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ABSTRACT 

Many teleost fish haemoglobins (Hbs) exhibit a Root effect, a large Haldane 

effect and a low buffer capacity. This combination of characteristics influences the 

interaction between movements of oxygen (02) and carbon dioxide (C02) in the red cell, 

in the respiratory epithelium, and in the tissues. For example in rainbow trout, 

oxygenation of the blood at constant Pco2 in vitro, induces a large acidosis (0.21 pH 

units) in the red cell. This acidosis results from the release of a large number of protons 

during Hb oxygenation (Haldane effect) in the presence of a Hb with a low buffer 

capacity. It can be hypothesized, that oxygen uptake in the absence of C02 removal, 

could limit oxygen binding to Hb at the gills by as much as 50% due to the presence of 

the Root effect. 

Arapaima gigas is an obligate air breathing teleost fish from the Amazon. It 

possesses two respiratory surfaces for gas exchange: gills and a highly vascularized 

swimbladder which acts as an air-breathing organ (ABO). The movements of 0 2 and C02 

are spatially uncoupled in normoxia. That is, 78 % of the 0 2 consumed was from the air 

and 85 % of the C02 excreted was into the water. Therefore, a large proportion of the 

oxygen uptake across the ABO occurred in the absence of C02 removal. The Hb in this 

species possessed a large Root effect and therefore, an acidosis induced by Hb 

oxygenation in the absence of C02 removal, could impair 0 2 uptake as hypothesized 

above in rainbow trout. The Haldane effect in this Hb, however, was small preventing 

an acidosis during Hb oxygenation. Interestingly, the Hb buffer capacity was also low 
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relative to that in rainbow trout, seemingly maladaptive for C02 excretion. Thus, Hb 

characteristics appear to be modified to prevent impairment of 0 2 uptake in the absence 

of C02 removal in A. gigas; however, the effect of these changes on C02 excretion is 

less clear. 

A quantitative analysis of 0 2 and C02 transport was conducted in resting and 

exercising rainbow trout, and these data were used to quantify the magnitude of the 

coupling between 0 2 and C02 exchange, in vivo. In resting rainbow trout exposed to 

normoxia and two levels of hypoxia, or in fish during sustained exercise, 60% of the 

total C02 excreted was dependent upon HC03·fcl- exchange during red cell transit 

through the gills. This is of significance to C02 exc~etion because· HC03-/Cl· exchange is 

thought to be the rate limiting step. In both arterial and mixed-venous blood of trout, an 

acid-base disequilibrium was observed in resting fish exposed to normoxia and two levels 

of hypoxia, indicating that the blood pH and Pco2 probably never reach equilibrium in 

vivo. However, inclusion of the acid-base disequlibrium in an analysis of partitioning of 

C02 excretion, did not result in a significant difference from a similar analysis using 

steady state values. 

Oxygenation of whole blood from trout resulted in a non-linear release of protons 

(Bohr protons) over the Hb-02 equilibrium curve in vitro. That is, the majority of Bohr 

protons were released between 60 and 100% of Hb oxygen saturation (So2). Rapid 

oxygenation of the blood over this region of the Hb-02 equilibrium curve elevated the 

HC03· flux rate across the HC03-/Cl· exchanger on the red cell by about 30% during 

C02 excretion in vitro. Oxygenation of the Hb between 0 and 60% So2 did not elevate 
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C02 excretion rate in vitro. 

The non-linear release of Bohr protons over the Hb-02 equilibrium curve was 

also observed in vivo, in trout subjected to different levels of sustained exercise. At low 

swimming speeds, when venous blood 0 2 content (Cvo2) was high, there was a small 

acidosis as blood passed through the gills, indicating more protons were released during 

oxygenation of Hb than were consumed during HC03· dehydration. At higher swimming 

speeds, when Cvo2 was low, there was a significant alkalosis in the arterial blood relative 

to the venous blood, indicating fewer protons were released upon oxygenation than 

HC03· ions were dehydrated to C02 . Haldane coefficients (moles of protons released per 

mole of 0 2 which binds to Hb), calculated from steady state arterial and mixed-venous 

parameters, revealed that under resting conditions 100% of C02 excreted was 

stoichiometrically related to 0 2 uptake through the release of Bohr protons during Hb 

oxygenation. The magnitude of coupling between C02 excretion and 0 2 uptake decreased 

from 100% to less than 50% at the maximal swimming velocity when the largest region 

of the Hb-02 equilibrium curve was used for gas exchange. The non-linear release of 

Bohr protons over the range of Hb-02 saturation in the blood limits HC03· dehydration 

at the gills during greater work loads, conserving the HC03· buffer capacity of the blood 

and tissues. 
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GENERAL INTRODUCTION 

The classic study by Bohr, Hasselbalch and Krogh in 1904, was the first to 

demonstrate the influence of carbon dioxide (C02) on the affinity of blood for oxygen 

(02) in vertebrates (Bohr et. al., 1904). As a consequence, the change in haemoglobin­

oxygen (Hb-02) affinity with a change in either the partial pressure of C02 (Pco2) or pH 

is now referred to as the Bohr effect. In 1914, Christiansen, Douglas and Haldane 

discovered that the C02 content of deoxygenated blood was greater than that of 

oxygenated blood at constant Pco2, implicating a role for haemoglobin (Hb) in both C02 

and 0 2 transport. The greater C02 content in deoxygenated blood .is now referred to as 

the Haldane effect and results from two phenomena: C02 binding to the deoxygenated 

Hb molecule elevating C02 content directly, and protons (Bohr protons) binding to the 

deoxygenated Hb elevating C02 content indirectly. The studies by Bohr et. al. , (1904) 

and Christiansen et. al., (1914), among others, sparked investigations into the interaction 

between oxygen and carbon dioxide transport in the blood of vertebrates, which 

continues to the present, unabated. Most of these studies have been conducted in vitro, 

under non-physiological conditions. For example, the partial pressure of one gas is 

manipulated while the other is held constant, while in vivo, gas exchange normally 

involves simultaneous changes in both 0 2 and C02 . Thus, although the fact that an 

interaction exists between movements of 0 2 and C02 is undisputed, the physiological 

importance remains largely unresolved, especially in lower vertebrates such as fish. 

Gas exchange at the gills of fish can be loosely grouped into two components, 
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diffusion of gases between the environment and the blood, and processes which occur 

within the erythrocyte. 

DIFFUSION OF GASES 

The movement of a gas between the environment and the blood haemoglobin is 

complex. Some of the barriers which make this movement complex in fish consist of 

interlamellar water, the lamellar mucus layer, the apical and basal membranes and 

cytosol of the respiratory epithelial cells, the plasma, and the membrane and cytosol of 

the erythrocyte. Each barrier must be crossed by both 0 2 and C02 and each barrier can 

potentially limit gas flux rate. For the purpose of this discussion; however, these barriers 

will be treated as one, the gills. 

The flux rate of a gas across the gills can be mathematically represented by the 

Fick diffusion equation: 

Gas transfer rate = D x A x (~P) 

t 

where D is Krogh's constant of diffusion (a measure of diffusivity), A is the perfused gill 

surface area, t is the thickness of the diffusion path, and ~p is the partial pressure 

difference of the gas across the gills. With the exception of diffusivity which is a 

physical constant, these parameters can be manipulated by the animal to maximize gas 
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exchange. During exercise, for example, when metabolic rate is elevated, the perfused 

area of the gills increases and diffusion path thickness decreases with an increase in 

ventral aortic blood pressure (Kiceniuk and Jones, 1977; Farrell et. al., 1979; Randall 

and Daxboeck, 1981; Randall and Daxboeck, 1984). LlP is also strongly influenced by 

changes in both ventilation volume and cardiac output. Fish at rest maintain a gill 

ventilation: blood perfusion ratio between 10 and 15 (Cameron and Davis, 1970; 

Kiceniuk and Jones, 1977; Jones and Randall, 1978), roughly equal to the ratio of 0 2 

solubility in water and blood. 

The Fick diffusion equation implicitly assumes chemical equilibrium within the 

blood and the water, where the movement of gases is solely determined by the diffusive 

flux of the gas across the respiratory epithelium and the convective fluxes due to 

ventilation and perfusion of the gills. Recent evidence indicates that blood pH and Pco2 

may never reach equilibrium in vivo in fish (Gilmour et. al., 1994). In addition, only a 

minor proportion ot' the total 0 2 and C02 transported in the blood exists as physically 

dissolved molecules. Most of the C02 is carried as HC03- in the plasma which must be 

dehydrated to C02 within the red cell (Perry et. al. , 1982) prior to diffusion into the 

ventilatory water, and the majority of 0 2 taken up across the gills binds with Hb. Some 

of these reactions are considered to be rate limiting (Piiper, 1990). Thus, the diffusing 

capacity of the gills (gas transferred/unit partial pressure gradient) must be regarded as 

an "overall equilibration conductance" (Piiper, 1990) taking into account both the rate of 

gaseous diffusion and the rate of chemical reactions. 

The control of features such as perfused area of the gills, diffusion path thickness 
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and gill ventilation:perfusion ratios undoubtedly have profound effects on gas exchange. 

The chemical reactions which occur within the red cell however will also greatly 

influence gas exchange and are described in the following section. 

REACTIONS WITHIN THE RED CELL 

C02 transport: 

Most of the C02 excreted across the gills is transported as HC03- in the plasma, 

but is released to the environment by way of diffusion of molecular C02 (Perry et. al. , 

1982). The half time for bicarbonate dehydration: 

at the uncatalyzed rate, is 90s for fish blood at 10 oc (Heming, 1984) and is only 

marginally faster at 37 oc (Swenson and Maren, 1978). As early as 1935, Roughton 

hypothesized that C02 excretion could not be achieved unless HC03- dehydration 

occurred at the catalyzed rate. It is now well established that in both mammals and fish 

the enzyme which catalyzes HC03- dehydration is carbonic anhydrase (CA). Unlike most 

air breathing vertebrates, the respiratory surface in trout and other freshwater teleost 

fishes lack plasma accessible carbonic anhydrase (Perry et. al., 1982; Henry et. al., 

1988; Perry and Laurent, 1990) and therefore all HC03- dehydration at the catalyzed rate 
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occurs within the red cell during gill blood transit. 

Bicarbonate enters the red cell from the plasma in electro-neutral exchange with 

CI- by way of an exchanger in the band 3 protein of the erythrocyte membrane (Figure1; 

Romano and Passow, 1984). When examined independently of oxygen uptake, the 

limitation to C02 excretion is thought to lie at this HC03-/Cl- exchange site (Crandall and 

Bidani, 1981). Wieth et. al. (1982) determined in vitro that the contribution of red cell 

HC03-;CI- exchanger to the total time course of C02 excretion in mammals is almost 

one-third and is the slowest reaction in C02 excretion. Under conditions of controlled 

blood flow in a spontaneously ventilating trout preparation, C02 excretion increased 

proportionately with haematocrit (Hct) at constant C02 content of the blood, and with 

plasma HC03- concentration at constant Hct (Perry et. al., 1982). In addition, C02 

excretion was markedly reduced in the absence of red cells or in the presence of SITS ( 4-

acetamido-4 I -iso-thiocyanatostillbene-2,2 1 disulfonic acid), a HC03-/Cl- exchange blocker 

(Perry et. al., 1982). Thus, there is evidence that the rate of HC03- entry into the red 

cell limits C02 excretion in fish. 

Not all C02 excreted is transported in the blood as HC03-. In humans, oxylabile 

carbamate (C02 reversibly bound to Hb) accounts for approximately 13% of total C02 

excreted at rest (Klocke, 1973; Klocke, 1987) and may increase to 20% during strenuous 

exercise (Swenson, 1990). The haemoglobins of fishes probably do not form much 

carbamate (Farmer, 1979; Heming et. al., 1986). Carbamate is normally bound to the 

terminal amine groups of the a and p Hb sub-units. In fish, these groups on the a sub­

units are acetylated and therefore unavailable for carbamate formation (Farmer, 1979, 
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FIGURE 1: A diagramatic representation of gas exchange at the gills. Oxygen diffuses 

into the red cell and binds to Hb releasing Bohr protons (H+). The Bohr protons are 

consumed during HC03- dehydration and C02 subsequently diffuses into the ventilatory 

water. The reverse scenario occurs in the tissues. CA- carbonic anhydrase, Hb­

haemoglobin. Modified from Perry, 1986. 
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Riggs, 1979). The P sub-units are available but carbamates are in direct competition 

with organic phosphates which are preferentially bound (Weber and Lykkeboe, 1978). 

Thus, the lack of plasma accessible CAin the gills and reduced dependence upon 

carbamate during C02 excretion, will increase dependence upon HC03- dehydration and 

red cell HC03-/CI- exchange during C02 excretion relative to that in air-breathing 

vertebrates. The proportion of C02 excreted which is dependent upon HC03-/Cl­

exchange in fish has not been measured. 

The Haldane effect has long been implicated in C02 excretion. In fact in 1914, 

Christiansen, Douglas and Haldane, stated "The oxygenation of the blood in the lungs 

helps to drive out C02[,] and increases by about 50% or slightly more[,] the amount of 

C02 given off at each round of the circulation." In general, the Haldane effect is 

comprised of the oxylabile binding of both carbamate and protons which together give 

rise to the large differeace in C02 content between oxygenated and deoxygenated blood 

in vitro, at constant Pcu2• Although Hbs of teleost fishes do not appear to transport 

oxylabile carbamate, n~any (such as trout and carp) have very large Haldane effects 

relative to mammals, due to the large number of protons reversibly bound to Hb (Jensen 

and Weber, 1985; Weber and Jensen, 1988; Jensen, 1989; Jensen, 1991). Thus, 

transport and excretion of C02 in the blood of teleost fishes is very dependent upon the 

oxygenation of Hb (figure 1). The magnitude and importance of this interaction in vivo 

has not been quantified. 
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0 2 transport: 

In addition to the Bohr effect, the Hbs in many teleost fish possess a Root effect 

(Root, 1931; Brittain, 1987), whereby an acidification of the red cell reduces the 

maximal 0 2 carrying capacity of the blood, even in the presence of 100 atmospheres of 

pure 0 2 (Scholander and Van Dam, 1954). The Root effect is found only in fish 

(Brittain, 1987) and has been correlated with the presence of a swimbladder and more 

strongly correlated with the presence of a choroid rete (Farmer et. al., 1979). In the rete 

a localized acidosis in the blood reduces the 0 2 carrying capacity of the blood ("Root 

off" effect), subsequently elevating blood Po2 and off-loading 0 2 to the swimbladder or 

the retina (Pelster and Scheid, 1992). In the swim bladder of the eel, acidification of the 

blood to pH values as low as 6.6 has been reported (Kobayashi et. al., 1990). However, 

much smaller changes in blood pH can induce the "Root off" effect in the blood of many 

fishes (Nikinmaa, 1990). Therefore, the Root effect may be of general importance to 0 2 

delivery in the tissues, where C02 movement into the blood results in small changes in 

blood pH. The half time (T112) for the "Root off" effect in the blood of eels is 44.8 ms 

(Pelster et. al., 1992), while blood transit through the capillaries of the tissues and gills 

may be as long as several seconds (Honig et. al., 1977; Randall, 1982; Bhargava et. al., 

1992). Therefore, the "Root off" effect is sufficiently rapid to be exploited during blood 

transit through the capillaries. 

Teleost fishes generally possess Hbs with large Haldane effects and a low buffer 

capacity in comparison with other vertebrate Hbs (Jensen, 1989). Thus, during 0 2 uptake 
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at the gills, a large number of Bohr protons are released from Hb, which could acidify 

the contents of the red cell. In whole blood, maintained at constant Pco2 in vitro, the 

difference in red cell pH of oxygenated and deoxygenated blood is 0.22 units (Table 1). 

This pH difference illustrates the magnitude of the acidosis due to the release of Bohr 

protons, in the absence of C02 removal. A decrease in red cell pH of 0.22 units could 

potentially reduce 0 2-carrying capacity of the blood of trout by between 24 and 49% 

(Table 1) due to the presence of the Root shift. Normally; however, protons released 

during Hb oxygenation are consumed during HC03- dehydration and subsequent C02 

removal. Thus, a large proportion of 0 2 uptake at the gills is dependent upon the 

removal of the Bohr protons released from Hb during oxygenation. That is, 0 2 uptake at 

the gills may be strongly influenced by HC03- dehydration within the red cell, due to the 

magnitude of the Haldane and Root effects and there is a tight coupling between 0 2 and 

C02 transfer in teleost fish blood. 

In summary, Hb-oxygenation releases protons and HC03- dehydration consumes 

protons, thus, there is an extensive interaction between oxygen and carbon dioxide 

transfer in teleost fish. This interaction occurs in the blood, centred on the red blood 

cell, in both the tissues and the respiratory epithelium. The movement of oxylabile Bohr 

protons in the blood drives HC03- dehydration in the gills and C02 hydration in the 

tissues. Acidification of the blood affects oxygen binding to Hb, via the Bohr effect and 

the Root shift, and it has been estimated that oxygen uptake may be severely limited in 

the blood of trout in the absence of C02 removal (Table 1). 

I hypothesize that the combination of a large Root and Haldane effect and low Hb 
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buffer capacity requires tight coupling of 0 2 and C02 transfer in the erythrocyte of 

teleost fishes, without which gas transfer is impaired. The research objectives of this 

thesis are: 1) to conduct a quantitative analysis of 0 2 and C02 transport in resting and 

exercising trout and 2) to quantify the magnitude of the coupling between 0 2 and C02 

exchange in vivo. 
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TABLE 1: The effect of Bohr proton accumulation in the red cell on 0 2 carrying capacity of the blood in rainbow trout. 

Reported Arterial 
Authors pHe pH; 

Primmet et. a!. (1986) 7.83 7.29 

Lessard et. a!. (1995) 7.98 7.27 

Boutilier et. a!. (1986) 7.95 7.41 

Steffensen et. a!. (1987) ---- 7.39 

Calculated pH; 
with Bohr proton 
accumulation 

7.07 

7.05 

7.19 

7.17 

Calculated decrease 
in So2 

46% 

48% 

24% 

28% 

- "Calculated pH; with Bohr proton accumulation" is determined by subtracting 0.22 pH units from the reported arterial pH;. 
The value of 0.22 pH units represents the difference in red cell pH between oxygenated and deoxygenated blood (Hct = 20%) 
incubated at constant Pco2 (taken from Perry and Gilmour, 1993). 
- "Calculated decrease in So2 " is calculated as follows: 

[(So2 at reported arterial pH; - So2 at calculated pH;)/S02 at reported arterial pH;] x 100 

where So2 values at respective pH; are derived from the relationship between So2 and pH; for trout blood, in vitro (from the 
data of Salama and Nikinmaa, unpublished data in Nikinmaa (1990)). 



GENERAL MATERIALS AND METHODS 

Experimental animals: 

The source and species of fish, and the specific conditions in which the animals 

were maintained are described within each chapter. 

Surgery and Handling: 

In fish requiring cannulation, the fish was anaesthetized in a 1: 10 000 solution of 

tricaine methanesulphonate (MS-222) in dechlorinated city water, adjusted to pH 7.5 

with NaHC03- and bubbled with oxygen. The fish was placed on a surgery table similar 

to that of Smith and Bell (1967) and the gills were continually irrigated with a more 

dilute anaesthetic solution (1 :30 000 MS-222 in water). The dorsal aorta was cannulated 

with polyethylene tubing (Clay-Adams PE-50; internal diameter = 0.580 mm; outer 

diameter = 0.965mm) according to Soivio et. al., (1975). In some instances further 

surgery was required which is described in the materials and methods section of the 

respective chapters. Following surgery, the fish was revived by irrigating the gills with 

aerated water and transferred to an opaque acrylic box, and left to recover for 24-48h. 

Cannulae were flushed daily with heparinized (10 i.u. mt·1 ammonium heparin; Sigma), 

teleost ringer solution (Wolf, 1963). 

Analytical procedures: 

Haematocrit was determined after centrifuging 60 Jtl of blood in heparinized 
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micro-haematocrit tubes at 12 000 rpm for 5 min. Blood Hb concentration was 

determined spectrophotometrically on 20 J.d of blood using a Sigma total haemoglobin 

(525-A) assay kit. The mean cellular [Hb] was calculated as ([Hb]/Hct)100. 

Methaemoglobin was determined on 50 J.Ll of blood using the method of Bartlett et. al. 

(1987) modified by Brauner et. al. (1993). Whole blood or plasma pH (pHe) and red cell 

pH (pH) were measured using a Radiometer micro-capillary pH electrode (G299A) using 

a Radiometer BMS3 Mk2 blood micro-system maintained at the temperature to which the 

fish was exposed. pHi was measured according to the freeze thaw method of Zeidler and 

Kim (1977). Blood Po2 was measured with a Radiometer Po2 (E-5046) electrode, 

thermostatted in a D616 cell, in conjunction with a Radiometer PHM 71 acid-base 

analyzer. 0 2 content of whole blood was measured according to Tucker (1967). Plasma 

and whole blood total C02 (Cco2) were measured on 50 J.Ll samples using a Corning 

model 965 C02 analyzer for data reported in chapters 2 and 4, or by using a gas 

chromatograph (Carle Instruments Inc., U.S.A., Model Ill), coupled to a chart recorder 

as described by Boutilier et. al. (1985). Plasma HC03- and Pco2 levels were calculated 

by re-arrangement of the Henderson-Hasselbalch equation: 

Plasma Cco2 

1) Plasma Pco2 = 
a C02 x [antilog (pHe-pK') + 1] 

2) Plasma [HC03-] = Plasma Cco2 - (a C02 x Pco2) 

where pK' is the apparent pK of plasma and a C02 is the solubility of C02 in plasma 
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taken from Boutilier et. al. (1984). The total C02 contained within the erythrocyte (Red 

cell Cco2) was calculated as: 

3) Red cell Cco2 = 

Whole blood Cco2 - (Plasma Cco2 x (1-Hct)) 

Hct 

The total red cell HC03- concentration was calculated assuming Pco2 was in 

equilibrium between the red cell and plasma, that the solubility of C02 in the erythrocyte 

was 0.86 of that in plasma (VanSlyke et. al., 1928), and that no carbamate existed 

bound to trout Hb (see general introduction for clarification). 

4) Red cell [HC03-] = Red cell Cco2 - Plasma Pco2 x 0.86 x ex C02 

Plasma [CI-] was measured on 10 JLl aliquots using a coulometric Haake Buchler 

Instruments HBI digital Chloridometer. Plasma adrenaline and noradrenaline levels were 

measured on alumina extracted samples using HPLC in conjunction with electrochemical 

detection according to the basic protocol of Woodward, (1982). 

Statistics: 

All data are presented as mean ± one standard error of the mean. The specific 

statistical tests used to analyze data are described within each chapter for clarity. 
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CHAPTER 1 : Blood gas disequilibria and C02 transport and excretion in vivo 
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INTRODUCTION 

C02 transport and excretion in fish follows the typical mammalian pattern. That 

is the majority of C02 is transported in the blood as HC03- but traverses the respiratory 

surface as molecular C02 (Perry et. al., 1982). The Hbs of teleost fishes probably do not 

form much carbamate (Farmer, 1979) and therefore carbamate plays a minor role in C02 

excretion in fishes. Thus, C02 which is excreted into the ventilatory water can exist in 

pre-branchial blood either as physically dissolved C02 (Pbco2) or HC03-. Unlike 

mammals; the respiratory surface in trout and other freshwater teleost fishes lack plasma 

accessible carbonic anhydrase (Henry et. al., 1988; Perry and Laurent, 1990) and 

therefore all HC03- dehydration at the catalyzed rate is restricted to the red cell during 

gill blood transit. The lack of plasma accessible CA and reduced dependence upon 

carbamate during C02 excretion will increase dependence upon HC03- dehydration and 

red cell HC03-/Cl- exchange during C02 excretion. 

Nearly all blood gas measurements are taken with all reactions in the blood at 

equilibrium. A steady state analysis of C02 transport and excretion is most simply 

conducted using equilibrium values for arterial and venous blood gases. However, if 

such an analysis is to be physiologically relevant, these values must be equivalent to 

those which exist in vivo. Recently, it has been demonstrated that blood pH and Pco2 do 

not reach equilibrium during blood flow through the gills, and it has been suggested that 

they may never reach equilibrium in vivo (Gilmour et. al., 1994). 

Following the rapid removal of physically dissolved C02 across the respiratory 
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epithelium, C02 excretion is achieved by dehydration of HC03- within the red cell at the 

catalyzed rate. Due to the large concentration of CA in the red cell, [C02], [HC03-] and 

pH are virtually at equilibrium during blood transit through the gills. As intracellular 

HC03- is depleted, HC03- enters the red cell from the plasma in exchange for Cl- but the 

pH in the plasma remains almost unchanged due to the lack of plasma accessible CA 

(Henry et. al., 1988; Perry and Laurent, 1990) and the slow rate of proton flux across 

the red cell (Forster and Steen, 1969) relative to the rate of blood transit through the 

gills. Thus, when the blood leaves the gills, plasma [HC03-] and [C02] have been 

reduced, but [H+] has not changed proportionately. Thus, HC03- dehydration continues 

in post-branchial blood, elevating both Pco2 and pH (Gilmour et. al., 1994). 

Exposure of fish to different environmental conditions such as hypoxia, hyperoxia 

and hypercapnia affects the respiratory status of the fish which in tum influences the 

magnitude of the disequilibria in post-branchial blood (Gilmour and Perry, 1994). The 

magnitude of the acid-base disequilibria in mixed-venous blood of trout has not been 

measured. 

The objective of this study was to conduct a quantitative, steady state analysis of 

the partitioning of C02 excretion in resting trout and determine whether the acid-base 

disequilibria measured in arterial and venous blood, was of sufficient magnitude to 

influence the values obtained. Fish were subjected to a variety of experimental conditions 

to influence the magnitude of the blood gas disequilibria, and an extra-corporeal 

circulation in conjunction with stop-flow (Gilmour et. al., 1994) was used to assess pre­

and post-branchial changes in Pco2, Po2 and pH. The partitioning of C02 excretion was 

18 



calculated according to equations 1 to 3 in the Appendix, using blood gas values from 

flowing blood and equilibrium values obtained following stop flow. 
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MATERIALS AND METHODS 

Experimental Animals: 

Rainbow trout (Oncorhynchus mykiss; 750-1000g) were obtained from Linwood 

Acres Trout Farm (Campbellcroft, Ontario) and transported to the University of Ottawa. 

Fish were acclimated to dechlorinated city water (10 °C) for at least 4 weeks prior to 

experiments. Trout were fed to satiation daily, but feeding was suspended 48 h prior to 

experimentation. A sub-group of rainbow trout was exposed to hyperoxia (Po2 = 330 ± 

12 (SEM) mmHg) for 2 weeks prior to experimentation, to elevate blood total C02 levels 

(Wood and Jackson, 1980). 

Surgery and Handling: 

Following cannulation of the dorsal aorta, a small incision (2-3 em) was made 

approximately 1 em posterior to the right pectoral fin. The coeliac artery was teased 

away from the gall bladder and cannulated (PE 50) in the ortho- and retrograde 

directions (Thomas and Le Ruz, 1982). The first or second afferent branchial vessel was 

cannulated (PE 50) using the waggle technique in which the catheter was slowly 

advanced into the vessel while simultaneously being moved to and fro. The tubing was 

then sutured in place, thereby obstructing blood flow through that gill arch. Following 

surgery, fish were revived by irrigating the gills with aerated water. Fish were then 

transferred to individual opaque acrylic boxes, and left to recover for 24-48h at the water 

oxygen tension to which the fish were acclimated (ie. normoxic or hyperoxic water). 
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Cannulae were flushed daily with heparinized (10 i.u. mi-1 ammonium heparin; Sigma), 

teleost ringer solution (Wolf, 1963). 

Extracorporeal circuit experimental procedure: 

The arterial extracorporeal circuit was established by pumping blood from the 

coeliac artery through a series of thermostatted cuvettes containing Po2, Pco2 and pH 

electrodes. Blood was pumped at a constant rate of 0.55 mi min-1 and returned into the 

coeliac artery, via the orthograde facing cannula. The total volume of the circuit was 1.3 

mi, comprising less than 5% of the total blood volume of the fish. To minimize chances 

of blood clotting, the circuit was rinsed with 10 mi of heparinized saline 

(1000 i.u. mi-1
) before initiating blood flow. 

Blood pressure was monitored continuously in the dorsal aorta as a viability index 

of the preparation. If large changes in blood pressure were observed the experiment was 

terminated. Output from the Po2 , Pco2 and pH electrodes was monitored until values 

stabilized and then all parameters were recorded (see figure 1.1). After a predetermined 

time period, the disequilibrium in arterial blood gases and pH was recorded by stopping 

the flow of blood for 8 min. Blood flow was then re-initiated and 200 JLl of blood was 

collected immediately to measure Hct, Hb, whole blood total C02 and oxygen content of 

arterial blood. Arterial blood gases and pH quickly stabilized at pre-stopflow values 

which were recorded for several minutes. The pump was briefly stopped and blood input 

to the circuit was changed from the afferent branchial artery to that from the coeliac 

artery (arterial blood) and the pump turned back on. This permitted rapid measurement 
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FIGURE 1.1: Schematic representation of the extracorporeal circuit preparation. Blood 

flow through the extracorporeal circuit was maintained by a peristaltic pump. Arterial 

blood was drawn from the coeliac artery and mixed-venous blood. was drawn from the 

afferent branchial artery. Only one blood source was sampled at a time. Regardless of 

the source, blood was returned into the coeliac artery, downstream from the arterial 

blood sampling site. The output from the blood and water electrodes and pressure 

transducer were recorded using a computerized data acquisition program. Pda: blood 

pressure in dorsal aorta, Pwo2 : water Po2 . (Figure modified from Gilmour et al., 

1994). 
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of arterial-venous differences in blood gases and pH in flowing blood. Following 

stabilization of these parameters, the disequilibrium in mixed venous blood was 

examined as described above and hlood was collected to measure Hct, Hb, whole blood 

total C02 and oxygen content of venous blood. The coeliac artery was connected back to 

the extracorporeal circuit to ensure that blood gas and pH values of aortic blood had not 

changed and the fish was in steady-state. In several instances, stop-flow was repeated 

yielding similar degrees of disequilibria in blood gases and pH. 

The Po2 of water flowing through the fish chamber was continuously monitored 

by siphoning a small volume of water across a Radiometer Po2 electrode. Following 

measurement of blood characteristics, the inflowing water to the opaque acrylic box was 

prevented and the water was slowly recirculated throughout the box with the aid of a 

pump. The decline in water Po2 (which never exceeded about 20 nunHg) was monitored 

for 20 min to calculate oxygen consumption rate. 

Experimental protocol: 

The extracorporeal circuit experimental procedure described above was conducted 

initially in normoxia and the procedure described above was repeated using the same fish 

exposed to mild hypoxia (water Po2 = 95 ± 12 nunHg) and then moderate hypoxia 

(water Po2 = 65 ± 5 nunHg). The transition to different levels of hypoxia was achieved 

by gradually reducing the water Po2 to the target value, over a 30 min period. The fish 

were left for a further 30 min period over which time blood Pco2, Po2 and pH stabilized. 

Some fish were acclimated to hyperoxia with the intention of inducing a respiratory 

24 



acidosis and elevating blood Cco2 levels. In the hyperoxia acclimated fish, the 

extracorporeal circuit procedure was conducted one hour following exposure to 

normoxic water (hyperoxia-normoxia). In all cases, the extracorporeal circuit procedure 

described above was not initiated until stable blood gas values were obtained. 

Analytical procedures: 

A Metrohm combination glass pH electrode (model 6.0204.100(0C)) in 

conjunction with a Radiometer PHM 73 was used to measure blood pH. Blood Po2 and 

Pco2 were measured with Radiometer Po2 (E-5046) and Pco2 (E-5036) electrodes 

connected to a Radiometer PHM 73 analyzer. All three electrodes were thermostatted in 

cuvettes at ambient water temperature. The pH electrode was calibrated with Radiometer 

precision buffer solutions and blood gas electrodes with water equilibrated with 

appropriate gas mixtures (supplied by Wosthoff pumps). 

Blood pressure was measured by connecting the dorsal aorta carmula to a pressure 

transducer (Bell and Howell, 4-327-1). Blood pressure was calibrated against a static 

column of water. Water Po2 was measured with a Radiometer E-5946 Po2 electrode in 

conjunction with a Radiometer PHM 72 Mk2 acid-base analyzer. Total C02 content of 

water was measured in quadruplicate using a Capnicon V C02 analyzer (Cameron 

Instruments). 

The analog outputs from the pH, Po2 and Pco2 electrodes as well as that from the 

pressure transducer were transformed by an analog -digital interface (DT280 1-DT707, 
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Data Translation Inc.). Data was acquired by customized software (written by P. 

Thoren: Goteborg, Sweden) and mean values for each variable were recorded at 5 s 

intervals. 

Calculations: 

Plasma [HC03·] in arterial and venous blood were calculated from equilibrium 

values for pHe and Pco2 (ie. measured following 8 min of stopflow in the extracorporeal 

circuit) by rearrangement of the Henderson-Hasselbalch equation and using the 

appropriate constants from Boutilier et. al. (1984). 

The proportion of total C02 excreted which was due to the movement of 

physically dissolved C02 in pre-branchial blood (Pbco2) was calculated according to 

equation lain the Appendix. To account for the influence on Pbco2 of blood-gas 

disequilibria which exists in arterial and mixed-venous blood in vivo, the calculation was 

conducted with three different values for Pvco2 and Paco2• The first Pco2 values used were 

at the end of the stop-flow period (8 min), the second were values measured in flowing 

blood in the extracorporeal circuit, and the third were estimated in vivo values. The in 

vivo values were estimated from a best fit regression to the arterial and venous blood 

stop-flow disequilibrium curve for each fish, extrapolated back to the time at which the 

blood left the fish. 

Statistics: 

Statitstically significant differences between treatment means were detected using 
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a repeated measures ANOVA, or Friedman repeated measures ANOVA on ranks, 

followed by a Dunnett's test. Comparisons between the hyperoxia-normoxia group and 

the normoxic controls were conducted using a students t-test. To determine whether the 

change in respiratory parameters during stopflow differed significantly from flowing 

blood, a students t-test was also employed. In all cases a probability level of 5% was 

chosen as the limit of statistical significance. 
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RESULTS 

Blood parameters and changes in blood Po2, Pco2 and pH during stop flow: 

Resting fish were exposed to different conditions to influence arterial and mixed­

venous blood-gas and pH levels with the objective of altering the magnitude of the 

change in these parameters during stop flow. The blood-gas status of arterial and mixed 

venous blood at the end of the stop flow period is presented in Table 1.1. In fish 

acclimated to hyperoxia and then subsequently exposed to normoxia (hyperoxia­

normoxia) there was a significant change in pH, Po2 , and Pco2 of arterial blood, and a 

significant change in pH and Pco2 of mixed venous blood, relative to fish exposed to 

normoxia. Exposure to mild and moderate hypoxia resulted in a significant change in Po2 

of arterial and mixed-venous blood relative to fish exposed to normoxia. 

Traces of the temporal changes in Po2 , Pco2 and pH during stop flow are 

presented tor absolute values in arterial blood (Fig. 1.2). Due to the large variability in 

the absolute values, the mean normalized changes in the respiratory parameters during 

stop flow are also presented (Fig. 1.3). Data were mean normalized by subtracting the 

absolute value for each parameter at initiation of stopflow, from all subsequent values 

obtained during stop flow. The temporal changes in absolute and mean normalized values 

for respiratory parameters in mixed-venous blood are presented in figures 1.4 and 1.5 

respectively. Traces for the other conditions to which fish were exposed are not shown, 

but a summary of the respiratory parameters prior to stop flow, and the magnitude to 
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N 
1.0 

TABLE 1.1: Equilibrium values of arterial and venous blood parameters following 8 min of stop flow during extracorporeal 
circulation. 

-- -··-·-

Condition Hcta pH a pHv Pao2 Pvo2 Paco2 PvC02 Plasma Plasma Ca-P2 
(mmHg) (mmHg) (mmHg) (mmHg) [HC03-la [HC03-lv 

Normoxia 27.8 7.84 7.83 78.4 24.4 2.71 3.28 7.07 8.74 1.62 
(3.6) (0.02) (0.02) (5.9) (2.1) (0.24) (0.21) (0.65) (0.69) (0.20) 
7 7 7 7 7 7 7 7 7 7 

Mild 28.4 7.89 7.85 32.4* 16.6* 2.55 3.59 7.42 9.81 1.91 
Hypoxia (2.6) (0.03) (0.03) (1.7) (1.1) (0.36) (0.42) (0.90) (1.01) (0.17) 

7 7 7 7 7 7 7 7 7 7 

Moderate 29.5 7.84 7.79 19.5* 11.8* 2.09 2.87 5.64 6.85 1.50 
Hypoxia (2.2) (0.05) (0.05) (1.2) (1.4) (0.19) (0.25) (0.75) (0.83) (0.20) 

6 6 6 6 6 6 6 6 6 6 

Hyperoxia- 29.6 7.67* 7.64* 45.2* 23.0 5.09* 6.43* 8.24 10.58 1.28 
Normoxia (3.7) (0.07) (0.07) (7.6) (5.4) (0.43) (0.84) (1.15) (1.38) (0.41) 

7 6 6 7 6 7 6 7 6 6 

Water Po2 was 155 ± 0.5 mmHg in normoxia, 95 ± 12 in moderate hypoxia, 65 ± 5 in moderate hypoxia, 163 ± 2 in 
hyperoxia-normoxia (fish initially exposed to hyperoxia but returned to normoxia). Values represent mean with s.e.m. in 
brackets and "n" beneath.* indicates statistically significant difference relative to normoxia. 



FIGURE 1.2: Arterial blood Po2 , Pco2 and pH during blood flow through the 

extracorporealloop, and during stopflow, in fish exposed to normoxia. Stop flow was 

initiated at 3 min and terminated at 11 min (indicated by the vertical dashed line). Error 

bars represent S.E.M. and are shown every 2 min for clarity. The trace represents the 

mean value for the respective parameter, recorded at 5 s intervals for seven fish (n=7). 
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FIGURE 1.3: Mean normalized values for arterial blood Po2, Pco2 and pH during blood 

flow through the extracorporealloop and during stopflow in fish exposed to normoxia. 

To normalize data, the absoute value for each parameter at initiation of stopflow was 

subtracted from all subsequent values obtained during stopflow. See legend for fig. 1. 2 

for further details. 

32 



NORMOXIC ARTERIAL BLOOD 

Cl 10 
~ 
N 

5 .......... -~ bD 
< ::c: 
~ s 0 
~ s 0 
z ..._ -5 

N z 0 

< 0... -10 
~ 
~ 

-15 

Cl 0.2 
t::;il 
N -.......... 0.1 ~ bD 

< ::c: 
~ s 
~ s 0.0 
0 I z ..._ 

z O...SN-0.1 ~ 
< 
~ 
~ -0.2 

Cl 
~ 0.04 
N 
.......... 
~ 

0.02 < 
~ Q) 

~ ::c: 
0 ~ 0.00 
z 
z -0.02 < 
~ 
~ -0.04 

0 3 6 9 12 

TIME (mins) 



FIGURE 1.4: Mixed-venous blood Po2 , Pco2 and pH during blood flow through the 

extracorporealloop and during stopflow in fish exposed to normoxia. See legend for fig. 

1.2 for further details. 
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FIGURE 1.5: Mean normalized values for mixed-venous blood Po2, Pco2 and pH during 

blood flow through the extracorporeal loop and during stopflow in. fish exposed to 

normoxia. See legends for figures 1.2 and 1.2 for further details. 
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which they changed during stop flow, are presented in tables 1.2 (arterial blood) and 1.3 

(mixed-venous blood). In almost all conditions, there was a significant change in Po2, 

Pco2 and pH during stopflow in both arterial and mixed-venous blood. The only 

parameter which changed during stop flow (.6) relative to that measured in normoxic 

fish, was Pco2. This was only observed in the hyperoxia-normoxia group. 

Partitioning of C02 excretion in vivo: 

The partitioning of C02 excretion was calculated according to equations 1 to 3 

(Appendix). C02 excretion was assumed to occur either by movement of physically 

dissolved C02 which existed in pre-branchial blood prior to gill blood transit (Pbco2), or 

by HC03- dehydration when the blood entered the gills (see discussion for assumptions). 

The contribution of Pbco2 to total C02 excretion was calculated using stop flow Pco2 

values (following 8 min of stop flow), values obtained just prior to stop flow (flowing 

blood), or using estimates of in vivo Pco2 values based upon the shape of the stop flow 

disequlibrium curve and the blood transit time from the gills to the Pco2 electrodes. 

These calculations were conducted for fish exposed to normoxia, mild hypoxia and 

moderate hypoxia and in fish acclimated to hyperoxia and subjected to normoxia 

(hyperoxia-normoxia). In all cases, there was no significant difference in the proportion 

of total C02 excreted which was dependent upon Pbco2, which was generally between 2 

and 3% (Table 1.4). The remaining C02 excreted was assumed to be either HC03- which 

resided within the red cell prior to gill entry or HC03- which entered the red cell via the 
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TABLE 1.2: Arterial blood parameters at the beginning of the stopflow period and the change (~) in the respective 
parameter following 8 min of stop flow. 

Condition Pao2 ~Pao2 P3C02 ~P3C02 pH a ~PH a 
(mmHg) (mmHg) 

Normoxia 85.3 -6.8+ 2.64 0.07+ 7.80 0.04+ 
(7.5) (2.5) (0.23) (0.02) (0.03) (0.01) 
7 7 7 7 7 7 

Mild 34.0* -1.7+ 2.45 0.10+ 7.83 0.05+ 
Hypoxia (1.7) (0.5) (0.36) (0.03) (0.03) (0.01) 

7 7 7 7 7 7 

Moderate 21.0* -1.5+ 1.91 0.18+ 7.78 0.06+ 
Hypoxia (1.0) (0.4) (0.16) (0.06) (0.06) (0.01) 

6 6 6 6 6 6 

Hyperoxia- 56.1* -10.8+ 3.95* 1.14*+ 7.55* 0.07+ 
Normoxia (7.7) (2.7) (0.39) (0.23) (0.07) (0.02) 

7 7 7 7 7 7 

See legend for Table 1.1 for details.+ indicates values differ significantly from zero. 
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TABLE 1.3: Venous blood parameters at the beginning of the stopflow period and the change(.::\) in the respective parameter 
following 8 min of stop flow. 

Condition Pvo2 L\Pvo2 Pvco2 L\Pvco2 pHv L\pHv 
(mmHg) (mmHg) 

Nonnoxia 25.5 -1.2+ 3.19 0.10+ 7.83 0.01 
(2.2) (0.6) (0.20) (0.04) (0.02) (0.01) 
7 7 7 7 7 7 

Mild 17.6* -1.0 3.43 0.16+ 7.83 0.02+ 
I Hypoxia (1.4) (0.8) (0.43) (0.05) (0.03) (0.01) 

! 
7 7 7 7 7 7 

Moderate 13.5* -1.7+ 2.58 0.28+ 7.75 0.04+ 
Hypoxia (1.2) (0.3) (0.22) (0.08) (0.05) (0.01) 

6 6 6 6 6 6 

Hyperoxia- 24.0 -1.0+ 5.17* 1.26*+ 7.59* 0.03+ 
Nonnoxia (5.3) (0.4) (0.50) (0.38) (0.07) (0.03) 

6 6 6 6 6 6 

See legend of Table 1.1 for details.+ indicates values differ significantly from zero. 
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TABLE 1.4: Percent of total C02 excreted in vivo, due to the movement of physically dissolved C02 in pre-branchial blood 
(Pbco2) in fish exposed to different treatments. 

Treatment 

Norrnoxia 

Hypoxia 
(mild) 

Hypoxia 
(moderate) 

Hyperoxia-
Norrnoxia 

Calculated % Pbco2 using arterial and venous Pco2 values obtained from: 

Estimated 
in vivo Pco2 

2.17 
(1.55) 

3.46 
( 1.24) 

3.21 
(1.04) 

8.14 
(6.35) 

Time 0 stop 
flow Pco2 

2.04 
(1.52) 

3.3 
( 1.16) 

3.03 
(0.97) 

8.08 
(5.67) 

Time 8 min 
stop flow Pco2 

2.10 
(1.67) 

3.50 
(1.21) 

3.57 
(1.05) 

12.0 
(10.9) 

%Pbco2 was calculated according to equation 1 in the Appendix. Different values for %Pbco2 within each treatment are based 
upon the different sources for arterial and venous blood Pco2 values indicated in the column head. Values represent mean ± 
(SEM), n=7 for normoxia and hypoxia (mild), and n=6 for remaining treatments. 



HC03-/Cl- exchanger_ Because there were no significant differences in the relative 

proportion in either pathway for HC03- between the treatments of normoxia, mild or 

moderate hypoxia, the values obtained were pooled. The majority of total C02 excreted 

involved HC03-JCI- exchange (59%) while 38% of the HC03- dehydrated consisted of 

HC03- which existed within the red cell in pre-branchial blood, prior to gill entry (Table 

1.5). 
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TABLE 1. 5: Partitioning of C02 excretion during blood passage through the gills in fish 
exposed to normoxia, mild hypoxia and moderate hypoxia. 

2.8 
(0.3) 

59.1 
(4.8) 

38.1 
(4.8) 

Values were pooled because no significant differences were observed between groups. 

Pbco2 refers to the excretion of C02 which existed as physically dissolved C02 in pre-

branchial blood, (calculated from the arterial-venous Pco2 difference and equation 1, 

Appendix). % HC03-/Cl- refers to the proportion of total C02 

excreted which involved HC03-tCI- exchange (equation 2, Appendix). % red cell HC03-

refers to the proportion of total C02 excreted due to dehydration of HC03- which 

resided within the red cell prior to gill entry (equation 3, Appendix). All values represent 

the mean for normoxia, mild and moderate hypoxia grouped together. n= 18. 
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DISCUSSION 

The experimental condition to which fish were exposed influenced the magnitude 

of the change in blood Pco2 during stop flow but did not influence the calculated 

proportion of total C02 excreted which was dependent upon physically dissolved C02 in 

pre-branchial blood (Pbco2). In fish exposed to normoxia and two levels of hypoxia, the 

contribution of Pbco2 to total C02 excreted was 3 % . The remaining C02 excreted was 

assumed to be a result of HC03- dehydration, where 59% of the C02 excreted was 

dependent upon HC03-/Cl- exchange and the remaining 38% was dependent upon HCQ3-

which existed within the red cell before blood entered the gills. 

When blood first enters the gills, any physically dissolved C02 existing in the 

pre-branchial blood will rapidly diffuse across the gills into the ventilatory water. The 

rapid removal of dissolved C02 in the blood will create conditions for HC03-

dehydration, resulting in continued C02 excretion during gill blood transit. 

For the intent of this anaysis, it was assumed that C02 excretion during blood transit 

through the gills was achieved either through the rapid movement of physically dissolved 

C02 which existed in pre-branchial blood (Pbco2) or by HC03- dehydrated to C02 

(HC03- - C02) within the red cell during gill blood transit. The relative role of each to 

C02 excretion in trout was calculated according to equations 1 to 3 in the Appendix. 

In fish exposed to different experimental conditions, the contribution of Pbco2 to 

total C02 excreted reached a maximum of 8% (Table 1.4) in fish acclimated to hyperoxia 

and returned to normoxia (hyperoxia-normoxia). The total contribution was between 2 
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and 4% in fish subjected to normoxia or 2 different levels of hypoxia but none of these 

values differed significantly from that calculated in normoxia. The role of Pbco2 to total 

C02 excreted was calculated according to equation 1 (appendix) where it was assumed 

that arterial and mixed-venous blood Pco2 values represent in vivo values. It is apparent 

that this was not the case (Tables 1.2 and 1.3; Gilmour et. al., 1994). The changes in 

Pco2 and pH in arterial blood during stopflow were significant and were similar in 

magnitude to that which has been observed by others in normoxia (Gilmour et. al., 

1994) and hypoxia (Gilmour and Perry, 1994). The change in pH during stopflow in 

mixed-venous blood was slightly lower than that measured in arterial blood, while the 

change in Pco2 was similar to that measured in arterial blood (Table 1.3). Changes in 

Pco2 and pH have not previously been measured in mixed venous blood of fish. 

Although the equilibrium values for Pco2 in arterial and mixed-venous blood do 

not represent in vivo values, they may represent in vivo arterial-venous differences 

because the magnitude of the change in Pco2 during stop flow is similar in arterial and 

mixed-venous blood in fish at rest. Indeed, the %Pbco2 calculated from Pco2 values 

measured before stop flow did not differ statistically from Pco2 values measured 8 min 

following stop flow (Table 1.4). Furthermore, extrapolation back to estimated in vivo 

Pco2 values did not significantly affect the calculation. Thus, in this study, accounting 

for the magnitude of acid-base disequililbria in arterial and mixed-venous blood did not 

result in a significant difference from a steady state analysis (using equilibrium values) of 

the proportion of total C02 excreted which was dependent upon Pbco2. 

The remaining C02 excreted during gill blood transit was assumed to be due to 
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HC03- dehydration confined to the red cell. This rationalization is based upon the lack of 

oxylabile carbamate formation in fish (Farmer, 1979; Heming, 1984), the lack of 

plasma accessible CA in the gills of fish (Perry and Laurent, 1990) and the slow 

uncatalyzed rate of HC03- dehydration in the plasma relative to gill blood transit time 

(Cameron and Polhemus, 1974). HC03- can exist within the red cell pre-branchially, or 

enter the red cell via HC03-/Cl- exchange during gill blood transit. The contribution of 

the latter to total C02 excretion can be calculated from the arterial-venous difference in 

plasma [HC03-] (see equation 2, Appendix). In fish exposed to normoxia and 2 levels of 

hypoxia, no significant difference was detected in the role of HC03-JC1- exchange to total 

C02 excreted and consequently, the values calculated for these treatments were pooled 

yeilding a mean value of 59.1 ± 4.8% (Table 1.5). 

The equation used to calculate HC03-JC1- exchange is based upon the assumption 

that the calculated equilibrium values for plasma [HC03-] are representative of in vivo 

values. Although this may not be entirely correct, the magnitude to which it will affect 

the calculation is minor. In arterial blood of resting normoxic fish, HC03-/Cl- exchange 

following gill blood transit is most likely complete (Gilmour et. al., 1994). The increase 

in C02 and pH during stop flow in both arterial and pre-branchial blood, indicated that 

HC03- was being dehydrated in the plasma. This resulted in a small reduction in [HC03-] 

at equilibrium in both arterial and pre-branchial blood relative to the situation in vivo. 

However, the changes in Pco2 , and therefore [HC03-] in arterial and pre-branchial blood 

were similar in both direction and magnitude, reducing the error associated with the 

violation of this assumption. 
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In conclusion, the acid-base disequilibrium which existed in both arterial and 

mixed-venous blood in resting fish did not significantly affect the calculation of the 

contribution of Pbco2 to C02 excretion. Of the total C02 excreted across the gills, Pbco2 

accounted for between 2 and 4% in fish exposed to normoxia and hypoxia, and about 8% 

in fish acclimated to hyperoxia and returned to normoxia (hyperoxia-normoxia). 

Approximately 60% of the total C02 excreted in resting rainbow trout in vivo was 

dependent upon HC03-/Cl- exchange across the erythrocyte membrane which is of 

significance to gas exchange because this is thought to be the rate limiting step in C02 

excretion (Perry et. al., 1982; Weith et. al., 1982; Perry, 1986). 
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SUMMARY 

1) The magnitude of the acid-base disequlibrium in arterial and venous blood of trout 

was significantly influenced by the condition to which fish were exposed. Incorporation 

of the changes in Pco2 during stop flow into an analysis of the partitioning of C02 

excretion, did not result in a significant difference from a similar analysis using 

equilibrium Pco2 values. 

2) In fish exposed to normoxia and two levels of hypoxia, Pbco2 comprised 3% of the 

C02 excreted. The remaining C02 excreted was assumed to be a result of HC03-

dehydration where about 60% of the total C02 excreted involved HC03-/Cl- exchange. 
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CHAPTER 2: The influence of 0 2 uptake on Bohr proton release and C02 excretion in 

vitro 
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INTRODUCTION 

Many teleost fishes possess haemoglobins with a large Haldane effect and low 

buffer capacity (Jensen, 1989). The large Haldane effect is important to C02 transport 

and excretion across the gills (Jensen, 1991). Recently, a radioisotopic assay has been 

used to quantify the contribution of the Haldane effect to C02 excretion in vitro (Perry 

and Gilmour, 1993; Perry et. al., 1994). The "boost" to C02 excretion associated with 

rapid oxygenation of deoxygenated blood was correlated with the magnitude of the 

Haldane effect exhibited in whole blood (Perry et. al., 1994). In rainbow trout, rapid 

oxygenation of the blood in vitro, provides a 40% "boost" to C02 excretion rate relative 

to that measured at constant oxygenation status (Perry and Gilmour, 1993). Venous 

blood never becomes completely deoxygenated in vivo and therefore arterial-venous 

differences in So2 of 100% will never be realized in living trout. In tench (Tinea tinea), 

the majority of Bohr protons are released between about 50 and 100% So2 (Jensen, 

1986), indicating that the entire Haldane effect may be exploited within the normal 

physiological range of arterial and venous So2 . It is not known if the same relationship 

exists in trout. The main objectives of this study were to examine the region of the Hb-

02 equilibrium curve over which Bohr protons were released and quantify the influence 

of Bohr proton release on C02 excretion rate, in vitro. Bohr proton release was 

quantified by measuring the changes in red cell pH of blood incubated at 0, 20, 60 and 

100% So2 and constant Pco2 • C02 excretion rates were measured in the presence and 

absence of rapid oxygenation, from initial levels of 0, 60 and 100% So2, using the in 

vitro assay of Wood and Perry (1991). 
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MATERIALS AND METHODS 

Experimental Animals: 

Rainbow trout (Oncorhynchus mykiss; 200-400g) were obtained from Linwood 

Acres Trout Farm (Campbellcroft, Ontario) and transported to the University of Ottawa. 

Fish were acclimated to dechlorinated city water (10 °C) for at least 4 weeks prior to 

experiments. Trout were fed to satiation daily, but feeding was withheld 48 h prior to 

experimentation. 

Blood sampling: 

Blood was withdrawn from the dorsal aorta and placed in a heparinized, round 

bottom glass flask kept on ice. Blood was pooled if the volume obtained from one fish 

was not sufficient for the entire experimental run (4.0 rnl of blood and 0.5 rnl of 

plasma). Blood was centrifuged (5900g at 4 °C) and haematocrit was adjusted to 25% by 

addition or withdrawal of separated plasma. Haemoglobin concentration was measured 

and recorded. 

C02 excretion assay: 

In vitro blood C02 excretion rates were measured using the radioisotopic assay of 

Wood and Perry ( 1991) as modified by Perry and Gilmour ( 1993) for flow through 

experiments. This assay measures the accumulation of [14C] labelled C02 , 2.5 min 
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following the addition of [14C]bicarbonate to incubated whole blood. Briefly, 0.5 ml of 

blood or plasma was placed in a 20 m.1 scintillation vial which was stoppered and 

equilibrated with the desired mixture of C02, 0 2 and N2 for 2 h, at 15 °C, in a shaker 

water bath. Following incubation, 74 kBq (10 J.d of 7400kBq m.l-1
) of sodium 

[
14C]bicarbonate (in teleost Ringer; Wolf, 1963) was added to the plasma or blood in the 

scintillation vial. The vial was immediately sealed with a rubber septum equipped with a 

plastic well containing filter paper (Whatman GF/A 2.4 em glass microfibre filter). 150 

J.Ll of hyamine hydroxide (a C02 absorbing solution) was injected through the septum into 

the filter paper and a second scintillation vial containing 1.5 ml of a C02 absorbing 

solution (Carbo-Trap 2;Baker) was placed in series with the first vial. The first vial was 

gassed with the desired mixture of 0 2 and N2 at a flow rate of 120 ml·min-1 resulting in 

an open system for the measurement of C02 evolution (Perry and Gilmour, 1993). The 

vials were placed back in the shaker for 2.5 min. Immediately thereafter, the carbo-trap 

solution and filter paper were removed and assayed for 14C activity, and whole blood and 

plasma total C02 content were measured. The C02 excretion rate for each assay vial was 

calculated by dividing the sum of the filter paper and carbo-trap 14C activity by the 

specific activity of plasma and time of the assay. 

Experimental protocol: 

The objective of this series was to examine the elevation in C02 excretion rate 

due to haemoglobin-oxygenation, at three different initial levels of So2 : 0, 60 and 100% . 

All measurements were obtained from each pool of blood (n= 1); 12 pools in total were 
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examined. Blood was equilibrated in 0.5 ml aliquots to one of three gas mixtures 

supplied by Wosthoff pumps: a deoxygenated mixture (0.4% C02 and 99.6% N2), a 

partially deoxygenated mixture (0.4% C02, 5.9% 0 2, and the remainder N2) which 

resulted in an So2 of about 60%, and an oxygenated mixture (0.4% C02 and 99.6% 0 2). 

Following the 2 h equilibration period, the following parameters were measured from 

blood equilibrated with each gas mixture: oxygen content, pHe, pHi and total C02 

content of both whole blood and plasma. C02 excretion rates were measured in blood 

equilibrated to each gas mixture with and without rapid oxygenation. One group of vials 

was gassed with the same Po2 to which the blood was incubated (deoxygenated, partial 

deoxygenated, and oxygenated), while the remaining vials (deoxygenated and partially 

deoxygenated blood) were oxygenated rapidly with 100% 0 2• In all cases, C02 was 

omitted from these gas mixtures supplying the vials resulting in a large Pco2 gradient for 

C02 removal, and gas flow rate was 120 ml·min-1 (Perry and Gilmour, 1993). 

Preliminary experiments revealed that during rapid oxygenation of the blood, Hb 

oxygenation was complete within 60 s of the beginning of the assay. In addition, the 

absolute "boost" to C02 excretion associated with rapid oxygenation was not increased 

with assay durations longer than 2.5 min. The C02 excretion rate in plasma was 

measured only in the high oxygen gas mixture (0.4% C02 and 99.6% 0 2) and served as 

a control to ensure that no red cell lysis had occurred during sampling and storage. 

In addition to the three gas mixtures to which blood was equilibrated for 2 h, one 

more group of vials of blood was equilibrated with a mixture of 0. 4% C02, 3. 8% 0 2, 

and the remainder N2. Following a 2 h incubation period, oxygen content, pHe, pHi and 
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total C02 content of whole blood and plasma were measured. These data were grouped 

with values measured in blood prior to the C02 excretion assay to derive the relationship 

between pHi and So2 at constant Pco2• 

Analytical procedures 

14C activity was measured by liquid scintillation counting (Packard TR 2500) 

automatically corrected for quenching. Plasma (50 ul) and filter paper 14C activity were 

counted in 10 ml of ACS II (Amersham), and Carbo-trap (1.5 ml) was counted in 18 ml 

of OCS II. 

Statistics: 

Statistical differences between C02 excretion rates at constant initial So2 were 

determined using a paired, students t-test. A level of 5% was chosen as the fiducial limit 

of statistical significance. Regression analysis was conducted by least squares regression. 
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RESULTS 

Following a 2h incubation period at constant Pco2 (0 .4%, 3. 0 mmHg), large 

differences in pHi were observed at the different oxygen levels. In completely 

oxygenated blood, pHi was 0.21 units lower than that in deoxygenated blood (Fig. 2.1) 

and the majority of the pHi change occurred when So2 was between approximately 60 

and 100%. Deoxygenated blood pHe was 7.86 ± 0.01 and was not significantly different 

at 60 or 100% So2. These data indicate that at constant Pco2 and pHe, the majority of 

Bohr protons were released in the upper region of the Hb-02 equilibrium curve ( 60-

100% So2). 

The in vitro C02 excretion rate of whole blood at constant Po2, was not affected 

by So2 (filled bars in figure 2.2) but increased significantly during rapid oxygenation of 

the blood (hatched bars in figure 2.2). The relative increase in C02 excretion rate 

following rapid oxygenation of the blood will be referred to as the "boost" to C02 

excretion from this point onwards. The boost to C02 excretion was 32% in blood which 

was initially completely deoxygenated, and 30% in blood which was initially partially 

oxygenated (60% So2). No significant difference in the boost to C02 excretion was 

detected between these incubation conditions. Thus, oxygenation of Hb between 60 and 

100% saturation resulted in the boost to C02 excretion, consistent with the range over 

which Bohr protons were released (Fig. 2.1). 
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FIGURE 2.1: Red cell pH (pH) as a function of % saturation of haemoglobin (Hb) in 

whole blood (Hct=25%) of rainbow trout, incubated at constant Pco2 • Data points 

represent individual measurements and are fit with a second order. regression (r=0.76). 
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FIGURE 2.2: Whole blood C02 excretion rate, in vitro, with and without rapid 

oxygenation of the blood. Rainbow trout blood was incubated at different initial % So2 

before the assay was conducted. Solid bars represent rates measured with no change in 

oxygen level during the assay, while cross hatches represent the boost associated with 

rapid oxygenation during assay conditions. * indicates statistically significant difference 

between solid and cross-hatch bars at respective initial % So2• (n= 12). 
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(Cameron and Polhemus, 1974). Under conditions where the lower reaches of the Hb-02 

equilibrium curve are utilized, such as during hypoxia and exercise, the magnitude of the 

Haldane effect which is exploited during gill blood transit will be reduced affecting C02 

excretion accordingly. 

In conclusion, whole blood in trout displays a non-linear release of Bohr protons 

over the Hb-02 equilibrium curve, where the majority of Bohr protons were released 

between 60 and 100% So2• Rapid oxygenation of the blood over this region of the Hb-02 

equilibrium curve elevated HC03- flux rate through the red cell by about 30% during 

C02 excretion in vitro. 
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SUMMARY 

1) The majority of Bohr protons were released from the blood of trout between 60 and 

100% of So2 in vitro. 

2) Rapid oxygenation of the blood elevated in vitro C02 excretion rates by 30% relative 

to conditions where Po2 was held constant. The boost in C02 excretion rate associated 

with rapid oxygenation of the blood occurred between 60 and 100% of So2 , consistent 

with the region over which the majority of Bohr protons were released. 
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CHAPTER 3: Gas transport and the interaction between 0 2 and C02 during graded 

sustained exercise. 
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PREFACE 

This chapter is adapted from a paper published by Brauner,CJ and Randall,DJ, 

1995. Comp. Biochem. Physiol. (In press) and a paper by Brauner,CJ, Thorarensen, TH, 

Gallaugher, P, Farrell, AP, and DJ Randall, 1994. In: High Performance Fish: 

Proceedings of an International Fish Physiology Symposium held at the University of 

British Columbia, Vancouver, Canada, July 16-21, 1994, pp.500-505. Some of the data 

were obtained in collaboration with P. Gallaugher and T.H. Thorarensen.All other 

aspects of collection of data and presentation of results were performed by myself. 

INTRODUCTION 

Exercise can be used as a tool to 1) examine the limitations to gas exchange by 

accelerating the rate at which the components of the respiratory system must function 

and 2) influence the region of the Hb-02 equilibrium curve used for gas transport. In fish 

swimming at maximal levels of exercise, oxygen consumption rate can increase by 12-20 

fold from resting levels (Brett, 1964; Brett and Glass, 1973; Puckett and Dill 1984). 

There are a suite of physiological adjustments during exercise which ensure oxygen 

delivery to the active tissues such as an increase in arterial-venous oxygen content 

difference (Kiceniuk and Jones, 1977) and an elevation in cardiac output, primarily due 

to an increase in stroke volume (Kiceniuk and Jones, 1977; Randall, 1982). Haematocrit 

and oxygen carrying capacity of the blood have been shown to increase at fatigue (Jones 
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and Randall, 1978; Thomas et. al., 1987) and there is evidence of a graded release of 

red cells from the spleen with increasing swimming velocity (Gallaugher et. al., 1992). 

The elevated capacity for gas transport in the blood is matched with adjustments 

at the gills. Kiceniuk and Jones (1977) measured an increase in the gill ventilation: 

perfusion ratio from 12 at rest to 32 during maximal exercise indicating that ventilation 

volume is elevated disproportionately relative to changes in cardiac output. The increase 

in ventral aortic pressure during swimming (Kiceniuk and Jones, 1977) elevates the 

proportion of secondary lamellae which are perfused (Randall and Daxboeck, 1984) and 

reduces epithelial thickness (Farrell et. al. , 1979; Randall and Daxboeck 1981; Randall 

and Daxboeck 1984) increasing the diffusing capacity of the gills .. Despite the increased 

blood volume of the gills, the elevation in cardiac output reduces blood transit time 

through the gills from 3s to 1s (Randall, 1982) limiting the time available for the 

processes involved in gas exchange. All of these modifications to the cardio-respiratory 

system are crucial for the maintenance of elevated gas flux across the gills. However, 

diffusing capacity of the gills is also dependent upon the reactions which occur within the 

red cell. 

Most of the studies to date examining exercise in fish, have concentrated 

specifically on oxygen transport. Respiratory exchange ratios (RE; C02 excretion rate/02 

consumption rate) have been measured during exercise in fish and they confirm that C02 

excretion rate is elevated in accordance with oxygen consumption rate (Kutty, 1968; Van 

de Thillart et. al., 1983). In general, however, there have been few reports of C02 

transport during sustained exercise in fish (Wood and Perry, 1985). The first objective of 
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this experiment was to conduct a quantitative analysis of C02 transport during different 

levels of sustained exercise in rainbow trout. 

With increased intensity of sustained exercise, there is a marked increase in the 

arterial-venous oxygen content difference of blood (Kiceniuk and Jones, 1977). Thus, the 

region of the Hb-02 equilibrium curve used for gas transport increases with exercise 

intensity. As demonstrated in vitro, the release of Bohr protons was non-linear with Hb 

oxygenation; the majority of Bohr protons being released between 60 and 100% 

saturation (Chapter 2). In addition, C02 excretion in vitro was strongly influenced by the 

release of Bohr protons during Hb oxygenation. Thus, the second objective of this 

experiment was to determine whether the Haldane effect varied over the region of the 

Hb-02 equilibrium curve used in vivo, and to evaluate its impact on the linkage between 

0 2 and C02 exchange at different levels of exercise intensity. 
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MATERIALS AND METHODS 

Experimental animals: 

Rainbow trout (Oncorhynchus mykiss, weight=649 ± 13g; length=36 ± 0.4cm) 

were purchased from a local supplier (West Creek Trout Ponds, Aldergrove, BC) and 

acclimated to sea water [29 parts per thousand (ppt), 9 °C] for at least one month prior 

to experiments. Fish were housed and experiments were conducted at the Department of 

Fisheries and Oceans, West Vancouver. Fish were fed to satiation bi-weekly and starved 

for 2 days prior to surgery. In all conditions, fish were maintained in 29 ppt sea water. 

Surgery and Handling: 

Fish were anaesthetized before surgery using tricaine methanesulphonate (MS-

222) dissolved in sea water and the dorsal aorta was cannulated as described in the 

general materials and methods. In some fish, the pre-branchial artery of the first gill arch 

was cannulated (PE-50) to sample mixed venous blood, in which case the entire 

cannulated gill arch was tied off to secure the tubing. Fish which had both the arterial 

and venous systems cannulated will be referred to as "Series I" and those with only the 

dorsal aorta cannulated will be referred to as "Series II". Following surgery, weight and 

fork length were recorded and the fish was left to recover for 24 to 48 h in a black 

perspex box and placed in a Brett -type swim tube respirometer the night before 

swimming experiments. During acclimation to the swim tunnel, water flow velocity was 

maintained at 11 crnls and water was continually replaced to prevent build up of 
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metabolic waste products. 

Experimental Procedure: 

Blood parameters were measured in rainbow trout at four swimming velocities: 

the velocity to which fish were acclimated over night, two intermediate swimming 

speeds, and finally, at the maximal critical swimming velocity (Ucrit). At the start of 

each swimming trial, the swim tunnel was sealed and the rate of oxygen depletion was 

recorded over a 10 minute period for calculation of oxygen consumption rate. Water Po2 

was recorded by computerized data acquisition described below. After recording these 

data, the blood was sampled. 

In Series I fish, 0.6 ml of blood was withdrawn from the dorsal aorta and pre­

branchial artery for measurement of Co2 and Po2, Cco2 of whole blood and plasma, pHe, 

pHi, Hct, [Hb], [MetHb] and plasma [CI-]. Plasma Pco2 and [HC03-] were calculated 

from plasma Cco2 and pH by re-arrangement of the Henderson-Hasselbalch equation as 

described in the General Materials and Methods section. There was a 5 min interval 

between sampling of arterial and mixed venous blood and the first source of blood 

sampled was chosen at random. Following blood removal, 1.2 ml of blood from a 

resting donor fish was injected into the swimming fish to restore blood volume to pre­

sample levels. In Series ll fish, the above procedure was conducted only on arterial 

blood but the remaining procedures were the same for both groups of fish. 

Upon completion of this procedure, water velocity was gradually elevated by 

0.66 body length per second (BI-s-1
) over a 10 min period. The fish were left at the new 
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velocity for 30 min before the sampling procedure described above was repeated. Thirty 

minutes is sufficient time for blood-gas and acid-base parameters to stabilize following a 

change in water velocity (Kiceniuk and Jones, 1977; Thomas et. al., 1987). The change 

in water velocity was increased by 0.66 Bl·s·1 increments followed by the sampling 

regime until the fish could no longer maintain the swimming velocity. This water 

velocity and time to fatigue were noted for the calculation of Ucrit as described by Brett, 

(1964) taking into consideration the solid blocking effects of the fish as described by Bell 

and Terhune (1970). The water velocity was then reduced to a level in which the fish 

could sustain swimming, and a final sampling procedure was conducted where an 

additional 200 1-'1 of blood was removed for measurement of catecholamines. 

Analytical techniques: 

Fish oxygen consumption rate was calculated from the change in the partial 

pressure of oxygen (Po2) in water over the duration that the respirometer was sealed, 

taking into account the solubility of 0 2 in sea water at 10 oc (Boutilier et. al., 1984) and 

the volume of the swim tunnel according to Kiceniuk and Jones (1977). Water Po2 was 

measured with Radiometer Po2 (E-5046) electrodes, thermostatted in D616 cells at the 

respirometer temperature, and displayed on a Radiometer PHM 71 acid-base analyzer. 

The electrode was calibrated with air saturated water daily and checked regularly. The 

analog output from the PHM 71 meter was sampled at 1 Hz by the analog-to-digital 

converter of the data acquisition card (DT 2801) installed in the computer. LABTECH 
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NOTEBOOK was used for data acquisition and the data was stored in a Lotus 123 file 

for future data analysis. 

Statistics: 

Statistically significant differences between mean values measured at different 

swimming velocities were detected using a repeated measures ANOV A , or Friedman 

repeated measures ANOVA on ranks, followed by a Dunnett's test. Comparisons 

between arterial and venous parameters were conducted using a paired t-test. In all cases 

a probability level of 5% was chosen as the limit of statistical significance. Regression 

coefficients were calculated using least squares regression. 
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RESULTS 

0 2 transport and uptake during exercise: 

Oxygen uptake increased approximately 5 fold over resting levels during 

sustained exercise (Table 3.1). Although Cao2 and Sao2 did not change significantly 

during exercise there was a marked reduction in P ao2 at greater swimming velocities 

(Table 3.2). In mixed-venous blood, Cvo2, Svo2 and Pvo2 decreased significantly during 

exercise and differed significantly from arterial values at all swimming velocities (Table 

3.2). The reduction in Pao2 and the increased arterial-venous difference in C02 content 

(Ca-vo2, Table 3 .2) resulted in a significant increase in the proportion of oxygen taken up 

across the gills which was transported away in the blood bound to Hb. In resting fish, 

91% of the 0 2 uptake across the gills was bound to Hb while this increased significantly 

to 97.5% at the maximum swimming velocity (Table 3.2). 

C02 transport and excretion during exercise: 

Arterial Pco2 and Cco2 levels increased significantly with swimming velocity 

(Table 3.3) while no significant changes were observed in arterial pH (Table 3.2). A 

pH/HC03- plot of these data reveal that the elevation in blood C02 levels was associated 

with net HC03- retention (Figure 3.1). In this group of fish (Series I), the first afferent 
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TABLE 3.1: Oxygen consumption rate and blood parameters during different levels of sustained exercise in rainbow trout 
(Series I). 

-- - ----- - --- -----

% Ucrit Velocity Mo2 Hcta Hctv [Hba] [Hbv1 Plasma [CI-] Adr Noradr 
(cms-1) (mg kg-1 h-1) (gdl-1) (gdl-1) (meq 1-1) (nM) (nM) 

15.8 9.2 49.3 23.8 23.4 8.5 8.6 155.8 - -
(1.7) (1.0) (4.0) (1.1) (1.3) (0.4) (0.5) (3.8) 
9 9 9 9 9 9 9 9 

55.4 32.1 94.2 24.4 24.1 8.8 8.6 154.2 - -

(1.5) (1.0) (12.9) (1.1) (1.3) (0.4) (0.4) (2.8) 
9 9 9 9 9 9 9 9 

90.9 53.1 218.0* 27.7* 28.0* 9.6 9.7 155.5 - -
(1.2) (1.1) (13.8) (0.9) (0.9) (0.4) (0.5) (2.8) 
8 8 8 8 Is .s 8 8 

98.8 57.1 229.2* 25.5 26.6 9.0 8.7 161.8 15.4 7.4 
(0.9) (1.1) (15.6) (0.8) (0.7) (0.5) (0.5) (3.1) (6.5) (3.1) 
9 9 9 9 9 9 9 9 6 6 

Where Adr is adrenaline, Noradr is noradrenaline. Plasma[CI-], Adr, Noradr, and Lactate levels were only measured in 
arterial blood. Values represent mean with s.e.m. in brackets and "n" beneath. * signifies statistically different from the 
lowest swimming velocity. 

Lactate 
(mM) 

0.31 
(0.04) 
8 

-

-

1.97* 
(0.29) 
8 
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TABLE 3.2: Blood pH and blood oxygen transport parameters in rainbow trout at different levels of sustained exercise 
(Series 1). 

% pHea pHev pHia pHiv Pao2 Pvo2 Cao2 Cp2 Sao2 Svo2 Ca-vOz 
Ucrit (mmHg) (mmHg) (mM) (mM) (mM) 

15.8 7.96 7.97 7.56 7.58 101.3 30.4 § 4.75 2.88 § 0.90 0.55 § 1.87 
(1.7) (0.01) (0.02) (0.01) (0.01) (8.7) (1.5) (0.21) (0.30) (0.05) (0.06) (0.2) 
9 9 9 6 6 9 9 9 9 9 9 9 

55.4 7.95 7.95 7.55 7.60 95.9 23.0 *§ 4.66 2.23 § 0.85 0.42 § 2.43 
(1.5) (0.01) (0.02) (0.01) (0.03) (7.6) (1.3) (0.29) (0.26) (0.05) (0.05) (0.24) 
9 9 9 6 5 9 9 9 9 9 9 9 

90.9 7.97 7.83 *§ 7.61 7.62 64.3 * 15.3 *§ 5.09 1.63 *§ 0.87 0.29 *§ 3.46 * 
(1.2) (0.02) (0.04) * (0.02) (7.5) (0.4) (0.21) (0.27) (0.06) (0.06) (0.21) 
8 8 8 (0.03) 5 8 8 8 8 8 8 8 

5 

98.8 7.94 7.79 *§ 7.63 7.64 49.8 * 13.1 *§ 4.55 1.06 *§ 0.83 0.20 *§ 3.49 * 
(0.9) (0.02) (0.03) * (0.01) (7.3) (0.7) (0.24) (0.15) (0.05) (0.03) (0.21) 
9 9 9 (0.01) 7 9 9 8 8 8 8 8 

7 

% 
Ca-P2 as 
Hb-02 

91.0 
(1.8) 
9 

93.5 
(0.9) 
9 

97.0 * ' 
(0.5) 
8 

97.5 * 
(0.5) 
8 

Where %Ca-vo2 as Hb-02 refers to the proportion of oxygen taken up across the gills, transported by Hb (ie. dissolved 0 2 
removed). Values represent mean values with s.e.m. in brackets and "n" beneath. * signifies statistically different from the 
lowest swimming velocity. § signifies statistically different from respective arterial value. 
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TABLE 3. 3: Blood C02 transport parameters and partitioning of C02 excretion in rainbow trout at different levels of 
sustained exercise (Series 1). 

% P3C02 P.co2 Plasma Plasma Red cell Red cell Ca-vCOz % % Hald. 
Ucrit (mmHg) (mmHg) [HC03-L [HC03·1. [HC031a [HCOd. (mM) Pbco2 HC03 coeff. 

-C02 

15.8 3.10 3.26 9.14 9.93 § 3.56 5.90 1.28 0.7 99.3 0.99 
(1.7) (0.19) (0.23) (0.44) (0.53) (0.63) (0.74) (0.14) (1.1) (1.1) (0.17) 
9 9 9 9 9 7 7 7 7 7 7 

55.4 3.40 3.87 9.72 11.09 § 3.87 6.14 1.67 2.0 98.0 0.67 
(1.5) (0.18) (0.34) (0.52) (0.64) (0.60) (0.72) (0.16) (0.8) (0.77) (0.08) 
9 9 9 9 9 8 8 8 8 8 7 

90.9 4.01 *§ 6.69 *§ 12.12. 13.85 *§ 5.79. 9.85 *§ 2.58. 6.5 • 93.5* 0.51 
(1.2) (0.27) (0.69) (0.49) (0.66) (0.76) (1.66) (0.15) (1.7) (1.69) (0.20) 
8 8 8 8 8 7 7 7 7 7 6 

98.8 4.85 *§ 8.39 *§ 13.63. 15.79 *§ 6.95. 8.78 2.47. 11.2. 88.8* 0.42* 
(0.9) (0.26) (0.54) (0.47) (0.57) (0.83) (0.61) (0.26) (2.0) (2.0) (0.13) 
9 9 9 9 9 7 7 7 7 7 5 

%MC02 

:M02 

115.9 
(17.2) 
7 

95.3 
(9.4) 
7 

53.2 * 
(19.2) 
6 

44.1 * 
(9.5) 
5 

Where % Pbco2 represents the proportion of C02 excreted due to dissolved C02 which existed in pre-branchial blood 
(equation 1 a, Appendix), % HC03--C02 refers to the proportion of C02 excreted due to HC03-dehydrated to C02 during 
gill blood transit (equation 1 b, Appendix). Hald. coeff. refers to the Haldane coefficient (moles of protons released per mole 
of 0 2 which binds to Hb) calculated over the region of the Hb-02 equilibrium curve used for gas exchange (equation 4, 
Appendix). %MC02:M02 refers to the maximum proportion of C02 excretion linked with 0 2 uptake via the Haldane effect 
(equation 5, Appendix). 
See Table 3.2 legend for further details. 



FIGURE 3.1: A pH/HC03- plot of changes in blood acid-base status of rainbow trout 

during different levels of sustained exercise (Series 1). The data points represent mean 

values (error bars represent S.E.M.) for arterial pHe and plasma [HCQ3-] from fish 

swimming at different velocities (16 (A), 55 (B), 91 (C) and 99 (D) % of Ucrit, Tables 

3. 2 and 3. 3). The buffer line (dotted line) was calculated from the regression equation 

for Pas a function of [Hb] derived by Wood et. al. (1982) and a Hb concentration of 8.5 

g·dl-1 (the value measured at the lowest swimming velocity (16% Ucrit, Table 3.1). 
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branchial artery was tied off; however the same trends in dorsal aortic blood C02 were 

observed in fish which did not have the afferent branchial artery cannulated (Series II, 

Table 3.4, Figure 3.2). There was a significant relationship between arterial Po2 and 

arterial C02 levels during exercise. The lower the Pao2, the greater the Paco2 and Cco2 

levels in arterial blood (Fig. 3.3). 

In mixed-venous blood, the increase in total blood C02 and Pco2 during exercise 

was more pronounced than that in arterial blood (Table 3.3). Thus, with an increase in 

exercise intensity, there was an increased arterial-venous difference in Pco2 and total 

blood C02 (Table 3.3). The arterial-venous difference in Pco2 was used to calculate the 

proportion of C02 excreted which did not depend on HC03- dehydration within the red 

cell during blood transit through the gills (see Appendix, equation 1 and discussion for 

elaboration). The increased arterial-venous Pco2 difference, led to a significant increase 

in the contribution of physically dissolved C02 in pre-branchial blood to total C02 

excretion (Table 3.5). The remaining C02 excreted was assumed to be due to HC03-

dehydration within the red cell (see discussion for elaboration) which decreased 

significantly from 99.4% at rest to 91% at the maximum swimming velocity. The 

proportion of total C02 excreted which involved HC03-/Cl- exchange across the red cell 

did not change significantly during exercise and a mean value of 62% was calculated for 

all swimming velocities (Table 3.5). 

The partitioning of C02 transport between the plasma and red cells did not 

change significantly during exercise in arterial or venous blood. Consequently, the 

values calculated at different levels of exercise intensity were pooled. The proportion of 
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TABLE 3.4: Oxygen consumption rate and arterial blood parameters during sustained exercise in rainbow trout without the 
afferent branchial artery cannulated (Series II). 

.% Velocity Mo2 Hcta Hb Plasma pH. pH; Po2 Cao2 P.co2 Plasma 
Ucrit (ems-') (g dt-1) [Ct-] (mmHg) (mM) (mmHg) [HC03-1 

118.4 11.0 58.4 29.4 10.2 166 7.97 7.54 102.0 5.98 2.54 9.6 
(1.0) (0.4) (12.3) (1.1) (0.8) (11.2) (0.03) (0.03) (8.6) (0.57) (0.20) (0.9) 
7 7 7 7 7 4 7 4 7 7 5 5 

63.8 36.7 85.8 29.2 10.5 166 7.95 7.56 87.0 6.19 2.78 10.3 
(6.1) (2.4) (12.4) (0.9) (0.6) (10.3) (0.02) (0.03) (12.3) (0.32) (0.17) (1.0) 
7 7 7 7 7 5 7 5 7 7 5 5 

81.3 50.7 179.0* 28.8 9.9 147 7.95 7.49 77.8 5.3 3.12. 10.8 
(4.5) (2.6) (18.2) (1.3) (0.4) (3.9) (0.01) (0.02) (4.0) (0.38) (0.15) (0.6) 
9 9 9 7 8 7 9 7 9 9 7 7 

95.2 60.9 249.0. 27.4 9.5 149 7.94 7.51 55.0. 5.51 3.44 * 11.2 
(1.4) (1.0) (24.5) (1.8) (0.2) (3.8) (0.02) (0.02) (4.5) (0.38) (0.05) (0.6) 
7 7 7 4 7 5 7 5 7 7 5 5 

Where Mo2 is measured in mg kg-'h-1. See Table 3.2 legend for further details. 

I 

I 



FIGURE 3.2: A pH/HC03- plot of changes in blood acid-base status of rainbow trout 

during different levels of sustained exercise (Series II). See legend for figure 3 .1 for 

further details. 
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FIGURE 3.3: The relationship between venous-arterial ~PHe and arterial-venous 0 2 

content (Ca-vo2) in rainbow trout during different levels of sustained exercise (Series 1). 

Cross-hatches at the top of the figure indicate the region of net acidosis in the blood 

following blood transit through the gills. Data points represent individual measurements 

(r =0.66). Note that low Ca_vo2 values indicate high venous 0 2 content and low 

swimming velocity, while high values indicate the reverse. 
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TABLE 3. 5: Respiratory exchange ratios and partitioning of C02 transport and excretion during exercise in rainbow trout 
(Series 1). 

---- -----

RE RE' %Cco2a in %Cco2v in %Cco(f in %Ccofr in % HC03- % red cell 
plasma plasma red ce s red ce s /Cl· HC03-

0.76 0.78 86.7 82.7 § 13.3 17.3 § 62.0 33.1 
(0.04) (0.04) (0.9) (1.2) (0.9) (1.2) (8.3) (8.3) 
28 25 29 29 29 29 29 29 

Where RE is the respiratory exchange ration andRE' is a modified respiratory exchange ratio (equation 4 in Appendix). 
%Cco23 in plasma, refers to the proportion of the total C02 in arterial blood transported in the plasma. % HC03-/Cl- refers to 
the proportion of total C02 excreted which involved HC03-/Cl· exchange (equation 2, Appendix). % red cell HC03- refers to 
the proportion of total C02 excreted due to dehydration of HC03- which resided within the red cell prior to gill entry 
(equation 3, Appendix). All values are the mean for all swimming velocities grouped together. 



total C02 carried in red cells of venous blood was significantly greater than that in 

arterial blood while the reverse was observed for C02 in the plasma compartment (Table 

3.5). 

Respiratory exchange ratios: 

The respiratory exchange ratio in rainbow trout was not significantly different 

among swimming velocities. Consequently values at all exercise intensities were pooled 

to yield a value of0.76 (Table 3.5). A modified respiratory exchange ratio (RE') was 

calculated by dividing the amount of HC03- dehydrated to C02 by the amount of oxygen 

which bound to Hb during gas exchange across the gills (see Appendix, equation 4). 

Again no significant differences were observed among swimming velocities and the data 

were pooled to yield an RE' of0.78 (Table 3.5). 

Blood pH and haematological parameters during exercise: 

While arterial blood pH remained constant during exercise, venous pHe was 

significantly reduced at the two highest swimming velocities, resulting in a significant 

arterial-venous difference in pHe (Table 3.2). Red cell pH increased significantly in 

arterial blood during exercise but there were no significant differences between arterial 

and venous pHi (Table 3.2). The venous-arterial pHe difference was regressed against the 

arterial-venous difference blood 0 2 content measured in fish at different levels of 
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sustained exercise (Fig. 3.3). When Ca_vo2 was low, venous-arterial pHe was positive in 

many fish, indicating that arterial pHe was more acidic than venous pHe. As Ca_vo2 

increased, arterial pHe became increasingly more alkaline relative to venous blood. 

There was no significant difference in Hct between arterial and venous blood; 

however, both increased significantly during exercise (Table 3.2). No significant changes 

in MCHC or plasma [Ct-] were observed in this study. Methaemoglobin levels were low 

( 1. 5 ± 0. 24%) under all conditions and did not change significantly during exercise. 

Plasma adrenaline and noradrenaline concentrations were only measured in arterial blood 

at Ucrit and were 15.4 ± 6.5 and 7.4 ± 3.1 nM, respectively. 

Haldane coefficient: 

Haldane coefficients (moles of protons released per mole of 0 2 which binds to 

Hb) were calculated from in vivo data according to equation 5 in the Appendix. The 

Haldane coefficient was determined over the region of the Hb-02 equilibrium curve used 

for gas exchange by the fish during exercise. The Haldane coefficient was 0.96 in slowly 

swimming fish, and decreased significantly with exercise as the arterial-venous So2 

difference increased (Table 3.3). The lowest value of 0.42 was obtained in fish 

swimming at Ucrit. The ratio of protons released during oxygenation at the gills to total 

C02 excreted across the gills (equation 6 in the Appendix) indicates that at the lowest 

swimming velocity all of the C02 excreted may have been linked with oxygenation of the 

Hb but this decreased to 44% at maximal swimming velocity. 
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FIGURE 3.4: The relationship between arterial blood Po2 and a) arterial total C02 

content and b) arterial blood Pco2 in rainbow trout during different levels of sustained 

exercise (Series I). The regression equations are a) Y=14.22-0.057X, r = 0.71 and b) 

Y=5.736-0.02432X, r = 0.65. Data points represent individual measurements. 
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DISCUSSION 

Although the oxygen transport capacity during sustained exercise in fish has been 

investigated in detail (Kiceniuk and Jones, 1977; Primmett et. al., 1986}, relatively little 

is known about C02 transport during exercise. As the sustained swimming velocity in 

rainbow trout was increased, there was a graded increase in both Cco2 and Pco2 of 

arterial and venous blood (Tables 3.3 and 3.5 and Figs. 3.1 and 3.2). Of the total C02 

excreted across the gills, approximately 62% involved HC03·fcl· exchange across the 

red cell prior to dehydration to C02 • This value did not change significantly with 

exercise intensity (Table 3. 5). A Haldane coefficient calculated from data obtained in 

vivo, indicated that the release of Bohr protons was greatest in the upper region of the 

Hb-02 equilibrium curve. The Haldane coefficient decreased as the arterial-venous 

difference in blood gas content increased during exercise (Table 3.3). The non-linear 

release of Bohr protons over the region of the Hb-02 equilibrium curve affects C02 

elimination at the gills and uptake from the tissues. 

0 2 and C02 transport during exercise: 

In general, the physiological adjustments to exercise in rainbow trout were 

sufficient to maintain conditions for oxygen uptake and delivery, as was observed by 

Kiceniuk and Jones ( 1977) and no significant changes in Cao2 were observed at any 

swimming velocity (Tables 3.2 and 3.4). Metabolic rate was elevated nearly five fold 
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between low and maximal swimming velocity (Tables 3.1 and 3.4), consistent with the 

data reported by Stevens and Randall (1967), but slightly less than that observed by 

Kiceniuk and Jones (1977). In contrast to the fmdings of Kiceniuk and Jones (1977) and 

Stevens and Randall (1967), there was a significant and pronounced reduction in arterial 

Po2 at the higher swimming velocities in fish from Series I (Table 3.2) and Series II 

(Table 3.4), indicating that there may have been a diffusion limitation for oxygen uptake. 

A large reduction in Po2 has been observed by other investigators during sustained 

exercise in trout (Thomas et. al., 1987; Gallaugher et. al., 1992). The maintenance of 

Cao2 despite the large reduction in Po2 was partly achieved through a significant increase 

in Hct (Table 3 .1). The increase in Hct may have been mediated in part through the 

graded release of red cells from the spleen (Yamamoto et. al., 1980; Gallaugher et. al., 

1992) and an elevation in circulating levels of catecholamines (Nilsson and Grove, 

197 4). Catecholamine concentrations were only measured in fish near Ucrit (Table 3 .1) 

but these values were elevated relative to those measured by others in resting fish (Perry 

and Reid, 1992) and similar to those measured in fish during maximal exercise (Ristori 

and Laurent, 1985; Gallaugher et. al., 1992). In many teleost fishes, catecholamines 

activate the Na+JH+ exchanger on the red cell which subsequently elevates red cell pH 

(Baroin et. al., 1984; Cossins and Richardson, 1985; Primmett et. al., 1986, and see 

Nikinmaa, 1990 for a review). The significant increase in red cell pH at swimming 

speeds above 90% Ucrit may have been adrenergically mediated influencing 0 2 binding 

to Hb through the Bohr and Root effects. Interestingly, the characteristic decrease in 

MCHC associated with adrenergic stimulation of red cells (Nikirunaa, 1990) was not 
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observed in this study. 

The absence of a metabolic acidosis (Table 3.2) and the relatively low levels of 

lactate in the plasma near Ucrit (Table 3.1) indicate that metabolism was predominantly 

aerobic during exercise in this study. Although only minor changes with respect to 0 2 

transport in fish were observed in this study, large changes in C02 transport were 

observed. Blood Pco2 and Cco2 levels increased in arterial blood of trout during exercise 

indicating that C02 released from the tissues was not matched by C02 removal at the 

gills (Tables 3.2 and 3.4). In fact, plasma HC03- levels increased during exercise by as 

much as 50% at the maximum swimming velocity (Table 3.3) in fish which had one 

afferent branchial artery tied off (Series 1). This increase was larger than that observed in 

Series II indicating that there was an effect on C02 transport resulting from eliminating 

blood flow through one of the gill arches. Interestingly, the elevation in blood Pco2 and 

total C02 did not result in an acidosis in arterial blood (Figures 3.1 and 3.2). This could 

be achieved either through acid excretion (coupled with HC03- retention) at the level of 

the gills or kidney, or through HC03- uptake across the gills. 

Partitioning of C02 excretion during exercise: 

For the intent of this analysis, it was assumed that C02 excretion during blood 

transit through the gills was achieved either through the rapid movement of physically 

dissolved C02 which existed in pre-branchial blood (Pbco2) or by HC03- dehydrated to 

C02 (HCQ3- - C02) within the red cell during gill blood transit (see discussion of 
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chapter 1 for an elaboration). The relative role of each to C02 excretion in trout was 

calculated according to equations 1 to 3 in the Appendix. 

In fish swimming at 16% Ucrit, the arterial-venous difference in Pco2 was very 

small and the contribution of Pbco2 to total C02 excretion was negligible (Table 3.3). 

However, as exercise intensity was increased, this route for C02 excretion reached a 

maximum of 11%, comparable to that in resting humans (Comroe, 1974). These 

calculations are based upon Pco2 values measured in blood at equilibrium where it is 

assumed that these parameters are at equilibrium in the fish. In actuality, equilibrium 

conditions may never be achieved in vivo (Chapter 1, Gilmour et. al. , 1994). The 

absence of plasma accessible CA in the gills of fresh water teleost fishes gives rise to a 

post branchial blood disequilibrium. As blood flows away from the gills, arterial blood 

pH slowly increases as the plasma HC03- is titrated to C02 at the uncatalyzed rate, 

resulting in an elevation in plasma Pco2 • In mixed venous blood (from the afferent 

branchial artery) pH and Pco2 also increase during stop flow (chapter 1). The elevation 

in Pco2 during stopflow in arterial and mixed venous blood in trout are approximately 

equal in resting fish exposed to normoxia and different levels of hypoxia (chapter 1). 

Although the absolute Pco2 values reported in Table 3.3 do not likely represent in vivo 

values, the arterial-venous Pco2 difference in vivo and at equilibrium may be similar. 

Thus, the role of Pbco2 to total C02 excretion described above may be accurate, at least 

at the lower swimming velocities. The magnitude of the disequilibria in arterial and 

mixed-venous blood in exercising fishes has not been measured and the degree to which 

the disequilibria will affect the above calculations are unknown. 
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As described above it was assumed that all remaining C02 excreted consisted of 

HC03- dehydrated to C02 (HC03- ~ C02) within the red cell during gill blood transit. 

HC03- dehydration comprised about 99% of total C02 excretion in resting fish and 

reached a minimum of 89% of the total C02 excreted at the maximal swimming velocity. 

Some HC03- resided within the red cell before the blood entered the gills, while the 

remainder traversed the red cell via the HC03-/Cl- exchanger. No significant differences 

were observed in the relative proportion of either pathway during exercise, resulting in 

62% of the total C02 excreted being dependent upon HC03-/Cl- exchange. This value is 

in close agreement with that obtained in resting fish exposed to normoxia and 2 levels of 

hypoxia (Chapter 1). This is of significance to C02 transport in fish because HC03- entry 

into the red cell by way of HC03-/Cl- exchange is thought to be the rate limiting step in 

C02 excretion (Perry et. al., 1982). 

In resting fish, HC03-/Cl- exchange is thought to be complete during C02 

excretion across the gills (Gilmour et. al., 1994). During exercise when the residence 

time of red cells in the gill lamellae are greatly reduced, HC03-/Cl- exchange may not be 

complete in post-branchial blood and this could result in an overestimation of HC03-/Cl­

exchange during C02 excretion according to these equations. 

C02 partitioning between plasma and red cells during exercise: 

The majority of C02 transported in the blood was carried within the plasma 

compartment with 13 and 17% transported by the red cells in arterial and venous blood 
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respectively (Table 3.5). These values are consistent with those measured by Heming 

(1984). No significant changes were observed during exercise (Table 3.5). In resting 

fish, Currie and Tufts (1993) measured 2% of Cco2 in the erythrocytes in arterial blood 

and 9% in venous blood. Following exhaustive exercise, this increased significantly to 

13.5 and 20% in arterial and venous blood, respectively (Currie and Tufts, 1993). They 

attributed the increased proportion of C02 within the red cells to the increase in Hct and 

the effects of catecholamines on red cell pH and the subsequent distribution of C02 

between the red cells and the plasma. The changes in both red cell and plasma pH during 

sustained exercise in this study were small in comparison with those of Currie and Tufts 

(1993). Although, the proportion of C02 transported within the red cells did not change, · 

the absolute total C02 levels increased significantly during exercise (Table 3 .3). This 

resulted in a constant proportion of total C02 excreted due to HC03• which resided 

within the red cell prior to gill entry and that dependent upon HC03-/Cl· exchange (Table 

3.5). 

Interaction between 0 2 and C02 exchange during exercise: 

Catalyzed HC03· dehydration must occur within the red cell during blood transit 

through the gills. Bicarbonate dehydration consumes a proton and thus C02 excretion 

will be dependent upon both HC03· and proton availability within the red cell. The half 

time for proton flux across the red cells of eel at 24 oc is about 10 s, considerably 

slower than the 0.5 to 2.5 s transit time of red cells through the gills of fish (Cameron 
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and Polhemus, 1974). Protons can be supplied within the red cell either by the Hb buffer 

capacity or via the release of Bohr protons during Hb oxygenation. The Hb of rainbow 

trout possess a low buffer capacity but a large Haldane effect relative to air breathing 

vertebrates (Jensen, 1989) and therefore, C02 excretion at the gills in trout is dependent 

upon the protons released by Hb oxygenation, and therefore, oxygen uptake. 

The modified respiratory exchange ratio (RE') relates the quantity of HCQ3-

dehydrated to C02 relative to the amount of oxygen which bound to Hb during gill blood 

transit. A mean value of 0. 78 was derived for all swimming speeds combined (Table 

3.5). This value is a ratio of proton consuming and potential proton donating reactions. 

That is, if 0. 78 protons were released per mole of oxygen bound to Hb over the entire 

range of arterial-venous Hb oxygen saturations used in vivo, there would be no net 

arterial-venous difference in blood pH during gas exchange. It is apparent; however, that 

this was not the case (Fig. 3.3) and there were arterial-venous differences in blood pH. 

The changes in arterial-venous difference in blood oxygen content (Ca-vo2) during 

exercise were predominantly due to changes in venous 0 2 content because at all 

swimming velocities there were no significant changes in Cao2 (Table 3.2). In addition, 

there were no statistically significant differences in red cell pH between arterial and 

venous blood (Table 3 .2) and consequently, changes in blood pH during gill transit 

reflect net proton difference between production, due to Hb oxygenation, and removal, 

due to HC03- dehydration. When the arterial-venous difference in oxygen content was 

low, corresponding to a low swimming velocity, there was a net acidosis during gill 

blood transit, indicating that more protons were released during oxygenation of the Hb 
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than were consumed during HC03- dehydration. With an increase in Ca-vo2 due to 

increased exercise intensity the opposite was observed. Given that REdid not change 

significantly during exercise, these data indicate a non-linear release of Bohr protons 

over the Hb-02 equilibrium curve in vivo_ This is consistent with those data obtained in 

vitro (chapter 2). 

In order to interpret the data more quantitatively a Haldane coefficient was 

derived from the in vivo arterial-venous differences in plasma and red cell [HC03·], pH, 

0 2 content and Po2 taking into account [Hb], Hct, and non-bicarbonate buffering capacity 

of the blood (see Appendix, equation 4). The analysis reveals that the derived Haldane 

coefficient was significantly lower in fish swimming at Ucrit, where large regions of the 

Hb-02 equilibrium curve were utilized, than in fish swimming at the lowest velocity 

(Table 3.3). Thus, the release of Bohr protons is non-linear over the region of the Hb-02 

equilibrium curve used in vivo, consistent with the data obtained in vitro (chapter 2), and 

the majority of the Haldane effect may be exploited under routine conditions. 

The calculation used to derive the Haldane coefficient is based upon a number of 

assumptions, some of which are described here and others in the Appendix (equation 4). 

The first assumption is that there was no H+ excretion or HC03- uptake across the gills, 

independent of C02 excretion during exercise. From figure 1, it is apparent that during 

exercise there was a net H+extrusion or HC03- uptake which could have occurred at the 

level of the kidney or the gills. If this compensation occurred at the gills, the result 

would be an underestimation of the Haldane coefficient; however, the magnitude of this 

error would be minor. 
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In addition, it was assumed that there was no influence of Hb oxygenation status 

on whole blood buffer capacity. Although oxygenation status influences the buffer 

capacity of whole blood in vitro (Albers et. al., 1983), the difference in buffer capacity 

between oxygenated and deoxygenated blood in rainbow trout is small (Eddy, 1974). 

The magnitude to which the estimate of the Haldane coefficients in this study were 

influenced by violation of these assumptions is probably minor. 

Significance of disproportionate release of Bohr protons to C02 transport and excretion 

during exercise: 

When blood first enters the gills any dissolved C02 in the blood will rapidly 

diffuse out into the ventilatory water. At the same time 0 2 will diffuse into the red cell 

and bind to Hb. The rapid reduction in dissolved C02 in the blood will create conditions 

for HC03- dehydration in the red cell, depleting both HC03• and protons. The rate of 

C02 excretion will then be determined by the rate at which HC03· and protons can be 

replenished (Perry and Gilmour, 1993). HC03· enters the red cell in exchange for 

chloride by the HC03-/Cl· exchanger in the band 3 protein on the red cell membrane. 

This is thought to be the rate limiting step in C02 excretion (Cameron and Polhemus, 

1974; Perry et. al., 1982; Perry, 1986; Jensen and Brahm, 1995). 

The HC03· gradient across the red cell is determined by the difference in pH 

between the plasma and the red cell. Consequently, HC03• flux across the red cell, and 

therefore C02 excretion, will be influenced by the release of Bohr protons during Hb 
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oxygenation (Figure 1). Rapid oxygenation of Hb in vitro elevates C02 excretion rates 

over the region of the Hb-02 equilibrium curve that Bohr protons are released (Chapter 

2). In addition, a relationship exists between the oxygenation induced boost in C02 

excretion rate, measured in vitro, and the magnitude of the Haldane effect in four species 

of fishes (Perry et. al., 1995). 

In exercising fish, the disproportionate release of Bohr protons during Hb 

oxygenation will influence C02 excretion across the gills depending upon the region of 

the Hb-02 equilibrium curve used for gas exchange. At low swimming velocities, Cvo2 

was high resulting in a relatively large Bohr proton release relative to 0 2 bound to Hb. 

These conditions favoured HC03- flux across the red cell and C02 excretion and the ratio 

between Bohr protons released during Hb oxygenation and C02 excreted across the gills 

was greater than 100% (Table 3. 5), indicating that more protons were released during 

oxygenation of the blood than C02 was excreted. Thus, stoichiometrically all C02 

excretion was linked with 0 2 uptake. 

As swimming velocity was increased, Cvo2 was reduced and relatively fewer Bohr 

protons were released during oxygenation of the blood. Thus HC03- dehydration during 

C02 excretion at the gills resulted in titration of protons from the weakly buffered Hb 

within the red cell which elevated red cell pH which reduced the pH and HC03- gradient 

across the red cell, affecting C02 excretion accordingly. This continued until the Hb 

reached approximately 50% saturation, following which Hb oxygenation was associated 

with Bohr proton release. At Ucrit, the ratio between Bohr proton release and Hb 

oxygenation was reduced to 46%. Thus, stoichiometrically, less than 50% of C02 
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excretion was linked with 0 2 uptake. This likely contributed to the increase in total C02 

levels in the blood during moderate and maximal levels of sustained exercise, altering the 

pattern of C02 excretion at the gills. 

At higher swimming velocities, there appeared to be a diffusion limitation to 0 2 

uptake as indicated by the low arterial Po2 • Any limitation to 0 2 uptake will influence 

C02 excretion by reducing the total release of Bohr protons during gill blood transit. 

This may partly explain the relationship obtained between Po2 and C02 levels of arterial 

blood over a range of exercise intensities in Series I (Fig. 3.4). However, the removal of 

blood flow through one gill arch must also have contributed to the relationship because 

the changes in C02 levels during exercise were not as great in Series II fish as they were 

in Series I fish. 

The release of Bohr protons during Hb oxygenation is reversible. Therefore, the 

disproportionate binding of Bohr protons during oxygen delivery to the tissues will 

influence C02 movement from the tissues. During exercise, as Svo2 dropped below 50%, 

the "effective" buffering capacity of the blood was reduced. At constant tissue 

respiratory quotient (C02 production/02 consumption), Pvco2 would be expected to 

increase as Svo2 dropped below 50%. This was observed in exercising fish (Table 3. 3). It 

should be noted that Pco2 was measured in mixed venous blood not in blood leaving the 

muscle. Assuming that mixed-venous blood is indicative of that leaving the muscle, an 

increase in venous Pco2 reflects an increase in total C02 content of the muscle during 

sustained aerobic exercise. An elevation in blood and muscle total C02 levels may be 

important in elevating buffer capacity in preparation for a metabolic acidosis associated 
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Influence of C02 transport on 0 2 delivery during exercise: 

In addition to implications for C02 transport, the non-linear Haldane effect will 

also influence conditions for 0 2 transport. In the tissues, metabolically produced C02 

acidifies the blood during capillary transit. This acidosis induces a rightward shift of the 

Hb-02 equilibrium curve (Bohr effect) enhancing oxygen delivery to the tissues at a 

given blood Po2 • The Haldane effect acts to reduce the arterial-venous change in Pco2 

and pH due to proton binding during Hb deoxygenation, reducing. the extent of the Bohr · 

shift. Thus, it has long been argued that a large Bohr effect can not be exploited in the 

tissues due to the associated large Haldane effect which minimizes any arterial-venous 

pH changes. This arguement is based upon the theory of linked functions where, 

thermodynamically, the Bohr and Haldane coefficients are equivalent (Wyman, 1973). 

The theory of linked functions is dependent upon a number of assumptions 

(Wyman, 1973) which are violated in the Hbs of many fish species. One assumption is 

that the shape of the Hb-02 equilibrium curve is independent of pH. Although this is true 

for many Hbs, it is not true for fish Hbs which possess a Root effect. In fact, one of the 

defining characteristics of a Root shift is the low cooperativity in oxygen binding to Hb 

(n) at low relative to high pH (Brittain, 1987; Riggs, 1988). A second assumption is that 

there is a linear relationship between oxygen binding and proton release. While this 

assumption is not strongly violated in mammalian Hbs (Baumann et. al., 1987), in the 
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Hbs of trout (Chapter 2, Table 3.3) and tench (Jensen, 1986) the majority of Bohr 

protons are released between 50 and 100% So2. 

A Hb which possesses a large Root and Bohr effect coupled with a 

disproportionate release of Bohr protons may permit the Bohr/Haldane effect to be 

optimized for both 0 2 and C02 transport, depending upon the region of the Hb-02 

equilibrium curve used for gas transport. Under routine conditions (Svo2 50% or 

greater), the binding of Bohr protons during capillary blood transit resulted in venous 

blood being alkaline relative to arterial blood (Table 3.2). Under these conditions, a 

reverse Bohr and Root shift would occur, reducing tissue Po2• Although, seemingly 

maladaptive for 0 2 delivery, a reduction in Po2 due to an alkalosis during capillary blood 

transit would only occur under conditions when the animal was at rest. During exercise, 

the reduction in Svo2 and reduced uptake of Bohr protons during oxygen delivery resulted 

in an acidification of venous relative to arterial blood (Table 3.2). The acidification of 

blood during capillary transit will elevate blood Po2 via the Root and Bohr effect 

enhancing oxygen delivery to the tissues when metabolism is elevated. Thus, the 

characteristics of the Root effect may permit an elevation in blood Po2 when Svo2 drops 

to low levels; however clearly more work is needed to clarify this point. 

In conclusion, the suite of physiological adjustments during exercise were 

sufficient to maintain 0 2 uptake despite a reduction in P ao2 with an increase in swimming 

velocity. The release of Bohr protons was greatest in the upper reaches of the Hb-02 

equilibrium curve consistent with the in vitro data presented in Chapter 2. In fact, in 

slowly swimming fish, all C02 excretion was stoichiometrically linked with 0 2 uptake 
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via the Haldane effect. At maximal exercise; however, less than 50% of C02 excretion 

was linked with 0 2 uptake. The release of Bohr protons facilitated C02 excretion at the 

gills and the binding of protons promoted C02 hydration at the tissues. The non-linear 

release of Bohr protons influenced C02 transport and altered the pattern of C02 

excretion. C02 levels in arterial blood increased during exercise and the proportion of 

total C02 excreted which could be attributed to the movement of Pbco2 increased from 

almost zero in slowly swimming fish to 11% during exercise. The increased C02 levels 

in the blood were distributed equally between the red cells and the plasma and therefore, 

the role of HC03·fcl- exchange to total C02 excretion did not change significantly during 

exercise, and comprised 62% of all C02 excreted. 
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SUMMARY 

1) Pco2 and Cco2 levels increased in arterial and mixed venous blood of trout during 

exercise. 62% of total C02 excreted was due to HC03-/Cl- exchange, which did not 

change significantly during exercise. However, the role of Pbco2 to total C02 excretion 

increased from almost zero to 11% at the maximum swimming speed. 

2) Most of the Bohr protons were released in the upper region of the Hb-02 equilibrium 

curve. The Haldane coefficient, calculated from in vivo data, was greatest (0.99±0.17) 

in slowly swimming fish where all C02 excreted was stoichiometrically linked with 0 2 

uptake. As swimming velocity (and therefore Ca-vo2) increased, the Haldane coefficient 

decreased reaching a minimum of 0.42 ± 0.13, at Ucrit. At this swimming speed less 

than 50% of C02 removal was linked with 0 2 uptake. 

3) The non-linear release of Bohr protons affects C02 transport and alters the pattern of 

C02 excretion at the gills. 
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CHAPTER 4: Air-breathing in Arapaima gigas: uncoupled movements of 0 2 and C02 
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PREFACE 

This chapter is adapted from a paper published by Brauner, C.J. and Val, A.L., 

1995. Proceedings of an International symposium on The Physiology and Biochemistry of 

Fishes of the Amazon, held in Manaus, Amazonas, Brazil, Aug. 30- Sept. 2, 1994. (In 

Press). A.L. Val provided laboratory facilities, technical support, and critical review of 

the manuscript. 

INTRODUCTION 

In most animals, the movements of 0 2 and C02 at the respiratory exchange 

surface are coupled. This is especially the case in many teleost fishes, where the Hb's 

are characterized by large Root and Haldane effects and a low buffer capacity (Jensen, 

1989). For example, oxygenation of trout blood in the absence of C02 removal may 

reduce oxygen carrying capacity of the blood by as much as 48% (Table 1). In addition, 

C02 excretion rate in the absence of Hb oxygenation was reduced by about 25% in vitro 

(Chapter 2) and in slowly swimming fish virtually all C02 excreted in vivo is 

stoichiometrically related to 0 2 uptake through the Haldane effect (Chapter 3). Thus, 

C02 excretion may be reduced in the absence of 0 2 uptake and 0 2 uptake may be reduced 

in the absence of C02 excretion. 

In most fish, 0 2 uptake and C02 excretion occurs predominantly at the gills (there 

is some gas exchange across the cutaneous surface) and the movement of 0 2 and C02 are 

both spatially and functionally coupled. This, however, is not the case in many bimodal 

106 



breathers, where gas exchange can occur across two or more respiratory organs 

(Johansen, 1970). This is the case in A. gigas, an obligate air breathing teleost fish from 

the Amazon which possesses both gills and a highly vascularized swim bladder which 

acts as an air breathing organ. The majority of 0 2 uptake (78%) occurs from the air 

bladder in the absence of C02 removal and the majority of C02 excretion (63%) occurs 

across the gills in the absence of oxygen uptake (Randall et al. 1978). If the Hb in A. 

gigas possesses a large Haldane and Bohr effect and low buffer capacity, as do the Hb' s 

of many teleost fishes (Jensen, 1989), this mode of gas exchange would be hypothesized 

to compromise both 0 2 uptake and C02 excretion. 

The main objectives of this study were: 1) to confirm the observations made by 

Randall et al. (1978) with respect to the partitioning of 0 2 and C02 exchange between 

water and air in A. gigas, and 2) to determine whether the Hb characteristics of A. gigas 

differ from trout with respect to the magnitude of the Root effect, Haldane effect and 

buffer capacity. 
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MATERIALS AND METHODS 

Experimental animals: 

Arapaima gigas (1.7 ± 0.37 kg) were purchased from an aquaculture facility in 

Itacoartiara, 200 km East of Manaus, Amazonas, Brazil. Fish were fed live fish and held 

for at least 2 weeks in the aquaculture department at the Instituto Nacional de Pesquisas 

da Amazonia (INPA) until experiments were performed. 

Surgery and Handling: 

Arapaima gigas were anaesthetized by immersing the fish in a 1: 1000 solution of -

MS-222 in water, buffered with NaHC03-. Arapaima gigas is an obligate air breather 

and dies within 10 minutes when denied access to air. With this in mind, immediately 

after the fish lost equilibrium a piece of polyethylene tubing (PE 190) was inserted 

through the pneumatic duct, accessing the air breathing organ, and permanently sutured 

in place as described by Farrell (1978) and Farrell and Randall (1978). Throughout 

surgery, the volume of air in the air bladder was replaced every 5 min. The gills were 

not ventilated during surgery, but the body and gills were kept moist at all times. The 

first afferent branchial artery was cannulated with PE-50 and tied off to secure the 

tubing. The urinary papilla was catheterized with PE-90 as described by Wood and 

Randall (1973). Following surgery, the fish was placed in a 25 1 holding tank or in a 

respirometer and the air bladder was repeatedly ventilated until the fish recovered and 

could access the air unassisted. The tanks and respirometer were supplied with 60 1 of 
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recirculated, aerated water (26 oc, pH= 6.9 ± 0.28, Pco2 = 1.6 ± 0.3 mmHg) 

replenished periodically throughout the day. Each fish was permitted to recover from 

surgery for 24-48 h prior to experimentation. 

In vivo experiments: 

Respirometry: 

The respirometer contained a water volume of 5. 5 1 and an air chamber of 1. 3 1. 

To measure the rate of gas exchange in water and air, the respirometer was sealed and a 

pump slowly circulated the water throughout the system. Po2 of water and air and 

changes in C02 content of water and Pco2 of air were measured every 5 minutes for up 

to 30 minutes to calculate total 0 2 uptake and C02 excretion by A. gigas. Background 

changes in 0 2 and C02 were taken into account but were generally minor. The air and 

water chambers of the respirometer were in contact with one another and some diffusion 

between the compartments undoubtedly occurred. Preliminary experiments revealed that 

the influence on the partitioning of gas exchange between water and air was minor, 

consistent with the fmdings of Stevens and Holeton (1978) using a similar experimental 

set up. 

During respirometry, urine was continuously collected in covered vials to 

determine urine flow rate. Samples were also collected anaerobically for C02 content and 

pH measurements. In addition, mixed venous blood was removed for measurement of 

Hct, pHe and Cco2 . 
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In vitro experiments: 

Blood from the caudal vein of A. gigas was taken from fish which were not used 

in respirometry studies. Red blood cells were separated from plasma by centrifugation at 

5900g for 10 min at 4 oc in a Sorvall Instruments RC5C refrigerated centrifuge. The red 

cells were washed twice with cold 0.9% NaCl before they were lysed by addition of 

weakly buffered (5 mM Na-Hepes, pH 7.8) distilled water and repeatedly frozen and 

thawed (Jensen, 1989). The red cell debris was removed by refrigerated centrifugation 

and the haemolysates were repeatedly dialysed against distilled water at 4 °C. The 

haemolysates were repeatedly subjected to ion exchange resins and measurements 

indicated complete removal of Cl- and organic phosphates. The stripped haemolysates 

were used immediately in the measurement of the Root effect or diluted to a Hb 

concentration of 0.3 to 0.5 mM in 0.1 M KCl and kept frozen at -24 oc for a maximum 

of 2 days. 

Analytical Techniques: 

Respirometry: 

The Po2 of water and air were measured from samples collected in gas tight 

syringes using a Radiometer Po2 (E-5046) electrode. The Pco2 in air was measured with 

a Radiometer Pco2 (E-5036) electrode. The Po2 and Pco2 electrodes were maintained in a 

Radiometer BMS3 Mk2 blood microsystem, and the output simultaneously displayed on 

a Radiometer PHM 73 acid-base analyzer. The Po2 electrode was calibrated with air 

saturated water, and the Pco2 electrode was calibrated with appropriate C02 mixtures. 
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The calibration of these electrodes were checked routinely throughout the day. The C02 

content of water, blood and urine was measured using gas chromatography as described 

in the general materials and methods. The Po2 of water was converted to oxygen content 

by using the solubility coefficient reported in Boutilier et. al. (1984). A best fit linear 

regression was used to calculate the change in respective gas content over the duration of 

respirometry. Oxygen consumption and C02 excretion rates were calculated from the 

rate of change in gas content, the volume of the respective chambers (accounting for the 

volume of water displaced by the fish) and the fish mass. 

Hb Characteristics: 

The stripped haemolysates were used immediately after they were prepared to 

measure the magnitude of the Root effect which was measured spectrophotometrically 

according to Pelster and Weber (1990). Briefly, haemolysates from one fish were 

suspended in a pH 5. 5 or pH 8. 0 buffer at equal Hb concentrations. The haemolysates in 

pH 8 buffer was bubbled with 100% 0 2 and the absorbance was read at 541, 555 and 

577 nm. The absorbance of deoxygenated blood was measured at each wave length 

following the addition of a pinch of dithionite. This procedure was repeated for the 

haemolysates in pH 5.5 buffer. The percent reduction in saturation of the Hb due to the 

Root effect was calculated as: 

[1- {dODpH 5.5 (oxy-deoxy) I dODpH 8.0 (oxy-deoxy))) X 100 
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where ~ODpH 5.5 (oxy-deoxy) and ~ODpH s.o (oxy-deoxy) refer to the difference in optical 

density between oxygenated and deoxygenated blood at pH 5.5 and pH 8.0, respectively. 

This calculation was performed at each of the three wavelengths and were averaged for 

each blood sample. 

Haemoglobin titration curves were conducted on oxygenated and deoxygenated 

haemolysates as described by Jensen (1989). Briefly, haemolysates from one fish were 

divided into four, 3 ml aliquots. Each aliquot was placed in a tonometer maintained at 

2rc. Two tonometers were incubated with humidified 0 2 and two with humidified N2 

for 1 h while the solutions were continually mixed. Following incubation, the pH was 

measured (zero net proton charge) and one pair of oxygenated and deoxygenated 

haemolysates were titrated with NaOH, the other with HCI. Throughout the entire 

titration, all tonometers were continually supplied with gas and the solutions were 

mixed. Freshly prepared and analyzed 0.1 M NaOH and HCl were injected by Hamilton 

syringe in 10 JLl aliquots into each tonometer and the pH was recorded after 20 min. This 

procedure was repeated to obtain titrations over the pH range between 5 and 9. 

Haemolysate pH was measured with pH Microelectrodes in conjunction with Radiometer 

PHM 64 pH meters. Haemoglobin concentrations were determined 

spectrophotometrically. Six separate titration curves were conducted for blood from 

different fish, all yielding similar results. 
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RESULTS 

Panitioning of gas exchange in A. gigas: 

In A. gigas, 78.1% of the 0 2 consumed was from the air (via the ABO) and 

85.3% of the C02 was excreted into the water (Table 4.1). About 79% of the C02 

excreted into the water was assumed to have diffused across the gills while the remaining 

6. 3 % of the total C02 excreted entered the water via the kidney. About 3 7% of the 

movements of 0 2 and C02 occurred simultaneously across the same respiratory surface 

(Table 4.1) while the remaining 63% occurred at different locations. 

During these measurements, oxygen consumption rate was 81 mg· kg-1 

h-1 and the combined respiratory exchange ratio in air and water was 0.98 (Table 4.2). 

The Pco2 of mixed venous blood was 25 nunHg and plasma HC03- concentration was 

31.8 mM (Table 4.2). 

Haemoglobin characteristics: 

The Hb in A. gigas possessed a large Root effect. Stripped haemolysates in a pH 

5.5 buffer exhibited a 44.4 ± 0.95% reduction in oxygen saturation relative to 

haemolysates in a pH 8 buffer (Table 4.3). The haemoglobin in A. gigas possessed a 

small Haldane effect as indicated by the vertical distance between the haemoglobin 

titration curves of the oxygenated and deoxygenated stripped haemolysates (Fig. 4.1). 
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TABLE 4.1: Partitioning of 0 2 uptake and C02 excretion between the air-breathing organ (A.B.O.), gills and kidney in 

Arapaima gigas. 

A.B.O. GILLS KIDNEY TOTAL 

0 2 UPTAKE 78.1 ± 1.0% 21.9 ± 1.0% ---------- 100% 

C02 EXCRETION 14.7 ± 2.1% 79.0 ± 2.1% 6.3 ± 1.3% 100% 

I SPATIALLY 114.7% 121.9% I ---------- 136.6% 
' 

COUPLED 

Spatially coupled refers to the maximum proportion of gas exchanged involving simultaneous exchange of 0 2 and C02 across 

the respective respiratory surface. (n=5). 
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TABLE 4.2: Metabolic rate and measurements in mixed venous blood and urine in A. gigas during respirometry. 

Blood Urine Urine Urine 
Mo2 TotalRE pHe pHi Pco2 [HC03 -1e Hct Flow pH Cco2 

(mg ·kg · h-1
) (mmHg) (mM) (ml ·kg · h-1

) (mM) 

81.0 0.98 7.64 7.21 25.0 31.8 21.6 5.8 7.75 28.7 
(5.2) (0.03) (0.03) (0.01) (1.8) (1.0) (2.1) (0.8) (0.07) (2.8) 

------·---

All blood parameters were measured 1 min following an air-breath in mixed venous blood from the afferent branchial 
artery. The remaining parameters were measured over the entire duration of respirometry. Total RE refers to the respiratory 
exchange ratio calculated from gas exchange in both water and air. n=5 and values in brackets are s.e.m. of the mean. 



TABLE 4.3: Haemoglobin characteristics of Arapaima gigas and Oncorhynchus mykiss 

A. gigas 0. mykiss 

~ZHmax 0.84 2.6 

BUFFER CAPACITY 3.0/2.0 7.1/6.2 

ROOT EFFECT 44.4 ± 0.95% 

~ZHmax refers to the maximum number of protons released per mole of Hb 

oxygenated at pH = 7.0 [calculated from figure 4.1 for A. gigas and Jensen, 

(1989) for 0. mykiss]. See Fig. 4.1 legend for further details. 

Buffer capacity (-dZH/dpH) was calculated from figure 4.1 for A. gigas and Jensen, 1989 

for 0. mykiss in deoxygenated/oxygenated haemolysates respectively, at a pH of 7 .0. 

Root effect refers to % reduction in oxygen saturation of stripped haemolysates in a pH 

5. 5 buffer relative to haemolysates in a pH 8 buffer. 
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FIGURE 4.1: H+ titration curves, ZH (net H+ charge, mol H+mol Hb-1) as a function of 

pH in oxygenated (open circles) and deoxygenated (closed circles) isolated stripped 

haemoglobins from Arapaima gigas, an obligate air breather. Temperature = 26 °C, 

Ionic strength = 0.1 M KCl, Tetrameric Hb concentrations = 0.3-0.5 mM. The vertical 

distance (.!lZH) between the titration curves for oxygenated and deoxygenated 

haemoglobin indicates the protons released from haemoglobin upon oxygenation at 

constant pH (Haldane effect) while the slope of the curve (-dZH/dpH) indicates the buffer 

capacity of the haemoglobin in the oxygenated or deoxygenated state. This is a 

representative trace of one of six titrations conducted. 

117 



8 
.......-.. 0 02 
~ 6 I • N2 

..q. 
,..c 

4 ::X:: 
........ 
0 2 
8 

0 
+ ::r: -2 ........ 

0 s -4 
............... 

tt:: -6 N 

-8 
4 5 6 7 8 9 10 

pH 

118 



The maximum number of protons released per mole of haemoglobin upon oxygenation 

(~ZH) was 0.84 and occurred at pH 7.0. 
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DISCUSSION 

78% of the 0 2 uptake occurred across the air breathing organ and 86% of the 

C02 was excreted into the water, resulting in only 37% of 0 2 and C02 exchange 

occurring across the same respiratory structure. This represents a slightly greater spatial 

uncoupling of 0 2 and C02 movements than that determined by Randall et al. (1978). The 

Hb of A. gigas possess a large Root effect but a low buffer capacity and small Haldane 

effect. This is in contrast with rainbow trout which also possess a large Root effect and a 

low buffer capacity, but exhibit a large Haldane effect. 

Haemoglobin characteristics with respect to 0 2 uptake and transport: 

The Root effect in the haemolysates of A. gigas was large, resulting in a 44% 

reduction in oxygen carrying capacity of the blood at a pH of 5.5. The magnitude of the 

Root effect is less than that in the stripped haemolysates of rainbow trout which exhibits 

a 60% reduction at pH 6.2 (Pelster and Weber, 1990). The magnitude of the Root effect 

was not investigated in the presence of organic phosphates, which have been 

demonstrated to increase both the magnitude of the Root effect, and the pH at. which the 

maximum effect is observed (Pelster and Weber, 1990). The red cells in A. gigas possess 

inositol pentaphosphate (IP5; Isaacs et. al., 1977; Valet. al., 1992) which is a stronger 

modulator of haemoglobin-oxygen affinity than ATP and GTP which are the cofactors 

most commonly found in the red cells of fishes (Wood and Johansen, 1972; Lykkeboe 
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and Weber, 1978). Thus, the Root effect may be large within the physiological pH range 

in A. gigas and has been demonstrated to exist in whole blood at Pco2 values measured in 

vivo (Randall et al. 1978). 

The Hb in A. gigas possessed a small Haldane effect (Fig. 4.1) In the 

haemolysates of both A. gigas and Oncorhynchus mykiss, the maximum 6ZH occurred at 

pH 7.0 but was less than one third the magnitude in A. gigas (Table 4.3). The small 

Haldane effect in A. gigas relative to rainbow trout, minimizes pH changes associated 

with the release of Bohr protons during Hb oxygenation. Thus, despite the presence of a 

Root effect (Table 4.3) coupled with a gas exchange strategy where 0 2 uptake from the 

air breathing organ occurs predominantly in the absence of C02 removal (Table 4.1), 

oxygenation of the haemoglobin in the air breathing organ will not be compromised. 

Haemoglobin characteristics with respect to C02 excretion: 

As pointed out by Jensen (1989), vertebrates generally possess haemoglobins with 

either a large buffering capacity and low Haldane effect (ie. pig and dogfish), or a low 

buffering capacity and large Haldane effect (ie. carp and trout) A. gigas differs from this 

general pattern because it possessed Hb with a small Haldane effect and a low buffer 

capacity (Fig. 4.1). In fact the Hb buffer capacity at fixed oxygenation status was lower 

than that reported in the stripped haemolysates in trout (Table 4.3). The rate of proton 

flux across the red cells (Forster and Steen, 1969) is very slow relative to the blood 

transit time through the gills. Thus, the possession of a Hb with a low Haldane effect 

121 



and low buffer capacity is seemingly maladaptive for C02 excretion. This is because 

haemoglobin cannot act as an efficient "store" for protons during HC03- dehydration in 

the red cell when blood enters the gills. This may partly explain the high blood Pco2 and 

total C02 levels measured in A. gigas in this study and by that of Randall et al. (1978). 

When blood first enters the gills, any dissolved C02 in pre-branchial blood will 

rapidly diffuse from the blood to the water, creating conditions for HC03- entry into the 

red cell and subsequent dehydration to C02• In A. gigas exposed to normocapnic water 

(Pco2 approximately 1 mmHg), venous blood Pco2 was 25 mmHg, much greater than that 

in trout. A pre-branchial blood Pco2 of this magnitude may greatly reduce the 

dependence on HC03- dehydration to total C02 excretion during blood transit through the 

gills due to the large Pco2 gradient between blood and water. This may facilitate C02 

excretion in a fish possessing haemoglobin with a low buffer capacity and Haldane 

effect. The Haldane effect is not completely absent in A. gigas and undoubtedly plays a 

role in the 36.6% of C02 excretion which occurs in the presence of 0 2 uptake (Table 

4.1). It is also possible that the Bohr protons released from haemoglobin during oxygen 

uptake in the air breathing organ can be utilized for C02 excretion in the gills; however, 

this is only possible if the blood transit time from the air breathing organ to the gills is 

rapid relative to the rate of proton flux across the red cell, which is not known. 

In conclusion, the Hb characteristics of A. gigas were different from that in 

rainbow trout. Despite the presence of a Root effect, the Hb of A. gigas possessed a 

small Haldane effect and therefore oxygen uptake across the air breathing organ was not 

impaired in the absence of C02 removal. In contrast with the typical scenario in 
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vertebrates where Hb' s possess either a small Haldane effect and high buffer capacity or 

vice versa (Jensen, 1989), the Hb of A. gigas possessed both a low Haldane effect and 

buffer capacity, seemingly maladaptive for C02 removal. 
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SUMMARY 

1) Gas exchange in A. gigas is spatially uncoupled. 78% of the oxygen uptake occurs 

across the swim bladder, while 86% of the C02 is excreted into the water, 79% across 

the gills and 6% through the kidney. 

2) The Hb of A. gigas possess a large Root effect but unlike rainbow trout, they possess 

a small Haldane effect and low Hb buffer capacity which may permit uncoupled 

movements of 0 2 and C02 • 
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GENERAL DISCUSSION 

Haemoglobin is an intriguing molecule which is designed to optimize the transport 

and exchange of 0 2 and C02, from the level of the tissues to the level of the gas exchange 

organ, in almost all vertebrates. A remarkable diversity in functional characteristics of Hb 

is found throughout the animal kingdom. Interestingly, nearly the entire spectrum of these 

characteristics is found in fish. In some fish, Hb02 affinity is high while in others it is very 

low. In some fish, the Bohr and Haldane effects are large while in others they are virtually 

non-existent. Fish also represent the only vertebrates which have developed an 0 2 

multiplication system capable of generating 0 2 tensions over 20 times that found in arterial 

blood (Fairbanks et. al., 1969). This is achieved with a Hb which exhibits a large reduction 

in Hb02 affinity as pH of the blood is lowered (Root effect), coupled with a structure (rete) 

capable of creating a large localized acidosis. The acidosis drives 0 2 from the Hb to the 

respective structure, either the retina or swim bladder. In addition to the great diversity of 

Hb characteristics which exist between fish species, the degree of Hb heterogeneity found 

within individual animals is unsurpassed by any other vertebrate group. In a survey of 

teleost fishes from the Amazon, of 77 genera examined only 8% possessed only one Hb 

component, while the mean value was 4 Hb components per species (Fyhn et. al., 1979). 

The Hb characteristics often differ greatly from one component to another and it has been 

hypothesized that the possession of multiple Hbs permits a "division of labour" between 

the individual Hb components (Weber, 1990). At the other extreme there are fish which do 

not possess Hbs whatsoever (Holeton, 1970; Acierno et. al., 1995). 
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In addition to the great diversity in functional characteristics of Hb, the Hb in fish is 

modulated by different organic phosphates from those in other vertebrates. In contrast to 

most other vertebrates, the Hb in most fishes does not directly bind C02 (carbamate) and 

the gas exchanger lacks plasma accessible CA. All these characteristics together bring to 

light the great potential which exists for the study of gas exchange in fish. 

Many teleost fishes possess haemoglobins which exhibit large Root and Haldane 

effects and a low buffer capacity (Jensen, 1989). This thesis has examined the hypothesis 

that the combination of these characteristics gives rise to an extensive interaction 

between the movements of 0 2 and C02 , without which gas exchange would be 

compromised. It has been shown that in trout the magnitude of the Root effect could 

impair oxygen transport in the blood. Due to the presence of a large Root effect, an 

accumulation of protons released during Hb oxygenation at the gills could acidify the red 

cell and reduce oxygen carrying capacity of the blood by up to 49% . This does not 

happen in trout because protons are removed by HC03- dehydration, illustrating the 

importance of C02 removal at the gills to 0 2 uptake in trout. 

Arapaima gigas is an obligate air breathing teleost fish from the Amazon. It 

possesses two respiratory surfaces for gas exchange: gills and a highly vascularized 

swimbladder which acts as an air-breathing organ (ABO). The movements of 0 2 and C02 

are spatially uncoupled in normoxia: 78% of the 0 2 consumed was from the air and 85% 

of the C02 excreted was into the water. Therefore, a large proportion of the oxygen 

uptake across the ABO occurred in the absence of C02 removal. The Hb in this species 

possessed a large Root effect and therefore, an acidosis induced by Hb oxygenation in 
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the absence of C02 removal, could impair 0 2 uptake. The Haldane effect in this Hb, 

however, was small preventing an acidosis during Hb oxygenation. Interestingly, the Hb 

buffer capacity was also low relative to that in rainbow trout, seemingly maladaptive for 

C02 excretion. Thus, Hb characteristics appear to be modified to prevent impairment of 

0 2 uptake in the absence of C02 removal in A. gigas; however, the effect of these 

changes on C02 excretion is less clear (Chapter 4). 

The lack of plasma accessible CA in the gills in the teleost fishes examined to 

date (Perry et. al. ,1982; Henry et. al.., 1988; Perry and Laurent, 1990) and the reduced 

dependence upon carbamate for C02 transport and excretion (Farmer, 1979; Heming, 

1984) elevates the relative importance of HC03-/Cl- exchange during C02 excretion in 

teleost fish, relative to that in other vertebrates. In resting and exercising trout, about 

60% of the total C02 excreted was dependent upon HC03-tCI· exchange (Chapters 1 and 

3). In resting humans, about 53% of the C02 excreted is due to changes in the plasma 

HC03- pool (Klocke, 1987); however, this includes HC03- dehydration in the plasma due 

to the presence of plasma accessible CA which may account for 7% of total C02 

excreted (Crandall and Bidani, 1981). The limitation to C02 excretion in vertebrates is 

thought to lie at the level of HC03-/Cl- exchange (Perry et. al., 1982; Weith et. al., 1982; 

Perry, 1986; Klocke, 1987) thus any conditions which influence the rate ofHC03-/Cl­

exchange will influence the rate of C02 excretion. In blood which exhibits a low Hb 

buffer capacity but a large Haldane effect, Hb oxygenation will increase the pH gradient, 

and therefore the HC03- gradient across the red cell. Rapid oxygenation of trout blood in 

vitro, elevated HC03- flux through the red cell by 30% (Chapter 2). The release of Bohr 

127 



protons and the associated increase in HC03- flux through the red cell; however, only 

occurred between 60 and 100% of Hb So2 (Chapter 2). In fish subjected to different 

levels of sustained exercise, the magnitude of the Haldane effect, calculated from in vivo 

arterial-venous differences in blood gas and acid-base status of the blood, was consistent 

with these data obtained in vitro (Chapter 3). That is, the majority of Bohr protons were 

released in the upper region of the Hb-02 equilibrium curve permitting an almost 

complete exploitation of the Haldane effect at the lowest swimming velocity. At 16% of 

Ucrit, there was a tight stoichiometric coupling between protons released during Hb 

oxygenation and C02 excretion. As swimming velocity increased and the range over 

which the Hb-02 equilibrium curve used for gas exchange increased, the degree of 

coupling decreased to less than 50%. 

In general, control of the cardio-respiratory system in water breathing fishes is 

geared to ensure 0 2 uptake from water (Randall and Cameron, 1973; Smith and Jones, 

1982; Randall, 1990). Because the solubility and diffusivity of C02 is about 20-25 times 

that for 0 2 in aqueous solutions (Dejours, 1988), the conditions at the gills are more 

than sufficient for C02 transfer. Consequently, Pco2 and Cco2 levels in water breathing 

fishes are very low in comparison with air breathing vertebrates. The relationship 

between Paco2 and pH is log-linear (Albers et. at., 1983). Given the low absolute values 

of Paco2 in fish, it is clear that even small changes in blood Paco2 could have significant 

effects on acid-base balance (lwama et. al., 1987). The large Haldane effect and low 

buffer capacity in the blood of trout permits an indirect influence on C02 transport and 

excretion through conditions for 0 2 uptake. The disproportionate Bohr proton release 
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observed in the blood of trout and tench (Jensen, 1986) permits a fine tuning of this 

indirect influence depending upon the region of the Hb-02 equilibrium curve used for gas 

transport. During sustained exercise there is a marked increase in the gill 

ventilation: blood perfusion ratio (Kiceniuk and Jones, 1977) to satisfy the metabolic 

demand for oxygen. At this time when the convective conditions for C02 removal is 

enhanced, the non-linear release of Bohr protons has been hypothesized to limit HC03-

dehydration at the gills and conserve tissue C02 stores (Chapter 3). The same also 

applies during exposure to hypoxia when ventilation volume is elevated to maintain 0 2 

uptake, with little change in cardiac output (Holeton and Randall, 1967; Smith and 

Jones, 1982; Randall, 1990). During exposure to hypoxia; however, arterial Cco2 and 

Pco2 levels generally decrease (Chapter 1; Boutilier et. al., 1986; Lessard et. al., 1995), 

due to the markedly increased convective conditions. 

In addition to influencing C02 levels during hypoxia, the disproportionate Bohr 

proton release will benefit 0 2 uptake at the gills. If So2 is about 50% , the absence of 

Bohr proton release during oxygen binding to Hb will elevate red cell pH raising Hb-02 

affinity. This oxygenation state dependent red cell alkalosis at the gills, may optimize 

conditions for oxygen uptake before circulating catecholamines are elevated causing an 

increase in red cell pH. The release of catecholamines during hypoxemia, has been 

demonstrated to benefit oxygen uptake at the gills (Primmett et. al., 1986; Perry et. al., 

1989), but is metabolically costly. The maximal alkalosis due to the disproportionate 

Bohr proton release will be attained when arterial Hb-02 saturation is about 50% 

(Jensen, 1986). Interestingly, this is also the threshold at which catecholamines are 
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released in both eel and trout (Perry and Reid, 1992). Some fish, such as tench, may 

lack P-adrenergic sensitivity in red cells, in which case the disproportionate Bohr proton 

release may play a larger role in maintaining oxygen uptake during exposure to hypoxia 

(Jensen, 1986), than it does in other fishes. 

At the level of the Hb, the basis for the large Haldane and Root effects and the 

low Hb buffer capacity in fish is related to the structure of the molecule. Fish Hb, as in 

most vertebrates, is a tetrameric protein, most commonly comprised of 2 a and 2 p sub­

units (Weber and Jensen, 1988). Although, the amino acid sequence of these sub-units 

varies considerably among vertebrates, the majority of the amino acid replacements 

appear to be functionally neutral (Perutz and Brunori, 1982). However, amino acid 

substitutions at key positions, confer large functional differences for the transport of 0 2 

and C02 in the blood (Weber, 1995). 

The imidazole group of the histidine residues comprises the majority of proton 

buffering capacity in Hb within the neutral pH range (Tanford, 1962; Jensen, 1989). The 

low buffer capacity at constant So2 in the Hb of teleost fishes has been correlated with a 

reduced histidine content and a reduced number of titratable histidine residues, relative 

to that observed in mammalian Hbs (Jensen, 1989). In carp, there appear to be seven 

titratable histidine residues per Hb molecule, considerably lower than the 20 to 22 

residues which exist in horse Hbs (Jensen, 1989). The removal of two histidine residues 

from mammalian Hb is thought to be responsible for the greater ATP and GTP 

sensitivity observed in teleost blood in comparison with the blood of mammals (Perutz 

and Brunori, 1982); however, this accounts for only a minor difference in histidine 
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content between teleost and mammalian Hb. 

The Haldane effect arises from changes in the pK of specific amino acid groups 

due to oxygenation and deoxygenation induced conformational changes in Hb. 

Conversely, the Bohr effect results from changes in Hb conformation due to binding of 

protons to these specific amino groups as a function of pH. Thus, thermodynamically the 

Haldane and Bohr effects are indistinguishable (Wyman, 1973). The amino acid residues 

responsible for the Bohr/Haldane effect are located distant from the heme. In human Hb, 

in the absence of organic phosphates, the specific residues are thought to consist 

predominantly of P146 histidine (a histidine at the 146th residue from theN-terminus of 

the p subunit), a1 valine and P82 lysine, but several other groups are thought to be 

involved (Brittain, 1987; Riggs, 1988). In fish the a1 valine is acetylated (Farmer, 1979) 

and unable to contribute to the Bohr/Haldane effect but the P146 histidine is thought to 

play a major role. In fish Hb, however, a large portion of the Bohr/Haldane effect 

remains to be elucidated structurally (Jensen, 1989). 

Stereochemically, the Root effect was proposed to arise predominantly through 

the replacement of Cysteine with a Serine residue at position 93 on the P chain (P93) 

(Perutz and Brunori, 1982). This single substitution is not exclusively responsible for the 

Root effect because it is also found in Xenopus, which does not exhibit a Root effect 

(Bridges et. al .. 1985). It has been postulated that the Cysteine -Serine substitution in 

conjunction with an Aspartic acid 94P-Glutamic acid substitution may comprise the 

minimum amino acid replacements required for the Root effect (Brittain, 1987). Several 

other amino acid substitutions have also been implicated in the Root effect (Brunori and 
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Perutz, 1982). 

The molecular structure of Hb intrinsically alters the magnitude of the Root, 

Bohr and Haldane effects; however heterotrophic ligands permit a rapid and 

metabolically inexpensive means of modulating the magnitude of these effects. In 

general, the most important heterotrophic ligands in fish are GTP and ATP (together 

referred to as NTP; Wood and Johansen, 1972; Weber and Lykkeboe, 1978). Organic 

phosphate concentrations within the red cell are modulated in response to pertubations 

such as hypoxia (Tetens and Lykkeboe, 1985; Boutilier et. al .. 1988; Weber, 1992) and 

anaemia (Valet. al .. 1994). An increase in NTP:Hb ratio elevates the magnitude of the 

Root effect (Weber and DeWilde, 1975; Vaccaro et. al .. 1977; Pelster and Weber, 

1990) and the magnitude of the Bohr and Haldane coefficients (Jensen and Weber, 

1985), 

In conclusion, the combination between a large Root and Haldane effect and low 

Hb buffer capacity results in a tight coupling between the movement of 0 2 and C02 in 

rainbow trout, in vivo. The magnitude of this interaction is greatest when venous Hb-02 

saturation is above 50% such as during rest, and decreases when the lower reaches of the 

Hb-02 equilibrium curve are utilized. There are many levels at which the interaction 

between 0 2 and C02 can be modulated. The non-linear release of Bohr protons observed 

in this study represents only one of these levels and permits a fine tuning of the degree of 

interaction between movements of 0 2 and C02 depending upon the region of the Hb-02 

equilibrium curve used for gas exchange in vivo. 
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APPENDIX 

Calculations: 

In calculating the partitioning of C02 excretion, the following equations 1-3 were 

used. The assumptions and limitations of these equations are described in the text. All 

C02 excreted was assumed to be due to the movement of molecular C02 from pre­

branchial blood (Pbco2, equation 1a), or HC03- dehydrated to C02 during gill blood 

transit (HC03- - C02 , equation 1b). See text of chapter 3 for further explanation. 

1 a) Proportion of total C02 excreted which was due to movement of physically 

dissolved C02 in pre-branchial blood (Pbco2). (ie. did not involve HC03- dehydration 

during blood transit through the gills). 

((Pvco2-Paco2) x ((1-Hct/100)+(Hct/100 x 0.86)) x aC02) 

( Cvco2-CaC02) 

x100 

where P vco2 and P aco2 are the pre-branchial and arterial partial pressure of C02 (Pco2), 

Hct is haematocrit, 0.86 is to the solubility of C02 in red cells relative to that in plasma 

(VanSlyke et al., 1928), aC02 is the C02 solubility in plasma from Boutilier et al., 

(1984), and Cvco2 and Caco2 are the total C02 content of pre-branchial and arterial blood, 

respectively. 
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1 b) Proportion of total C02 excreted which consisted of HC03- dehydrated to 

C02 (HC03- ~ C02) during gill blood transit. 

100% -equation 1a) 

This proportion of C02 excreted (1 b) is comprised of HC03- which entered the red cell 

via HC03-/Cl· exchange (equation 2) and that which resided within the red cell prior to 

blood entry into the gills (equation 3). 

2) Proportion of total C02 excreted which is dependent upon HC03·fCI· exchange 

(% HC03-/Cl"): 

(HC03-vp x (1-Hct/100))- (HC03-ap x (1-Hct/100)) 

( Cvco2-C3C02) 

X 100 

where HC03-vp and HC03-ap are [HC03·] in venous and arterial plasma, respectively. Hct 

was assumed to be equal in arterial and venous blood. 

3) The proportion of total C02 excreted which is dependent upon HC03· existing 

in the red cell prior to gill blood transit was calculated as: 

100% -(equation 1a + equation 2) 
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4) Calculation of modified respiratory exchange ratio (RE'): 

This equation describes the amount of HC03• dehydrated to C02 relative to the amount 

of oxygen which is bound to Hb during gas exchange across the gills. 

(Cvco2-Caco2)-((Pvco2-Paco2) X ((1-Hct/lOO)+(Hct/100 X 0.86)) X o:C02) 

(Cp2-Cvo2)-((P30 2-Pvo2) X ((1-Hct/100)+(Hct/100 X 0.86)) X a02) 

where symbols related to C02 are the same as those described in equation 1. P vo2 and 

P3o2 are the pre-branchial and arterial partial pressure of 0 2 (Po2). 0.86 refers to the 

solubility of C02 and 0 2 in red cells relative to that in plasma (Van Slyke et al., 1928), 

a02 is the 0 2 solubility in plasma from Boutilier et al., (1984), and Cvo2 and Cao2 are the 

total 0 2 content of pre-branchial and arterial blood respectively. 

5) Calculation of the Haldane coefficient over the region of the Hb-02 

equilibrium curve used during exercise: 

The Haldane coefficient describes the moles of protons released per mole of 

oxygen bound to Hb. An in vivo Haldane coefficient was calculated from data from 

arterial and mixed-venous blood (chapter 3), using the following equations (A-E): 

A) Total C02 excreted as HC03• dehydrated to C02 during gill blood transit 

i.e. (HC03-- C02): 

(CvcorCaco2)-((Pvco2-P3C02)x((1-Hct/100)+(Hct/100x0.86)) X o:C02) 
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where abbreviations refer to the same parameters described above in equation 1. 

B) Total protons titrated from plasma during gill transit: 

where -1.271 is the slope of the true plasma buffer line (HC03--L-LpH-1
) from Wood et 

al. 1982. It should be noted that the buffer line was calculated at 13 °C, while the data 

described in chapter 3 were obtained from fish at 9 °C. 

C) Total protons titrated from red cells during gill transit: 

where -16.5 refers to the slope of the erythrocyte buffer line (mmol HC03--L-l.pH-1) from 

Heming, 1984. It was assumed that the mean cell Hb concentration (MCHC) in this 

study was the same as that which was not reported by Heming (1984). MCHC did not 

change significantly during exercise (chapter 3). 

D) Oxygen taken up across the gills which·bound to Hb: 

(Cao2-Cvo2)-(((Pao2-Pvo2) X a02) x ((1-Hct/100)+(Hct/100x0.86))) 
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E) Haldane coefficient: 

A-(B+C) 

D 

The calculation of the Haldane coefficient depends upon a number of 

assumptions. Firstly, there is no H+ excretion or HC03- uptake across the gills 

independent of C02. That is protons and HC03- can only traverse the gills as molecular 

C02• 

A-(B+C) is an indirect measure of proton release from Hb during oxygenation 

and is inferred from the difference in HC03- dehydrated to C02 which will consume a 

proton, and protons titrated (based upon the pH changes across the gills) from plasma 

and the red cell which can supply protons. The difference presumably represents protons 

released upon oxygenation. When this is divided by the moles of 0 2 bound to Hb (D) it 

provides an approximation of the Haldane coefficient based upon the region of the Hb-02 

equilibrium curve used for gas exchange during exercise in vivo. 

6) Proportion of C02 excretion potentially linked to 0 2 uptake through the release 

of Bohr protons during Hh oxygenation (%MC02:M02): 

Haldane coefficient( equation 5E) x 0 2 which bound to Hb (equation 5 D) 

(Cvco2-Caco2) 
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