072 Pa s m, with a 95% CI from 7,p = 3.0 x 10~? Pa s m
to 1.6 x 107® Pa s m. As expected, this interval for n,p
overlaps with the interval we found for membranes
in water.

Growth exponent « for ¢ < 0.3

When the average area fraction is ¢ < 0.3, membranes
contain circular L,-phase domains that coarsen over
hundreds of seconds at constant temperature (Fig. 1). These
domains coarsen primarily by collision and coalescence
rather than by evaporation-condensation. To illustrate this,

Domalns grow through time

Fig. 3 ¢ tracks domains >1 um?® coarsening over 250 s;
smaller domains elude our tracking program. A hallmark
of evaporation-condensation is that small domains become
smaller as large domains become larger. No tracked
domains shrink in Fig. 3 ¢. The growth of only one domain
in Fig. 3 c, the largest one, is not fully explained by merges
with other tracked domains. It is unclear how much of this
growth is due to evaporation-condensation versus merges
with untrackable domains.

With time, normalized domain size R increases, where R
o time® and « is the growth exponent. We expect a = 1/3
whether domains grow by evaporation-condensation or by
collision and coalescence. This expectation follows from
the rough fit of diffusion coefficients in Fig. 4 a to D o 1/r.

Fig. 5 a shows that « = 0.29 = 0.05, which is indeed
within experimental uncertainty of the predicted value of
o = 1/3 for area fraction ¢ < 0.3. In these experiments, ves-
icles were diluted in water and R versus time was recorded
at constant temperature after 17 distinct quenches (Table 1).
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Coarsening was followed for a minimum of 593 s and a
maximum of 1349 s. Within uncertainty, the same growth
exponent, « = 0.27 = 0.06, was found when the bulk fluid
surrounding the vesicles was dextran solution instead of
water.

Visual confirmation that « = 1/3 for vesicles with area
fraction ¢ < 0.3 is shown for a single vesicle in Fig. 5 b.
When the micrographs are rescaled by a growth exponent
« = 0.29, domain sizes appear roughly constant through
time. For all experiments, data were collected from only
the largest vesicles (>80 um diameter) to minimize devia-
tions from o = 1/3 arising from purely geometric consider-
ations when domain radii approach the size of vesicle radii
and from hydrodynamic coupling of two or more domains
via bulk fluid inside the vesicle. We observe no clear corre-
lation between growth exponent « and area fraction ¢
(Fig. S3).

Line tensions, n,p, and growth exponents for
03<¢ <07

By choosing a membrane composition that results in compa-
rable area fractions of L, and L, phases, and by making a
shallow quench below the transition temperature, we place
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our membrane near a miscibility isothermal critical point
(also called a plait point) and observe noncircular domains.
Experimental signatures of proximity to a critical point of
this type include fluctuating domain edges with a correlation
length £, and low line tension between L, and L, phases
(24,34). Here, we verify that noncircular domains prepared
through a shallow quench exhibit critical behavior: we
analyze fluctuations in domain boundaries as in (24) and
find line tensions <1 pN (e.g., 0.35 = 0.08 pN overall,
and 0.43 *+ 0.05 pN for the specific case of Fig. 6 a at
late times). As an order-of-magnitude check, we find a
similar value of line tension (0.063 = 0.07 pN) by a sepa-
rate method of fitting shapes of merging domains (32).
This method is expected to give low apparent line tensions
if domains are crowded and/or if membrane viscosity is
not negligible, both of which apply here.

We measured growth rates of domains in membranes of
0.3 < ¢ < 0.7 in two different time regimes 1), early after
a quench, when phases appear bicontinuous and domains
are elongated, and 2), late after a quench, when domains
are more circular, even though their edges still fluctuate.
With time, all domains in membranes with 0.3 < ¢ < 0.7
undergo a transition: they are initially elongated and then
begin to grow primarily via coalescence (Fig. 6 ¢ and
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Fig. 5 d). Small domains transition before large domains.
Increases in R occur both when domains change shape
and when domains coalesce. We define early quench times
as occurring when shape changes contribute to increases
in R in all domains. Late quench times commence when
shape changes cease to contribute to R.

For late quench times, the mechanism of domain growth is
exactly as it was for circular domains with ¢ < 0.3, so we
expect the growth exponent to be the same, namely o =
1/3. Experimentally, we find good agreement: o = 0.31 +
0.05 for late quench times for a membrane with 0.3 < ¢ <
0.7 (Fig. 5 ¢, Table 1). The expectation that « = 1/3 rests
on an assumption that domains diffuse with approximately
D o< 1/r. The data in Fig. 4 b roughly uphold this assumption
for the system at hand: late quench times for 0.3 < ¢ < 0.7.
The data are fit even better by an approximation valid be-
tween the limiting cases of r > L, and r < Ly, (12), which
yields a best-fit value of n,p = (7.0 = 3.3) x 107° Pas m,
within a 95% CI from 7op = 1.5 x 107" Pasm to 1.4 x
1078 Pa s m. This value of 7Mp 1s within experimental uncer-
tainty of values measured in membranes of ¢ < 0.3.

All results about fit a coherent picture employing well-es-
tablished theory in which domains that grow by collision and
coalescence on GUVs have diffusion coefficients that vary
roughly as D o 1/r, and also growth exponents of a = 1/3.
Now we turn to bicontinuous phases observed at early times
after a quench of a membrane near a critical composition.
Description of this system through theory and simulation
has been an active area of research for almost a decade (4—
7,22) with no previous experimental verification.

Membranes quenched through a critical point contain
elongated domains (Fig. 6 ¢), which become more circular
with time. In this system, normalized domain size, R, grows
by three mechanisms, morphological changes of domains
from elongated to more circular shapes, collision-coales-
cence, and evaporation-condensation. Experimentally, we
find « = 0.50 * 0.16 at early quench times for elongated
domains (Fig. 6 b). As in Fig. 5 b, domains within a near-
critical membrane early after a quench appear self-similar;
when micrographs in Fig. 6 ¢ are rescaled by the growth
exponent, domain sizes appear constant through time.

Note that because the growth exponent « takes different
values at early versus late times after a quench near a critical
point, dynamic scaling is not universal for this system as it
was for membranes with ¢ < 0.3. Measured exponents are
only apparent growth exponents. Scaling breaks down
entirely when quenches of membranes produce domains
within other domains, both in our experiments (Fig. 7 a)
and in simulations (6,7).

Triggering changes in T,x via photooxidation

Jumps in miscibility temperatures (7,,;x) of fluorescently
labeled membranes can be initiated by intense illumination,
which changes membrane composition via lipid photooxi-
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FIGURE 7 (a) Time sequence of coexisting liquid domains in the mem-
brane of a vesicle with a critical composition. For the entire vesicle (but not
for this field of view), areas of dark and bright regions are roughly equal.
Images are not self-similar, i.e., no scaling operation can render the
images to appear similar, and no growth exponent can be extracted. (b)
Coarsening of liquid domains in a membrane in which a miscibility transi-
tion was initiated by photooxidation of lipids. (¢) Simulated coarsening of
~200 spherical caps that diffuse with D o 1/r on the surface of a sphere,
where r is the arc length from the center to the edge of each cap, and
area fraction ¢ = 0.09. When caps collide, they coalesce. An offset line
with slope of —0.31 is shown for comparison.

dation. Here, the miscibility transition occurs isothermally.
In Fig. 7 b, domains coarsen after a transition initiated by
photooxidation. In our experiments, transitions initiated by
high light levels are not superior to ones initiated by a
quench in sample temperature because timescales are
similar for both. More importantly, once photooxidation is
initiated, it is not easily curtailed. Maintaining a constant
offset between T,,;x and the sample temperature, which is
required for quantitative analysis of growth exponents and
diffusion coefficients, becomes arduous.

DISCUSSION

Within lipid vesicles, four natural length scales arise, and
their interplay determines the rate of domain diffusion and
coarsening. First is hydrodynamic length Ly, = 1,p/13p. Sec-
ond is normalized domain size R. Third is correlation length,
&, for domains in a membrane near a miscibility critical
point. Correlation length is inversely proportional to line
tension. When correlation lengths are large and line tension
is small, boundaries of domains fluctuate, resulting in
noncircular domains. Fourth is vesicle diameter.

Biophysical Journal 105(2) 444-454
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In the Results section, we found that fitting diffusion
coefficients of L, domains in free-floating vesicles of
DiPhyPC/DPPC/chol yields membrane viscosities of
(3.3 = 1.1) x 10° Pa s m (in bulk water and with ¢ <
0.3), of (9.6 = 3.0) x 10" Pasm (in bulk dextran solution
and with ¢ < 0.3), and of (7.0 = 3.3) x 107° Pa s m (in bulk
water and with 0.3 < ¢ < 0.7). These values are in good
agreement with previous values (n,p = (5.5 = 1.5) X
107° Pasmand (4 = 1) x 10~? Pa s m) found by analyzing
structure factors of composition fluctuations (26) and by
analyzing shape fluctuations of domain boundaries within
membranes of the same three lipids at a similar lipid ratio
and temperature (33). This agreement implies that reason-
ably accurate measurements of diffusion coefficients can
be made over the range of domain sizes probed here,
even though domains can appear crowded (35). It is valid
to compare membrane viscosities between vesicles with
slightly different lipid ratios because lateral diffusion coef-
ficients of lipids within L, versus L, domains in vesicles and
planar bilayers differ by a factor of only ~2-10 (36-38).
Moreover, membrane viscosities measured in other systems
are the same order of magnitude. In fluid membranes of
DOPC/DPPC/chol, nop = 5 x 107'°t0 3 x 107° Pas m
(from (12) using data from (13)). In fluid membranes of
SOPC, mop=3 = 1) x 10~° Pa s m ((39), also references
within). In 1:1 DiPhyPC/DPPC membranes, solid domains
diffuse across liquid membranes of 7,p = (2.2 = 0.1) x
107 Pa s m (18). Taken together, these results imply that
for many vesicle systems, length L;, is ~1 um and that devi-
ations from theories that treat domain diffusion as entirely
dominated by the effects of momentum dissipation into
water (e.g., from r > L;,) should be expected for even
planar systems such as black lipid membranes. Previous
work has instead suggested that such deviations are primar-
ily due to confinement of domains on a curved surface and
hydrodynamic interactions between domains (35).

We find that domains that coarsen via collision and
coalescence have a growth exponent of « = 1/3. This
result holds whether the bulk fluid in which vesicles are
embedded is water or a more viscous solution containing
dextran. It holds whether domains are in membranes with
0.3 < ¢ < 0.7 at late times after a quench or in membranes
with ¢ < 0.3. A different exponent, « = 1/2, applies to
elongated domains seen early after a quench in membranes
with 0.3 < ¢ < 0.7.

A range of experimentally measured growth exponents
for circular domains in vesicles have been previously pub-
lished. Those measurements did not uniformly exclude
cases with inconstant temperature, bulged domains, or small
vesicles. In 2006, Saeki et al. (15) reported « = 0.15 using
vesicles of 35:35:30 DOPC/DPPC/chol with diameter
~50 um and noted that some domains curved outward.
Domains that bulge out of the spherical shell of a vesicle
(i.e., “dimples”) interact through elastic deformation of
the surrounding membrane. Bulged domains are kinetically
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hindered from coarsening (40—43). In 2007, Yanagisawa
et al. (16) reported « = 2/3 using vesicles of 40:40:20
DOPC/DPPC/chol with diameters ~10-150 um. Their value
of o = 2/3 applied to vesicles that did not exhibit “trapped
coarsening” of dimples. They speculated that domains
attract each other. Work by others (23,24) implies that
no net attractive or repulsive interactions exist between
unbulged domains because fluctuations in domain bound-
aries fit normal capillary theory (Tobias Baumgart, personal
communication). In 2007, Liang et al. (17) reported & = 1/3
for domains smaller than 1 um and & = 1 for domains larger
than 1 um within vesicles of 1:1:1 bovine brain sphingo-
myelin/DOPC/chol with diameter >20 um. They speculated
that « = 1 at long observation times could be explained if
domain merges triggered subsequent merges. Their longest
observation time was roughly an order of magnitude shorter
than the shortest run in Fig. 5 a.

Other researchers have studied coarsening in membranes
in which domain coalescence is negligible. For membranes
strongly coupled to solid substrates, Jensen et al. (14) found
a = 0.31 for coarsening dominated by evaporation-conden-
sation and Tayebi et al. (19) reported a typical value of « =
0.46 for stacks of 100-1000 membranes. For monolayer
liquid domains that repel each other, Seul et al. found
a = 0.28 (44).

Growth exponents measured here for domains that grow
by collision and coalescence within a unilamellar vesicle
membrane are in excellent agreement with predictions
from theory and simulation, which give a = 1/3 over a broad
range of domain sizes (1-4). The same value is expected for
membranes in highly viscous fluid (2).

Our results are limited to domains that have not yet grown
as large as the vesicle; domains coarsen until membranes
eventually contain only one L; domain and one L, domain.
Deviations from a growth exponent of o = 1/3 are expected
when large domains couple via hydrodynamics (35). Even
when the bulk solution in contact with the vesicle is
neglected, deviations from « = 1/3 arise from geometry
and/or poor statistics when domain and vesicle sizes are
comparable. To illustrate this point, Fig. 7 ¢ shows results
of a simulation in which domains diffuse on a spherical
surface with D o 1/r and coarsen purely by coalescence.
The surface was seeded with ~200 spherical caps. Strong
deviations from the overall growth exponent o = 0.31 occur
at short times during equilibration of domain sizes. Weak
deviations occur at long times, when the average domain
radius divided by the vesicle radius becomes greater than
107%8, or ~16%. Deviations at long times are due to geo-
metric reasons and/or to poor statistics, because few
domains populate the vesicle at long times. The largest
domains observed in our movies seldom exceeded this value
of 16% (Table S1).

In our experiments, we avoided conditions that can pro-
duce anomalously low or high values of «. The growth
exponent will be too low 1), if domains bulge out of the
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membrane; 2), if the difference between the experimental
temperature and the membrane miscibility transition tem-
perature (7,;x) decreases through time, either because
photooxidation lowers T,,,;x or because sample temperature
increases; 3), if large domains are undercounted in a mea-
surement of average domain radius; 4), if large domains
are undercounted because vesicles are too small; or 5), if
the viewing area is flat against a substrate such that domains
move too slowly (45). In contrast, the growth exponent will
be too high 1), if the difference between the experimental
temperature and T,;, increases through time, either because
photooxidation of unsaturated phospholipids increases Tiy;x,
or because sample temperature decreases; or 2), if flow of
the exterior bulk solution brings domains frequently in
contact with a substrate that has a preferential interaction
with one phase versus the other. All of these experimental
challenges have proven straightforward to surmount here
using free floating giant unilamellar vesicles of DiPhyPC/
DPPC/chol.

In addition to investigating growth exponents for do-
mains that coarsen through collision and coalescence, we
measured growth exponents for elongated domains soon
after a quench in membranes with 0.3 < ¢ < 0.7. At early
times, shape changes contribute to increases in R in all
domains and o = 0.50 %= 0.16. Because the growth expo-
nent for domains in a membrane with area fraction 0.3 <
¢ < 0.7 has different values at early and late times after a
quench, dynamic scaling is not universal in this system.
Recent simulations have identified similar scaling viola-
tions. Camley and Brown (7) used continuum stochastic
hydrodynamic simulations, which include temperature fluc-
tuations. They concluded that if scaling is ever observed in a
system like ours in which the characteristic length scale of a
domain, R, is not orders of magnitude smaller than Ly, then
the growth exponent « should be 1/2, with the caveat that
their simulation does not clearly predict whether scaling
should be seen or not. Similarly, Fan et al. (6) modeled
spinodal decomposition of a lipid membrane hydrodynami-
cally coupled to viscous solvent. They investigated cases
of L, = 0, L, = o, and L, = 10&, where £ is correlation
length. In our system, the approximation § = kg7/(line ten-
sion) = 1072 um yields L, = 500&, which is closest to the
case of L, = 10¢. For L, = 10¢ and Peclét number of Pe = 1,
Fan et al. find an apparent scaling regime with « = 1/2. In
the same system, Pe = 0.1 results in a different value of the
apparent exponent ¢, and Pe > 10 results in a breakdown of
dynamical scaling. In our system, quenches to slightly
different temperatures may result in changes in correlation
length that are manifested as different apparent scaling
exponents, explaining the relatively large experimental un-
certainty in our reported value of « = 0.50 = 0.16. Earlier
dissipative particle dynamics simulations (4,5,22) produced
o« = 1/2 or 1/3 depending on solvent conditions, with the
caveat that membrane viscosity may be unphysically low
in some dissipative particle dynamics simulations (7).
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CONCLUSION

Membrane dynamics are unusually rewarding to study. As
M. Laradji and P. B. Sunil Kumar note, “The dynamics of
in-plane demixing of multicomponent vesicles into coex-
isting phases is richer than its counterpart in bulk systems”
(3). Here, we have investigated coarsening dynamics of
membrane domains that grow via three possible mech-
anisms: collision-coalescence, evaporation-condensation,
and morphological changes. Domains that grow primarily
by collision-coalescence have scaling exponents of o =
0.28 £ 0.05 and « = 0.31 = 0.05, in line with theory pre-
dicting & = 1/3. Elongated domains, which grow via all
three mechanisms, have scaling exponents of « = 0.50 =
0.16, consistent with a predicted apparent scaling regime.
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