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Abstract. The interfacial mechanisms of the stress-strain localization in non-homogeneous 

media are investigated, using a steel substrate - iron boride coating composition subjected 

to tension as an example. A dynamic boundary-value problem in a plane-strain 

formulation is solved numerically by the finite-difference method. The curvilinear 

substrate-coating interface geometry is assigned explicitly in calculations and is in 

agreement with experiment. Constitutive relations accounting for an elastic-plastic 

response of the isotropically-hardened substrate and for a brittle fracture of the coating 

are employed. Three stages of the plastic strain localization in the steel substrate are 

found to occur due to the irregular interface geometry. Distributions of the stress 

concentration regions in the coating are shown to be different at different stages. The 

stress concentration in the coating is demonstrated to increase nonlinearly during the 

third stage. The location of fracture is found to depend on the strength of the coating. 
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1. INTRODUCTION 

Stress-strain localization phenomena have been much studied both experimentally and 

theoretically (see, for instance, [1-3]) and may be due to different physical processes 

operating at different scale levels. 

At the microlevel, dislocations, slip bands, dislocation cells, fragmented structures, etc., 

are formed in single crystals and in grains of polycrystals. It is ab initio geometry associated 

with the lattice discreteness which is responsible for the stress-strain localization in this case. 

The macroscopic stress-strain localization may be due to the geometry of mechanically 

contacting elements or specimens even at the elastic stage of loading [4], for instance, due to the 
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shape of indenters [5]. A prominent example of plastic strain localization is a familiar necking 

phenomenon. In simulating this deformation instability observed in homogeneous specimens 

under uniaxial loading, the form of the plastic potential [6] generally plays a decisive role. 

Changes in the yield surface under plastic deformation result from competitive strain hardening 

and softening processes and can be described with the use of a phenomenological approach or 

physically-based dislocation theories. For example, in [7], strain localization occurs where the 

strain hardening coefficient reaches its critical value, and in [8] the softening rate is a decisive 

factor for the onset of localization. Another famous example of the macroscopic strain 

localization is the propagation of Luders bands. A physical substantiation of the process is 

found to be of microscopic origin and is attributed to the dynamic strain aging effects. A 

gradual involvement of local regions of the material in plastic deformation is associated with 

the mechanism for dislocation locking by interstitial atom atmospheres. The dislocations pinned 

in this way require extra energy to tear away and continue in motion. A macroscopic collective 

effect of the dislocation behavior gives rise to formation and slow motion of a localized plastic 

deformation front, resulting in a yield drop and a yield plateau in the macroscopic stress-strain 

curve. A large number of experimental (see, e.g., [9-12]) and theoretical studies [12-16] have 

dealt with the Luders band and Portevin–Le Chatelier effects. 

The mesoscopic stress-strain localization is associated with different interfaces between 

microstructural components: interfaces between a matrix and reinforcing particles in 

composite materials, different phases of alloys, a coating or a hardened surface layers and 

base material, grain or pore boundaries, etc. The curvilinear interface is a major factor 

responsible for the occurrence of rotational deformation modes and local geometrical stress 

concentrations. A number of papers was devoted to analytical modeling of, e.g., interface 

curvature effects [17]. An abundance of investigations deals with numerical simulations 

where an explicit account is taken of the material microstructure (see, e.g., [18-21]). 

Different constitutive models have been developed to describe the mechanical response of 

individual microstructural components. The goal of these and related investigations is to 

study and gain insight into the mechanisms for and the special features of the stress-strain 

localization in the vicinity of interfaces and to examine their effects on the macroscopic 

mechanical properties of materials. 

In this work, we investigate a special feature of the mesoscopic stress-strain localization 

associated with a self-consistent evolution of stress-strain patterns in a nonhomogeneous 

material. Particular emphasis is placed on the fact that the geometrical stress concentration 

regions appearing in the vicinity of curvilinear interfaces and initially randomly distributed over 

the bulk of the material tend to interact with each other. Due to an ongoing competition of strain 

hardening and stress relaxation during plastic deformation, a system of stress concentration 

regions evolves under the action of external forces, approaching equilibrium. The evolution 

gives rise to stress redistribution. New regions favorable for a rapid stress growth are formed, 

and there are other regions where the previously formed stress concentrations are suppressed. 

This is not believed to be a stochastic or spontaneous process; rather, it is predetermined from 

the outset and governed by the characteristics of the non-homogeneous medium. Three 

controlling factors of critical importance are involved here: (1) the difference in the mechanical 

properties of contacting materials (reinforcing particles, matrices, coatings, substrates, 

interlayers, polycrystalline grains, etc.), (2) the interfacial curvature, and (3) the parameters 

of external loading. The challenges of mathematical modeling and numerical simulations are to 
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reveal and investigate the individual effect of each of the factors on the location of maximum 

stress-strain concentration regions in which fracture occurs at a certain instant of loading time. 

The aim of the present paper is to investigate the mesoscopic stress-strain localization 

phenomenon, using uniaxial loading of a coated material as an example. The major factor 

responsible for the evolution of a deformable system such as this is a curvilinear coating-

substrate interface. Special attention is given to the influence of the plastic strain localization 

in the substrate on the location and evolution of maximum stress concentrations in the 

elastic-brittle coating. 

2. STATEMENT OF THE PROBLEM 

Let us consider the microstructure of a steel specimen subjected to surface hardening by 

a diffusion borating technique. This technology enables high-strength coatings with needle-

shaped high-curvature profiles to be produced (Fig. 1a). The technique is used for repairing 

and strengthening the surface of machine parts and structural components. The coated steels 

take on increased surface hardness and high resistance to impact loads, friction and abrasive 

wear. In our earlier works [15, 22], we have examined microstructures of this type in some 

detail. Studies were made on different aspects of deformation and fracture of coated 

materials, including Luders band propagation, coating thickness and strain rate effects. 

 

Fig. 1 Experimental [24] (a) and model microstructures (b) and a calculated microscopic 

stress-strain curve (c) for a specimen with a curvilinear coating-substrate interface 

In this contribution, particular emphasis is placed on an analysis of the evolution of stress 

concentration in the vicinity of the interface. A total system of equations for simulating the 

deformation of a coated material includes mass and momentum conservation laws, strain 

relations and constitutive equations describing the material response [15, 23]. In the case at 

hand, the use is made of models for elastic-plastic behavior of the steel substrate and for a 

brittle fracture of the iron-boride coating. A dynamic boundary-value problem in a plane 

strain formulation is solved numerically by the finite difference method [22, 23, 25]. 

The boundary conditions for the left- B1 and right-hand surfaces B3 of the computational 

domain simulate uniaxial tension of the coated material along the Х direction, while those 
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for the top B2 and bottom surfaces B4 correspond to the conditions for free surface and 

symmetry, respectively, (Fig. 1b). 

The steel substrate exhibits an elastic-plastic behavior. The plastic flow rule ij
p
ij

S   

is associated with a yield surface: 

 
)( р

eqeq 
, (1) 

where ζeq is the equivalent stress and ε
p
eq is the cumulative equivalent plastic strain, ε

p
ij is 

the plastic strain tensor components and λ is a scalar parameter equal to zero in the elastic 

region. 

The following function satisfying the experimental data is used to describe the isotropic 

hardening of mild steel: 

 0( ) ( )exp( / )p p p
eq s s eq r          , (2) 

where ζs and ζ0 are the ultimate strength and the initial yield point, respectively, and ε
p

r is 

a characteristic value of the equivalent plastic strain. 

Cracking of the coating was examined, using a maximum distortion energy criterion. 

In [15, 22, 23] the foregoing modified fracture criterion employed in combination with an 

explicit account of the material microstructure is shown to provide an adequate direction 

of crack propagation in brittle compounds. According to the criterion, fracture occurs 

where the equivalent stress reaches limiting values Cten or Ccom depending on the type of 

the stressed state (tension or compression) found in a given local region: 

 








0for,C

0for,C

kkcom

kkten
eq

 (3) 

Here Cten and Ccom are the strength of iron boride under tension and compression. 

The fracture criterion given by Eq. (3) accounts for the following factors. A local coating 

region subjected to tension (εkk>0) fails where the local equivalent stress reaches a value 

Cten. It is assumed that for the failed coating regions both the deviator Sij=0 and the pressure 

P=-Kεkk=0. For compressive regions (εkk<0), the limiting fracture surface in stress space is 

restricted by Ccom. In this case, the failed coating material offers no resistance to shear alone 

(Sij=0). 

The mechanical properties of steel substrate and iron boride coating are listed in Table 

1. Note that K and µ denote the respective bulk and shear moduli. 

Table 1 The mechanical properties of the steel and iron-boride [24, 26] 

 K, 

GPa 
, 

GPa 

s,  

MPa 

0,  

MPa 

p
r  Cten,  

GPa 

Ccom,  

GPa 

Substrate 133 80 395 174 0,093 – – 

Coating 200 140 – – – 1.1 4 
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3. COMPUTATIONAL RESULTS 

Figure 1c depicts a homogenized stress-strain curve for a coated material subjected to 

tension. The stress is calculated as an equivalent stress averaged over the computational 

domain:  
 N,1k

k

N,1k

kk
eq ss , where N is the number of computational cells and s

k
 

is the k-th cell area. Strain ε corresponds to the elongation of the computational domain 

along the X-axis: ε =(L-L0)/L0, where L0 and L are the initial and the current specimen 

lengths. 

There are two main deformation stages in the stress-strain curve: E and P denote 

elasticity and plasticity, respectively. At the elastic stage, both the steel substrate and the 

boride coating are strained elastically. Because of the difference in the elastic moduli 

between the coating and the substrate, stress and elastic strain distributions exhibit a 

nonuniform pattern. Local regions of stress concentration occur in the coating material 

near the coating-substrate interface (Fig. 2, regions 1−9). The stress value in these regions 

is dictated by the local interfacial geometry. At the plastic stage, the coating still exhibits 

an elastic behavior, whereas the substrate deforms plastically. 

 

Fig. 2 Equivalent stress concentrations in the vicinity of the coating-substrate interface at the 

elastic deformation stage: the total strain of the coated material ε is 0.03 % (see Fig. 1c) 

Let us examine the evolution of the most powerful stress concentrations (peaks 1–5 in Fig. 

2) formed in the elastic coating. Figs. 3 and 4 show the initial evolution period including stage 

E and substages P1 and P2. The plots in Fig. 3a show the manner in which the equivalent 

stresses at the peaks ζeq
i
 vary with the specimen elongation. By and large, the growth rate is 

different for different peaks (1−5), but the stresses are seen to exhibit a nearly linear growth. It 

should be pointed out that both in Fig. 3a and in the stress-strain curve (Fig. 1c) the deformation 

stages and substages are not clearly visible. However, they are quite discernible in the case 

where the relative stress level is examined (Fig. 3b) 
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1  is the magnitude of the equivalent stress averaged 

over the 5 peaks. 

As seen from Fig. 3b, δζeq is nearly constant during elastic deformation of the coated 

steel. This means that the stress values at peaks 1–5 increase at the same rate, and the 

stress patterns remain qualitatively unchanged (compare Figs. 2 and 4a). At stage E, there 

is an average stress level in regions 1−3, whereas the stress values ζ
4
eq and ζ

5
eq are by 5 % 

higher and by 5% lower than 〈ζ
i
eq〉, respectively (see view A in Figs. 2 and 3b). Three 

stress peaks are formed in region 4 of the highest stress concentration. A maximum 

equivalent stress is found to be in local region 4.1 (Fig. 2). The elastic stage continues 

until the total strain amounts to 0.06 % (Figs. 3b and 1c). 

 

Fig. 3 Evolution of maximum equivalent stresses (see Fig. 2) in regions 1−5 (a) and 

their deviations from the average value 〈ζ
i
eq〉 (b) during elastic stage 1 and 

plastic substages P1 and P2 of the coated material deformation 

On further loading, the steel substrate deforms plastically, with substages P1 and P2 

being well-pronounced in strain ranges of 0.06–0.12 and 0.12–0.24 %, respectively (Fig. 

3b). At substage P1, the steepest rise in the maximum stress is observed in region 4 (Figs. 

3b and 4). Remarkably, out of 3 peaks located in this region the equivalent stress 

increases where its magnitude is at a minimum at the elastic stage (Fig. 2, arrows 4). To 

the contrary, in regions 4.1 and 4.2, the local stress rate slows down (Fig. 4). The same 

conclusion suggests itself for region 5, where the stress-strain localization is suppressed 

(Figs. 3 and 4). In regions 1−3, the stress growth rate is still close to the average level 

〈ζ
i
eq〉, slowing down late at substage P1. 

At substage P2, the qualitative evolution pattern is, on the whole, retained: stresses δζ
2
eq 

and δζ
3
eq continue to decrease at a higher rate, whereas δζ

4
eq and δζ

5
eq continue to increase and 

decrease, respectively, but the rate of change is lower (Fig. 3b) than at substage P1. The only 

exception is that a characteristic feature inherent to this deformation stage is a change in the 
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slope of the curve for stress peak 1. This means that the stress-strain localization in region 1 is 

enhanced (Fig. 3b, boxes). 

 

Fig. 4 Evolution of the equivalent stress pattern at substages P1 and P2 of the coated 

material deformation. The total strain   = 0.046 (a), 0.06 (b), 0.07 (c), 0.11 (d), 

and 0.2% (e) (see Figs. 1c and 3). Video data file “fig4.avi” is available online 

The simulation results were analyzed to show that the substages of the stress peak 

evolution in the boride coating were associated with a specific character of plastic strain 

localization in the steel substrate (Figs. 5 and 6). At substage P1, the plastic strains 

nucleating near the interface cover the substrate material in a step-by-step manner. First, 

plastic shear strains arise in the steel material at the roots of boride teeth (Fig. 5a) and 

propagate deep into the material, filling up the space between the teeth (Fig. 5b−d), with 

the major part of the substrate material being in the elastic state. Then localized shear 

bands start to form in the bulk (Fig. 5e−f). The bands originate near the interface 

asperities (mainly at the tooth humps) and are localized in conjugate directions at an angle 

of ≈45 degrees to the tensile direction, causing an abrupt change in the slope of the 

macroscopic stress-strain curve (Fig. 1c). Substage P1 is over when most of the substrate 

material transforms into a plastic state, with the band system being formed completely. 

At substage P2 (Fig. 5f, Fig. 6a), the band distribution changes but only slightly, while 

the plastic strain localization in the bands is enhanced to form a clearly visible shear band 

system. This ordering of the shear bands is due to the competing stress relaxation and 

strain hardening processes in local regions of the substrate material. 
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To summarize the foregoing simulation results for the initial evolution period, the 

stress growth rate in local near-interface regions of the elastic iron boride coating is 

constant at stage E, linearly increases in region 4 and slows down in region 5 at substages 

P1 and P2 due to plastic strain nucleation and shear band formation in the steel substrate. 

 

Fig. 5 Equivalent plastic strain patterns for total strain   = 0.06 (a), 0.07(b), 0.08 (c), 

0.09(d), 0.1, (e) and 0.11 % (f); substage P1 

Quite a different evolution pattern is seen at substage P3 characterized by nonlinear 

stress-strain localization in the vicinity of the coating-substrate interface. Much as at 

substages P1 and P2, this is due to the special features of the plastic strain localization in 

the substrate material. Analysis of the obtained results shows that the conjugate shear 

bands intersecting at an angle of 45 degree are smeared at substage P3. The plastic strain 

localization mechanism in the steel substrate changes: due to a decrease in the local strain 

hardening coefficient in near-interface regions, the localization in the shear bands (Fig. 

6a) gives way to the localization along the coating-substrate interface alone (Fig. 6b). As 

a consequence, the evolution of the stress concentration acquires a reverse pattern. A fast 

nonlinear rise of the stress peak is observed in region 5 (Figs. 7 and 8), i.e., in the region 

where the stress-strain localization was hitherto suppressed (Figs. 3 and 4). At the same 

time, the seemingly most powerful stress peak in region 4 that dominated at previous 

stages is seen to weaken rapidly. At a certain instant of loading time (see inverted 

triangles in Fig. 8b), the stress growth rate for ζ
4
eq becomes the lowest among the ζ

i
eq 

rates, being inferior in magnitude even to the rates of initially less-developed ζ
2
eq and 

ζ
3

eq. Equivalent stress ζ
1
eq increases steadily at an average rate of 〈ζ

i
eq〉 and will exceed 

ζ
4

eq on further loading when the curves 1 and 4 in Fig. 8b intersect. 
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Fig. 6 Equivalent plastic strains for the total strain   = 0.24 (a) and 2.41% (b); substage P3 

 

Fig. 7 Evolution of the equivalent stress pattern at substage P3 of the coated material 

deformation. The total strain   = 0.24 (a), 0.51(b), 0.81(c), 1.71(d) and 2.61% (e). 

Unlike the quasi-linear stress growth in regions 1−4, the dynamics of the stress-strain 

localization in region 5 is nonlinear (Fig. 8a) with the highest local stress growth rate 

(Fig. 8b). It is in this region where the local interfacial geometry is seen to be the most 

favorable for the plastic strain localization along two neighboring boride tooth sides. In 

other words, these sides are oriented in the directions lying most closely to those of 

maximum tangential stresses. This fact enhances the straining in region 5 and causes the 

most rapid increase in the stress concentration in the coating as compared to regions 1–4. 
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Fig. 8 Evolution of maximum equivalent stresses (see Figs. 2 and 8) in regions 1−5 

(a) and their deviations from the average value <σi
eq> (b) at substage P3 of the coated 

material deformation 

 

Fig. 9 Equivalent stress patterns showing the fracture localization for varying coating 

strength of 1.1 (a) and 21GPa (b) 

Thus the maximum stress concentration developing in the coating along the coating-

substrate interface is found at different points depending on the stage of the coated material 

deformation: maximum equivalent stresses are observed in regions 4.1, 4 and 5 at stage E, 

substages P1-P2 and substage P3, respectively. This means that the fracture site can vary 

with the deformation stage. In other words, for a given microstructural geometry and 

mechanical properties of the constituent materials, the coating strength determines the 

fracture location. The numerical simulation results illustrating this conclusion are presented 

in Fig. 9. Two calculations for varying coating strength were performed to show the 

difference in the fracture patterns. A crack in the coating originates in a near-interface region 

of a maximum stress concentration and propagates perpendicular to the tensile direction 

towards the free surface that corresponds to the experiment (Fig. 1a). For a low-strength 

coating, cracking occurs in region 4 (Fig. 9a) at substage P2 for the total strain  = 0.2 % 

(Figs. 3 and 4), whereas a high-strength coating fails (Fig. 9b) late at substage P3 for  = 2.2 % 

under the maximum local stress conditions in region 5 (Figs. 7 and 8). 
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4. CONCLUSION 

A mesomechanical analysis of the stress-strain localization and fracture in iron boride 

coating – steel substrate composition under uniaxial tension has been performed. A 

dynamic boundary-value problem was solved numerically by the finite-difference method. 

The elastic-brittle and elastic-plastic properties were assigned for the coating and substrate 

materials, respectively. A curvilinear coating-substrate interface corresponded to the 

configuration found experimentally and was accounted for explicitly in calculations. 

Due to the difference in the elastic moduli between steel and boride, local regions of 

the stress-strain localization were shown to arise along the interface even at the elastic 

stage of the coated material deformation. The stress concentration in the coating regions 

depends on the local interfacial geometry. Redistribution of the stress concentration peaks 

discussed in this paper is not found to have occurred at the elastic stage. 

Three stages of plastic deformation in the steel substrate have been revealed. The first 

stage corresponds to the nucleation of plastic strains in local near-interface regions and 

their propagation deep into the steel material to involve the internal regions in plastic 

flow. The second stage represents formation of well-defined shear bands oriented at an 

angle of 45 degrees to the loading direction and plastic strain localization in the bands. At 

the third stage, the shear bands are smeared, and the plastic flow is localized along the 

curvilinear interface alone. 

The stage-by-stage change in the mechanisms for the plastic strain localization in the steel 

substrate is responsible for the stress concentration redistribution in the near-interface coating 

regions, the location of maximum equivalent stress is found to vary with the deformation stages. 

Consequently, the fracture localization depending on the critical equivalent stress was found to 

be affected by the coating strength. Notably, the stress-strain localization at the third stage was 

found to develop in a nonlinear manner and was seen to occur where it was suppressed at 

previous stages. 

The evolution of the stress-strain localization suggests the general conclusions that are 

not limited to the particular case of the coated material considered in this work. To prove 

or reject this assumption, further investigations are warranted into the effects of the 

mechanical properties of constituents, interfacial geometry and loading conditions on a 

special character of the nonlinear stress-strain localization in composite materials. 
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