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Abstract: Linear feedback shift register (LFSR) is an important component of the cyclic redundancy
check (CRC) operations and BCH encoders. This thesis presents a mathematical proof of existence of a
linear transformation to transform LFSR circuits into equivalent state space formulations. This
transformation achieves a full speed-up compared to the serial architecture at the cost of an increase in
hardware overhead. This method applies to all irreducible polynomials used in CRC operations and BCH
encoders. A new formulation is proposed to modify the LFSR into the form of an CRC filter. We propose
a novel high speed parallel LFSR architecture based on parallel Infinite Impulse Response (CRC) filter
design, pipelining and retiming algorithms. The advantage of proposed approach over the previous
architectures is that it has both feedforward and feedback paths. We further propose to apply combined
parallel and pipelining techniques to eliminate the fanout effect in long generator polynomials. The
proposed scheme can be applied to any generator polynomial, i.e., any LFSR in general. A comparison
between the proposed and previous architectures shows that the proposed parallel architecture achieves
the same critical path as that of previous designs with a reduced hardware cost.

I. INTRODUCTION

Communication standards continue to be defined
that push the bar higher for throughput. For
example, 10 Gbps IEEE 802.3ak was standardized
in 2003, and recently 100 Gbps IEEE 802.3ba is
standardized in 2010. In order to support these high
throughput requirements at a reasonable frequency,
parallel architectures are required. At the same
time, the power consumption and hardware
overhead should be kept to a minimum. The
research in this thesis is directed towards designing
high throughput architectures for two key
components of the modern communication
standards, CRC/BCH encoders and Fast Fourier
Transform (FFT). Cyclic Redundancy Check
(CRC) is widely used in data communications and
storage devices as an efficient way to detect
transmission errors. Examples of digital
communication standards that employ CRC include
Asynchronous Transfer Mode (ATM), Ethernet
(IEEE 802.3), WiFi (IEEE 802.11) and WiMAX
(802.16). The Bose-ChaudhuriHochquenghem
(BCH) codes are one of the most powerful
algebraic codes and are extensively used in modern
communication systems. Compared to Reed-
Solomon codes, BCH codes can achieve around
additional 0.6dB coding gain over the additive
white Gaussian noise (AWGN) channel with
similar rate and codeword length. Many
applications of BCH codes such as long-haul
optical communication systems used in
International Telecommunication Union-
Telecommunication Standardization sector (ITU-T)
G.975, magnetic recording systems, solid-state
storage devices and digital communications require
high throughput as well as large error correcting
capability. Hence, BCH codes are of great interest

for their efficient and high speed hardware
encoding and decoding 1 2 implementation. The
BCH encoders and CRC operations are
conventionally implemented by a linear feedback
shift register (LFSR) architecture. While such an
architecture is simple and can run at high
frequency, it suffers from serial-in and serial-out
limitation. In optical communication systems,
where throughput over 1 Gbps is usually desired,
the clock frequency of such LFSR based encoders
cannot keep up with data transmission rate and thus
parallel processing must be employed. Doubling
the data width, i.e two parallel architecture doesn’t
double the throughput, the worst case timing path
becomes slower. Since the parallel architectures
contain feedback loops, pipelining cannot be
applied to reduce the critical path. Another issue
with the parallel architectures is hardware
complexity.

II. LITERATURE SURVEY

In order to meet the increasing demand on
processing capabilities, much research has been
carried out on parallel architectures of LFSR for
CRC and BCH encoders. In [5], first serial to
parallel transformation of linear feedback shift
register was described and was first applied to CRC
computation in [6]. Several other approaches have
been 6 recently presented to parallelize LFSR
computations [7], [8], [9], [10].

A novel parallel CRC architecture based on state
space representation is proposed in the literature.
The main advantage of this architecture is that the
complexity is shifted out of the feedback loop. The
full speedup can be achieved by pipelining the
feedforward paths. A state space transformation has
been proposed to reduce complexity but the
existence of such a transformation was not proved
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and whether such a transformation is unique has
been unknown so far. In this thesis, we present a
mathematical proof to show that such a
transformation exists for all CRC and BCH
generator polynomials. We also show that this
transformation is non-unique. In fact, we show the
existence of infinite such transformations and how
these can be derived. We then propose novel
schemes based on pipelining, retiming and look
ahead computations to reduce the critical path in
the parallel architectures based on parallel and
pipelined CRC filter design.

III. BASIC LINEAR FEEDBACK SHIFT
REGISTERS

CRC computations and BCH encoders are
implemented by using Linear Feedback Shift
Registers (LFSR)[1], [2], [3]. A sequential LFSR
circuit cannot meet the speed requirement when
high speed data transmission is required. Because
of this limitation, parallel architectures must be
employed in high speed applications such as optical
communication systems where throughput of
several gigabits/sec is required. LFSRs are also
used in conventional Design for Test (DFT) and
Built in Self Test (BIST) [4]. LFSRs are used to
carry out response compression in BIST, while for
the DFT, it is a source of pseudorandom binary test
sequences. A basic LFSR architecture for Kth order
generating polynomial in GF(2) is shown in Fig.
2.1. K denotes the length of the LFSR, i.e., the
number of delay elements and g0, g1, g2, ..., gK
represent the coefficients of the characteristic
polynomial. The characteristic polynomial of this
LFSR is

g(x) = g0 + g1x + g2x 2 + ... + gKx K

Figure 1: Basic LFSR architecture

where g0, g1, g2, ..., gK ∈ GF(2). Usually, gK =
g0 = 1. In GF(2), multiplier elements are either
open circuits or short circuits i.e., gi = 1 implies
that a connection exists. On the other hand gi = 0
implies that no connection exists and the
corresponding XOR gate can be replaced by a
direct connection from input to output. Let u(x), for
x = 0, 1, ...N ∈− 1, u(x)  GF(2), 0 ≤ n ≤ N − 1 be
input sequence of length N. Both CRC computation
and BCH encoding involve the division of the
polynomial u(x)x K by g(x) to obtain the
remainder, Rem(u(x)x K)g(x) . During the first N
clock cycles, the N-bit message is input to the
LFSR with most significant bit (MSB) first. At the
same time, the message bits are also sent to the
output to form the BCH encoded codeword. After
N clock cycles, the feedback is reset to zero and the

K registers contain the coefficients of Rem(u(x)x
K)g(x) . In BCH encoding, the remaining bits are
then shifted out bit by bit to form the remaining
systematic codeword bits. The throughput of the
system is limited by the propagation delay around
the feedback loop, which consists of two XOR
gates. We can increase the throughput by
modifying the system to process some number of
bits in parallel.

IV. PROPOSED METHOD

4.1 State Space Representation of LFSR

A parallel LFSR architecture based on state space
computation has been proposed in [13]. The LFSR
shown in Fig. 1 can be described by the equation
x(n + 1) = Ax(n) + bu(n); n >= 0 with the initial
state x(0) = xo. The K-dimensional state vector
x(n) is given by  x(n) = [x0(n) x1(n)...xK−1(n)]T
and A is the K × K matrix given by

The K × 1 matrix b is  b = [g0 g1...gK−1] T .
The output of the system is the remainder of the
polynomial division that it computes, which is the
state vector itself. We call the output vector y(n)
and add the output equation y(n) = Cx(n) to the
state equation in (2.1), with C equal to the K × K
identity matrix. The coefficients of the generator
polynomial g(x) appear in the righthand column of
the matrix A. Note that, this is the companion
matrix of polynomial g(x) and g(x) is the
characteristic polynomial of this matrix. The initial
state xo depends on the specific definition of the
CRC for a given application.

4.2 State Space Transformation

A linear transformation has been proposed [13] to
reduce the complexity in the feedback loop. The
state space equation of L-parallel system with an
explicit output equation is described as

x(mL + L) = ALx(mL) + BLuL(mL); y(mL) =
CLx(mL)

where CL = I, the K × K identity matrix. The
output vector y(mL) is equal to the state vector
which has the remainder at m = N/L. Consider the
linear transformation of the state vector x(mL)
through a constant non-singular matrix T, i.e.,
x(mL) = Txt(mL)

Given T and its inverse, we can express the state
space equation (2.5) in terms of the state vector
xt(mL), as follows: xt(mL + L) = ALtxt(mL) +
BLtuL(mL); y(mL) = CLtxt(mL)

where ALt = T −1ALT; BLt = T −1BL; CLt = T
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Figure 2: Modified LFSR Architecture using state
space transformation

Figure 3: Modified feedback loop of Fig. 2

and T is the transformation matrix. The parallel
LFSR architecture after the transformation is
shown in Fig. 2.5 and the modified feedback loop
in Fig. 2.6. We can observe from the figure that if
ALt is a companion matrix, then the complexity of
the feedback loop will be same as that of the
original LFSR. If there exists a T such that ALt is a
companion matrix, then the complexity in the
feedback loop comes down. It is evident that (2.6)
represents a similarity transformation and we can
state that there exists a T such that ALt is a
companion matrix if and only if AL is similar to
companion matrix. The following theorem proves
that AL is similar to a companion matrix provided
the generator polynomial is irreducible. The latter
condition is met for all CRC and BCH codes.

V. SIMULATION RESULTS

fig 4 Design Summary

Fig 5 RTL SCHEMATIC

Fig 6 LFSR Based CRC-32

Fig 7 Time delay

VI. CONCLUSION

This paper has presented a complete mathematical
proof to show that a transformation exists in state
space to reduce the complexity of the parallel
LFSR feedback loop. This leads to a novel method
for high speed parallel implementation of linear
feedback shift registers which is based on parallel
CRC filter design. Our design can reduce the
critical path without increasing the hardware cost at
the same time. The design is applicable to any type
of LFSR architecture. Further we show that using
combined pipelining and parallel processing
techniques of CRC filtering, critical path in the
feedback part of the design can be reduced. The
large fan-out effect problem can also be minimized
with some hardware overhead by retiming around
those particular nodes.
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