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Abstract

In this article we prove that, if integer polynomial 𝑃 satisfies |𝑃 (𝜔)|𝑝 < 𝐻−𝑤, then for
𝑤 > 2𝑛− 2 and sufficiently large 𝐻 the root 𝛾 belongs to the field of 𝑝-adic numbers.
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1. Introduction

Throughout this paper, 𝑝 is a prime number, Q𝑝 is the field of 𝑝-adic numbers,

𝑃 (𝑥) = 𝑎𝑛𝑥
𝑛 + . . .+ 𝑎1𝑥+ 𝑎0

is an integer polynomial with degree deg𝑃 (𝑥) = 𝑛 and height 𝐻(𝑃 ) = max06𝑗6𝑛 |𝑎𝑗 |. We denote
by 𝒫𝑛 the set of integer polynomials of degree 𝑛. Let 𝒫𝑛(𝐻) = {𝑃 ∈ 𝒫𝑛 : 𝐻(𝑃 ) = 𝐻}.

In this paper, a result originally considered by Y. V. Nesterenko is examined. In [1]
Y.V. Nesterenko discussed the solvability of the equation 𝑃 (𝑥) = 0 in the ring of 𝑝-adic integers Z𝑝
and proved the following result.

Theorem 1. Let 𝑥 be an integer and 𝑃 ∈ 𝒫𝑛(𝐻). If

|𝑃 (𝑥)|𝑝 6 𝑒−8𝑛2
𝐻−4𝑛,

then there exists a 𝑝-adic number 𝛾 such that

𝑃 (𝛾) = 0, |𝑥− 𝛾|𝑝 < 1.

Note that a similar problem was considered in [2] and there was given a criteria for when the
closest root of a polynomial to a real point belongs to the field of real numbers. Knowledge of the
nature of the roots is very important in the problems of Diophantine approximations for construction
of regular systems [3,4]. Numerous applications of this concept arose when obtaining estimates for
the Hausdorff measure and Hausdorff dimension of Diophantine sets [5] and proving analogues of the
Khintchine theorem [6,7]. Using the regular systems, the exact theorems on approximation of real
numbers by real algebraic [6], by algebraic integers [8], of complex numbers by complex algebraic [9]
were obtained, and similar problems in the field of 𝑝-adic numbers [10] and in R×C×Q𝑝 [7] were
investigated.

The Theorem 1 can be improved for 𝑝-adic leading polynomials. Such a polynomial 𝑃 ∈ 𝒫𝑛
satisfies

|𝑎𝑛|𝑝 ≫ 1. (1)

Theorem 2. Let 𝜔 ∈ Z𝑝 and 𝑃 ∈ 𝒫𝑛(𝐻) be a 𝑝-adic leading polynomial. Then if

|𝑃 (𝜔)|𝑝 < 𝐻−𝑤 (2)

for 𝑤 > 2𝑛− 2, and for sufficiently large 𝐻 > 𝐻0(𝑛), it follows that the root 𝛾1 of 𝑃 belongs to Q𝑝
and

|𝜔 − 𝛾1|𝑝 < 1. (3)

Remark 1. If 𝐷(𝑃 ) ̸= 0 then we have that the root 𝛾1 of 𝑃 is closest to 𝜔 ∈ Z𝑝. The above
theorem will be proved using a general method of V.I. Bernik which was developed in [11,12].
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2. Preliminary setup and auxilliary Lemmas

Let 𝑃 ∈ 𝒫𝑛 have roots 𝛾1, 𝛾2, . . . , 𝛾𝑛 in Q*
𝑝, where Q*

𝑝 is the smallest field containing Q𝑝 and all
algebraic numbers. Then, from (1) it follows that

|𝛾𝑖|𝑝 ≪ 1, 𝑖 = 1, . . . , 𝑛; (4)

i.e. the roots are bounded. This follows from Lemma 4 in ( [13], p.85).
Define the sets

𝑇𝑝(𝛾𝑘) = {𝜔 ∈ Z𝑝 : |𝜔 − 𝛾𝑘|𝑝 = min
16𝑖6𝑛

|𝜔 − 𝛾𝑖|𝑝}, 1 6 𝑘 6 𝑛.

Consider the set 𝑇𝑝(𝛾𝑘) for a fixed 𝑘 and for ease of notation assume that 𝑘 = 1. Next, reorder
the other roots so that

|𝛾1 − 𝛾2|𝑝 6 |𝛾1 − 𝛾3|𝑝 6 . . . 6 |𝛾1 − 𝛾𝑛|𝑝.

Fix 𝜖 > 0 where 𝜖 is sufficiently small and suppose that 𝜖1 = 𝜖𝑁−1 where 𝑁 = 𝑁(𝑛) > 0 is
sufficiently large. Let 𝑇 = [𝜖−1

1 ].
For a polynomial 𝑃 ∈ 𝒫𝑛(𝐻) define the real numbers 𝜌𝑗 by

|𝛾1 − 𝛾𝑗 |𝑝 = 𝐻−𝜌𝑗 , 2 6 𝑗 6 𝑛, 𝜌2 > 𝜌3... > 𝜌𝑛.

Define the integers 𝑚𝑗 , 2 6 𝑗 6 𝑛, such that

𝑚𝑗 − 1

𝑇
6 𝜌𝑗 <

𝑚𝑗

𝑇
,𝑚2 > 𝑚3 > ... > 𝑚𝑛 > 0.

Further define numbers 𝑠𝑖 such that

𝑠𝑖 =
𝑚𝑖+1 + . . .+𝑚𝑛

𝑇
, (1 6 𝑖 6 𝑛− 1), 𝑠𝑛 = 0.

The first Lemma is a 𝑝-adic analogue of the Lemma, which was proved by Bernik in [14] and is a
generalisation of Sprindžuk’s Lemma ( [13], p.77).

Lemma 1. [15] Let 𝜔 ∈ 𝑇𝑃 (𝛾1). Then

|𝜔 − 𝛾1|𝑝 6 min
16𝑗6𝑛

(|𝑃 (𝜔)|𝑝|𝑃 ′(𝛾1)|−1
𝑝

𝑗∏︁
𝑘=2

|𝛾1 − 𝛾𝑘|𝑝)1/𝑗 .

The following Lemma is often referred to as Gelfond’s Lemma.

Lemma 2 ( [16], Lemma A.3). Let 𝑃1, 𝑃2, . . . , 𝑃𝑘 be polynomials of degree 𝑛1, . . . , 𝑛𝑘 respectively,
and let 𝑃 = 𝑃1𝑃2 . . . 𝑃𝑘. Let 𝑛 = 𝑛1 + 𝑛2 + . . .+ 𝑛𝑘. Then

2−𝑛𝐻(𝑃1)𝐻(𝑃2) . . . 𝐻(𝑃𝑘) 6 𝐻(𝑃 ) 6 2𝑛𝐻(𝑃1)𝐻(𝑃2) . . . 𝐻(𝑃𝑘).

In the proof of theorem we will refer to the following statement known as Hensel’s Lemma.

Lemma 3 ( [4], p. 134). Let 𝑃 be a polynomial with coefficients in Z𝑝, let 𝜉 = 𝜉0 ∈ Z𝑝 and
|𝑃 (𝜉)|𝑝 < |𝑃 ′(𝜉)|2𝑝. Then as 𝑛→ ∞ the sequence

𝜉𝑛+1 = 𝜉𝑛 −
𝑃 (𝜉𝑛)

𝑃 ′(𝜉𝑛)

tends to some root 𝛽 ∈ Q𝑝 of the polynomial 𝑃 and

|𝛽 − 𝜉|𝑝 6 |𝑃 (𝜉)|𝑝/|𝑃 ′(𝜉)|2𝑝 < 1.
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3. Proof of Theorem 2

Two cases must be dealt with separately: 𝐷(𝑃 ) ̸= 0 and 𝐷(𝑃 ) = 0.

3.1. Case I: 𝐷(𝑃 ) ̸= 0

First consider a polynomial 𝑃 ∈ 𝒫𝑛(𝐻) satisfying 𝐷(𝑃 ) ̸= 0 and (2), and assume that
|𝑃 ′(𝜔)|2𝑝 6 |𝑃 (𝜔)|𝑝. We will obtain a contradiction. Using (4), we get |𝑃 ′(𝜔)|𝑝 < 𝐻−𝑤/2.

It is well known that |𝐷(𝑃 )| = |Δ|
|𝑎𝑛| , where

Δ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎𝑛 𝑎𝑛−1 𝑎𝑛−2 . . . 𝑎1 𝑎0 0 . . . 0
0 𝑎𝑛 𝑎𝑛−1 𝑎𝑛−2 . . . 𝑎1 𝑎0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 𝑎𝑛 𝑎𝑛−1 𝑎𝑛−2 . . . 𝑎1 𝑎0
𝑛𝑎𝑛 (𝑛− 1)𝑎𝑛−1 (𝑛− 2)𝑎𝑛−2 . . . 𝑎1 . . . 0 . . . 0
0 𝑛𝑎𝑛 (𝑛− 1)𝑎𝑛−1 (𝑛− 2)𝑎𝑛−2 . . . 𝑎1 0 . . . 0
0 0 . . . 0 𝑛𝑎𝑛 (𝑛− 1)𝑎𝑛−1 (𝑛− 2)𝑎𝑛−2 . . . 𝑎1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence the determinant,

|Δ| 6 |𝑎𝑛|((2𝑛− 2)!(𝑛𝐻)2𝑛−2 + 𝑛(2𝑛− 2)!(𝑛𝐻)2𝑛−2)
= |𝑎𝑛|(2𝑛− 2)!(𝑛+ 1)(𝑛𝐻)2𝑛−2 6 2𝑛2𝑛−1(2𝑛− 2)!𝐻2𝑛−2|𝑎𝑛|,

using the fact that |𝑎𝑖| 6 𝐻, 𝑖 = 0, 1, . . . , 𝑛. Thus, |𝐷(𝑃 )| 6 2𝑛2𝑛−1(2𝑛 − 2)!𝐻2𝑛−2. This implies
that

|𝐷(𝑃 )|𝑝 > 2−1𝑛1−2𝑛((2𝑛− 2)!)−1𝐻−2𝑛+2. (5)

Using Lemma 1, |𝑎𝑛|𝑝 ≫ 1 and (2),

|𝜔 − 𝛾1|𝑝 6 min16𝑗6𝑛(|𝑃 (𝜔)|𝑝|𝑃 ′(𝛾1)|−1
𝑝

∏︀𝑗
𝑘=2 |𝛾1 − 𝛾𝑘|𝑝)1/𝑗

< min16𝑗6𝑛(𝐻
−𝑤|𝑎𝑛|−1

𝑝

∏︀𝑛
𝑘=𝑗+1 |𝛾1 − 𝛾𝑘|−1

𝑝 )1/𝑗

6 min16𝑗6𝑛(𝐻
−𝑤|𝑎𝑛|−1

𝑝 𝐻𝑠𝑗 )1/𝑗

≪ min16𝑗6𝑛𝐻
−𝑤+𝑠𝑗

𝑗 .

Define 𝜎(𝑃 ) as the cylinder of points 𝑤 satisfying

|𝜔 − 𝛾1|𝑝 ≪ min
16𝑗6𝑛

𝐻
−𝑤+𝑠𝑗

𝑗 .

Let 𝜃𝑗 =
𝑤−𝑠𝑗
𝑗 and denote by 𝜃0 the maximum value of 𝜃𝑗 , 𝑗 = 1, . . . , 𝑛.

Now the polynomial 𝑃 ′ is expanded as a Taylor series and each term is estimated on 𝜎(𝑃 ). Thus

𝑃 ′(𝜔) = 𝑃 ′(𝛾1) +
𝑛∑︁
𝑗=2

((𝑗 − 1)!)−1𝑃 (𝑗)(𝛾1)(𝜔 − 𝛾1)
𝑗−1,

|𝑃 (𝑗)(𝛾1)(𝜔 − 𝛾1)
𝑗−1|𝑝 ≪ 𝐻−𝑠𝑗+(𝑛−𝑗)𝜖1𝐻−𝜃0(𝑗−1).

As 𝜃0 > 𝜃𝑗 , this implies that

|𝑃 (𝑗)(𝛾1)(𝜔 − 𝛾1)
𝑗−1|𝑝 ≪ 𝐻

−𝑠𝑗+(𝑛−𝑗)𝜖1+ 𝑗−1
𝑗

(−𝑤+𝑠𝑗) 6 𝐻−𝑤/2+(𝑛−2)𝜖1 for 2 6 𝑗 6 𝑛.

Thus,
|𝑃 ′(𝛾1)|𝑝 6 max

16𝑗6𝑛
{|𝑃 (𝑗)(𝛾1)(𝜔 − 𝛾1)

𝑗−1|𝑝} ≪ 𝐻−𝑤/2+(𝑛−2)𝜖1
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for 𝐻 > 𝐻0(𝑛).
Expressing the discriminant 𝐷(𝑃 ) in the form

|𝐷(𝑃 )|𝑝 = |𝑎𝑛|2𝑛−2
𝑝

∏︁
16𝑖<𝑗6𝑛

|𝛾𝑖 − 𝛾𝑗 |2𝑝 = |𝑎𝑛|2𝑛−4
𝑝 |𝑃 ′(𝛾1)|2𝑝

∏︁
26𝑖<𝑗6𝑛

|𝛾𝑖 − 𝛾𝑗 |2𝑝

and using the facts that |𝛾𝑖|𝑝 ≪ 1 and |𝑎𝑛|𝑝 6 1, we obtain

|𝐷(𝑃 )|𝑝 ≪ |𝑃 ′(𝛾1)|2𝑝.

This contradicts (5) for 𝑤 > 2𝑛−2+2(𝑛−2)𝜖1 and sufficiently large𝐻. Therefore, |𝑃 ′(𝜔)|2𝑝 > |𝑃 (𝜔)|𝑝
holds for 𝑤 > 2𝑛 − 2 + 2(𝑛 − 2)𝜖1, and case I follows immediately from Lemma 3. Hence, there
exists a root 𝛾1 ∈ Q𝑝 of 𝑃 such that |𝜔 − 𝛾1|𝑝 6 |𝑃 (𝜔)|𝑝/|𝑃 ′(𝜔)|2𝑝 < 1.

3.2. Case II: 𝐷(𝑃 ) = 0

Consider the polynomial 𝑃 ∈ 𝒫𝑛 satisfying 𝐷(𝑃 ) = 0. First, 𝑃 is decomposed into irreducible
polynomials 𝑇𝑖(𝜔) ∈ Z[𝜔], i.e.

𝑃 (𝜔) =
𝑘∏︁
𝑖=1

𝑇 𝑠𝑖𝑖 (𝜔).

It will be shown that for some index 𝑗, 1 6 𝑗 6 𝑘,

|𝑇𝑗(𝜔)|𝑝 < 2𝑛𝑤/2𝐻−𝑤(𝑇𝑗). (6)

Assume the opposite, so that

|𝑇𝑗(𝜔)|𝑝 > 2𝑛𝑤/2𝐻−𝑤(𝑇𝑗) for all 𝑗, 1 6 𝑗 6 𝑘.

Then, by Lemma 2,

|𝑃 (𝜔)|𝑝 >
𝑘∏︁
𝑗=1

(2𝑛𝑤/2𝐻−𝑤(𝑇𝑗))
𝑠𝑗 > 2𝑛𝑤(

∑︀𝑘
𝑗=1 𝑠𝑗/2−1)𝐻(𝑃 )−𝑤 > 𝐻(𝑃 )−𝑤

which contradicts (2). Thus (6) holds.
Hence, applying the same method as in Case I for 𝑇𝑗 , 𝐷(𝑇𝑗) ̸= 0, which satisfies (6), it follows

that there exists a 𝑝-adic number 𝛾1 such that |𝜔−𝛾1|𝑝 < 1 and 𝑇𝑗(𝛾1) = 0. This implies 𝑃 (𝛾1) = 0.
2
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