

FACTA UNIVERSITATIS Series: **Physics, Chemistry and Technology** Vol. 16, N° 1, Special Issue, 2018, p. 89 49th International Symposium on Essential Oils (ISEO2018) • Book of Abstracts

PP25. Lavandin essential oil combined with the biopolymer PHBV, poly(3-hydroxybutyrate-*co*-3-hydroxyvalerate), for wound treatment

Mercedes Pérez-Recalde^{1,2}*, A. González Wusener^{2,3}, P.C. Fernández^{2,4}, I. Ruiz Arias¹, E.B. Hermida^{1,2}

Keywords: lavender, PHBV, wound healing, keratinocytes, fibroblasts

In this work, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV, was combined with lavandin essential oil (LavEO), from Lavandula hybrida grown in Argentina. Linalool (36%), linalyl acetate (29%) 1,8-cineole (6%) and camphor (6%) were its main compounds as analyzed by GC-MS. PHBV is a biodegradable copolyester from a bacterial source; PHBV porous scaffolds have been shown to be suitable for fibroblast and keratinocyte proliferation [1,2] and thus for skin regeneration. In addition, LavEO exhibits strong anti-inflammatory and antibacterial activity, what improves wound healing [4,5]. Purified monoterpenes and entire EOs have been combined with other biopolymers for different applications but scarcely for wound healing and never previously with PHBV [6]. PHBV porous membranes, 100-200 µm thickness, containing LavEO at 2, 4 or 8% m/m were obtained by an emulsion-solvent evaporation method. LavEO-PHBV membranes did not show cytotoxicity when tested on NIH/3T3 fibroblasts (according to the ISO 10993-5 standard). SEM membrane analysis showed, in all cases, a high level of porosity,~20% of the surface. Keratinocytes (KC) adhesion and proliferation were evaluated with the HaCaT cell line. Membranes containing 2 or 4% of LavEO, allowed KC proliferation of the same level as that of PHBV membrane controls. However, cells neither adhered to nor proliferated on membranes with 8% LavEO although their hydrophobicity, estimated by the contact angle, was similar to that of 4%-LavEO membranes. The reduction in the elastic modulus-determined by the dynamic mechanical analysis-due to the presence of LavEO, suggests its plasticizer effect (control $E=305\pm10$ MPa; 8%-LavEO membrane $E=150\pm20$ MPa). According to these results, 2 or 4% LavEO-PHBV membranes seem as a promising treatment, especially in the case of infected and chronic wounds, often arrested at the inflammatory phase.

References:

[1] Ruiz, I. et al., 2011. J. Phys. Conf. Ser. 332 (012028).

[2] Zonari, A. et al., 2014. Macromol. Biosci. 14, 977-990.

- [3] Sienkiewicz, M. et al., 2017. Burns 43, 310–317.
- [4] Mori, H.-M. et al., 2016. BMC Complem. Altern. M. 16, 144.
- [5] Ben Djemaa, F.G. et al., 2016. J. Tissue Viability 25, 193–200.
- [6] Pérez-Recalde, M. et al, 2018. Phytomedicine 38, 57–65.

¹Lab3Bio, National University of San Martín, School of Science & Technology; ²National Scientifical & Technical Research Council of Argentina; ³National University of San Martin, Inst. Biotechnological Research (IIB); ⁴INTA-CONICET-EEA Delta del Paraná and University of Buenos Aires. **Corresponding author*: <u>mrecalde@unsam.edu.ar</u>