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Abstract. Using numerical analysis we demonstrate the existence of vortex solitons at the 

interface separating two different photonic lattices. We consider the conditions for the 

existence of discrete vortex states at such interface and also study their stability. A novel 

type of interface vortex solitons with five lobes is observed. Also different topological 

charges and phase structures of such solutions are studied, as well as influence of 

different lattice intensities. Other observed solutions are in the form of discrete solitons 

with six lobes. For lower beam powers such solutions are stable during propagation, but 

for higher beam powers they oscillate during propagation in a way indicating the 

exchange of power between neighboring lobes, or show dynamical instabilities. 
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1. INTRODUCTION 

One of the goals of modern nonlinear optics is the development of the ultimate fast, 

all-optical device in which light can be used to control light. Self-trapped, self-guided 

light beams, optical spatial solitons that do not spread because of diffraction when they 

propagate in a nonlinear bulk medium, are considered information-carrying units, and the 

process of all-optical switching can be associated with the evolution of different types of 

spatial optical solitons and the interactions between them. 

Optical surface waves are a special type of localized waves existing at the interface 

between two media with different optical properties. They attract great attention with their 

possible application in surface sensing and probing, and have been the subject of intense 

study in diverse areas of physics [1]. Such surface waves were observed to exist in a vari-

ety of systems: between metal and a linear dielectric medium (plasmon waves) [2] at the 

boundary of semi-infinite periodic multilayer dielectric media [3], in Kerr media [4], 

waveguide arrays [5], metamaterials [6], optical amplifiers [7] etc. 
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Special attention has been devoted to the study of nonlinear optical surface waves, 

owing to the fact that the nonlinear response of materials makes possible the dynamic 

control of surface localization. The interplay of periodicity and nonlinearity can facilitate 

the formation of different types of surface modes localized at and near the surface, and a 

series of theoretical [8–13] and subsequent experimental [14–17] investigations have 

demonstrated nonlinearity-induced light localization at the interface and the formation of 

the so-called discrete surface solitons. 

There has been a renewed interest in optical beams carrying angular momen-

tum‒vortex solitons‒in many branches of science, including plasmas, Bose-Einstein con-

densates, superfluids, and nonlinear optics [18, 19]. Vortex solitons are self-localized 

nonlinear waves that possess a phase singularity with a total phase accumulation of 2πTC 

for a closed circuit around the singularity. The integer number TC is the vorticity or top-

ological charge of the vortex, and its sign defines the direction of the phase circulation. 

Nonlinear periodic systems such as photonic lattices can stabilize optical vortices in the 

form of stable discrete vortex solitons [20, 21]. Recently, some examples of surface vor-

tex solitons have been observed, at the boundaries of photonic lattices [22, 23], or at the 

interface between two optical lattices with the same geometry but with different refractive 

index [24]. 

In this paper, we extend this analysis to the case of vortex solitons supported by dif-

ferent interfaces separating square and hexagonal photonic lattices [25, 26]. We study a 

more general case and investigate vortex solitons at the interface separating two lattices of 

different symmetries. In particular, we determine the conditions for the existence of dis-

crete vortex states at such interface and also study their stability. We found novel types of 

interface vortex solitons with five lobes and considered also different topological charges 

and phase structures of such solutions. The existence domains of interface vortex solitons 

as well as the regions of stability are observed. Also, influence of different lattice intensi-

ties on such vortex states is studied. 

2. MODELING OF VORTEX PROPAGATION AT LATTICE INTERFACES 

The propagation of vortex beams at the interface separating square and hexagonal 

photonic lattice, is described using the scaled nonlinear Schrödinger equation for the opti-

cal electric field amplitude A [27]: 
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where x, y and z are the transverse and longitudinal coordinates normalized to the charac-

teristic beam width and diffraction length, Γ is the dimensionless strength of the nonline-

arity, and V(x,y) is the transverse lattice potential, given as a sum of square and hexagonal 

potentials V(x,y)=Vs(x,y)+Vh(x,y), with the peak intensities V0s and V0h, respectively. A 

vortex beams, positioned at the corresponding interface lattice sites, are launched into the 

lattice, perpendicular to the input crystal face (see Fig. 1(a) and Fig. 4(a)). 

First, we investigate the existence of vortex solitonic solutions. The above equation 

suggests their existence in the form A =a(x,y)exp(iμz), where a(x,y)= |a(x,y)| exp[iφ(x,y)] 
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is a complex-valued function, φ(x; y) is the phase distribution, and μ is the propagation 

constant. After substitution of the solitonic solution form in Eq. (1), it transforms into: 
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The solitonic solutions can be found from Eq. (2) by using the modified Petviashvili’s 

iteration method [28, 29]. We determine different classes of vortex surface solitons by 

launching vortex beams whose rings are covering lattice sites near the interface separating 

two photonic lattices. Vortex beams with different topological charges are used as input. 

In this paper, we analyze two different classes of interface vortex solitons: discrete soli-

tons consisting of five and six lobes. 

Next, to investigate the stability of such solutions, we use interface surface solitons as 

input beams in Eq. (1). Numerical procedure is based on the fast-Fourier transform split-

step numerical algorithm. 

 

Fig. 1 Surface vortex solitons with five lobes. Input vortex beam is shown at the lattice 

interface (a), with the layout of the lattice beams indicated by open circles. 

(e) Power diagram for the existence of five-lobe surface vortex solitons. The 

corresponding intensity distributions for different vortex solitons are presented in 

(b), (c) and (d); the lines depict the lattice interface. Parameters: Γ = 11, the lattice 

peak intensities V0s=V0h=2.5, vortex topological charge TC=1. 

3. INTERFACE DISCRETE VORTEX SOLITIONS 

We start with searching for spatially localized vortex soliton solutions at the interface 

with the same lattice intensities (V0s=V0h). It is well known that the lattice induces 

confinement of the filaments approximately at the location of the incident vortex ring and 

the surrounding lattice sites. First, we choose the input ring vortex beam to cover the 

lattice sites adjacent to the square lattice part of the interface (Fig. 1(a)). The 

corresponding power diagram is presented in Fig. 1(e). The beam power for vortex 

solitons is given by the formula:  







 dxdyaP 2|| . The characteristic outcomes in the 

form of five-lobe solution are shown in Fig. 1 (b), (c) and (d). Increasing the values of 
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propagation constant µ, there are observed the solutions with higher intensity lobes in the 

hexagonal lattice part of the interface. Five-lobe vortex solitons with lower values of P 

are stable during propagation for short propagation distances, but asymmetric solutions 

for higher P show oscillations or dynamical instabilities. 

 

Fig. 2 Five-lobe surface vortex solitons with different topological charges: 

intensity distributions (the first row) and corresponding phase distributions 

(the second row). Parameters: µ=5.2, other parameters are as in Fig.1. 

Next, we choose the same input ring vortex beam as in Fig. 1(a) but with different 

topological charges TC. Figure 2 presents the five different kinds of discrete vortex 

solutions at the interface separating square and hexagonal lattice. The asymmetry of the 

vortex soliton depends on the input topological charge, and it is more pronounced for the 

vortex with TC=5. Investigating the stability of such vortex solitons, we find very regular 

oscillations for lower values of TC, and dynamical instabilities for TC=5. 

 

Fig. 3 Sin(θ) vs φ (azimutal angle for the lattice) diagram for the vortex solitons with: 

(a) TC=1 from Fig. 2(f), and (b) TC=5 from Fig. 2(j). 

To clarify and analyze the observed phase distributions we take one contour where 

soliton lobes are located, and measure the phase. We plot sin of the lobe angle (sin(θ)) as 

a function of the corresponding lobe phase (φ). For five-lobe solution with TC=1 (Fig. 

3(a)) we can see that the phase (red points) are perfectly fitted by the sinusoidal function 

(blue line) with one period. But for TC=5 solution (Fig. 3(b)) we have five periods. Also, 

two red points that are not fitted by blue line correspond to the additional 2 lobes of the 
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vortex soliton with TC=5 (Fig. 2(e)). These graphs show the different topological charges 

contained in these two solutions, and they confirm a well-defined discrete vortex 

structure. 

 

Fig. 4 Surface vortex solitons at different lattice interfaces: (a) V0s=2.51, V0h=2.5; 

(b) V0s=2.53, V0h=2.5; (c) V0s=2.55, V0h=2.5; (d) V0s=2.5, V0h=2.51;  

(e) V0s=2.5, V0h=2.53; (f) V0s=2.5, V0h=2.55. 

Also, we want to put more attention to the investigation of different lattice interfaces 

(Fig. 4). We consider few interfaces with different intensities of square and hexagonal 

lattice parts. Again, we choose the input ring vortex beam to cover the lattice sites 

adjacent to the square lattice part of the interface (as in Fig. 1(a)). 

 

Fig. 5 Surface vortex solitons with six lobes. Input vortex beam is shown at the lattice 

interface (a), with the layout of the lattice beams indicated by open circles. 

(e) Power diagram for the existence of six-lobe surface vortex solitons. The 

corresponding intensity distributions for different vortex solitons are presented in 

(b), (c) and (d); the lines depict the lattice interface. Parameters are as in Fig. 1. 



80 D. JOVIĆ, A. PIPER, D. TIMOTIJEVIĆ 

One can see that various lattice intensities in the square lattice part could drastically 

change the shape of the solution (Fig. 4 (a)-(c)), but it is not the case for various lattice 

intensities in the hexagonal lattice part (Fig. 4 (d)-(e)). 

Next, we choose the input ring vortex beam to cover the lattice sites adjacent to the 

hexagonal lattice part of the interface (Fig. 5(a)). Figure 5 presents the six-lobe discrete 

vortex solutions at the interface separating square and hexagonal lattice: the characteristic 

outcomes are shown in Fig. 5 (b), (c) and (d). The corresponding power diagram is 

presented for six-lobe states in Fig. 5(e). The symmetric interface vortex solitons with six 

lobes can exist for lower values of the propagation constant µ. But increasing the values 

of propagation constant, one can observe asymmetric solutions with higher intensity lobes 

in the hexagonal lattice part of the interface. Investigating the stability of such solutions, 

we observed that symmetric kinds of six-lobe vortex solitons are stable during 

propagation and can exist for long propagation distances. The asymmetric solutions show 

oscillations or dynamical instabilities during propagation. 

 

Fig. 6 Six-lobe surface vortex solitons with different topological charges: intensity 

distributions (the first row) and corresponding phase distributions (the second 

row). Parameters: µ=5.2, other parameters are as in Fig.1. 

The influence of various topological charges on the six-lobe interface vortex solitons 

is also considered (Fig. 6). The same input ring vortex beam as in Fig. 5(a) is used but 

with different topological charges TC. As before, we choose topological charges from 1 

to 5. For the input vortices with TC=1-4 one can observe six-lobe vortex states with the 

same shape but different phase distributions. Different intensity distribution shape is visi-

ble for the vortex with TC=5. Investigating the stability of such vortex solitons, we ob-

serve regular oscillations for very long distances. 

Also, we compare our results to the vortex solitons located in the bulk of the square 

and hexagonal lattices. Using the same vortex as the input we observed typical four-lobe 

in the square and six-lobe solitons in hexagonal lattices. If one compares power P for the 

corresponding values of propagating constant μ, we observed the lowest values for vortex 

solitons in square lattice, followed by the interface vortex solitons and then in the hexago-

nal lattice. This also means the same order of the P(μ) diagrams. 

Finally, we discuss in more details the (in)stability of interface vortex solutions. Stable 

solutions are observed in the form of six-lobes for very long propagation distances, for 
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lower values of propagation constant µ. Five-lobe solutions with lower powers are stable 

only for short propagation distance, but increasing power or TC they show regular oscil-

lations such that neighboring lobes exchange power and then very irregular oscillations. 

The most illustrative cases of interface vortex solitons are presented in figure 7 along the 

propagation distance. Figure 7(a) shows typical behavior of symmetric six-lobe solutions 

during propagation. In the case of five-lobe solitons, we present the behavior of solutions 

for TC=1 (Fig. 7(b)) and TC=5 (Fig. 7(c)). During propagation, neighboring lobes ex-

change power and then irregular oscillations take place and they are more pronounced for 

solution with TC=5. 

 

Fig. 7 Typical interface vortex solitons in propagation. The six- and five-lobe solitons are 

shown along the propagation direction for 200 mm. The parameters are the same 

as in: (a) Fig. 5(b), (b) Fig. 2(a), (c) Fig. 2(e). 

4. CONCLUSIONS 

We have studied surface vortex solitons at the interface separating square and trian-

gular photonic lattices, and revealed the existence of novel types of discrete vortex sur-

face solitons in the form of five-lobe solution. We have developed a concise picture of 

different scenarios of the vortex solutions behavior, and investigated their stability. Vari-

ous vortices with different topological charges are considered, as well as various lattice 

interfaces with different lattice intensities. Beside the stable six-lobe discrete surface modes 

propagating for long distances, we have observed various oscillatory vortex surface solitons, 

as well as dynamical instabilities of different kinds of solutions. Dynamical instabilities 

occur for higher values of the propagation constant, or at higher beam powers. 
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VORTEKSNI SOLITONI NA GRANICI FOTONSKIH REŠETKI 

Korišćenjem numeričke analize pokazano je postojanje vorteksnih solitona na granici koja deli 

dve različite fotonske rešetke. Razmatrani su uslovi za postojanje diskretnih vorteksnih stanja na 

ovakvoj granici i izučavana je njihova stabilnost. Pronađen je novi oblik površinskih vorteksnih 

solitona sa pet pikova. Takođe su izučavana različita topološka naelektrisanja i fazne strukture 

ovakvih rešenja, kao i uticaj različitih intenziteta rešetki. Pronađena su i rešenja u obliku 

diskretnih solitona sa šest pikova. Za manje snage ovakva rešenja su stabilna tokom propagacije, 

ali za veće snage ona osciluju na taj način da razmenjuju snagu između susednih pikova, ili 

pokazuju dinamičke nestabilnosti. 

Ključne reči: vorteks, fotonska rešetka, površinski solitoni 


