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FINSLER SPACE SUBJECTED TO A KROPINA CHANGE WITH AN
h-VECTOR

M. K. Gupta∗ and P. N. Pandey

Abstract. In this paper, we discuss the Finsler spaces (Mn, L) and (Mn, ∗L), where ∗L(x, y)

is obtained from L(x, y) by Kropina change ∗L(x, y) = L2(x,y)
bi(x,y) yi and bi(x, y) is an h-vector

in (Mn, L). We find the necessary and sufficient condition when the Cartan connection
coefficients for both spaces (Mn,L) and (Mn, ∗L) are the same. We also find the necessary
and sufficient condition for Kropina change with an h-vector to be projective.
Keywords: Finsler space, Kropina change, h-vector.

1. Introduction

In 1984, C. Shibata [16] dealt with a change of Finsler metric which is called a β-

change of metric. A remarkable class of β-change is Kropina change ∗L(x, y) = L2(x,y)
bi(x) yi .

If L(x, y) is a metric function of a Riemannian space then ∗L(x, y) reduces to the metric
function of a Kropina space. Kropina metric was first introduced by L. Berwald
in connection with a two-dimensional Finsler space with rectilinear extremals and
was investigated by V.K. Kropina [8, 9]. Kropina metric is the simplest non-trivial
Finsler metric having many interesting applications in physics, electron optics with
a magnetic field, plants study for fungal fusion hypothesis, dissipative mechanics
and irreversible thermodynamics [1, 2, 3, 6]. In 1978, C. Shibata [15] studied some
basic local geometric properties of Kropina spaces. In 1991, M. Matsumoto obtained
a set of necessary and sufficient conditions for a Kropina space to be of constant
curvature [12].

H. Izumi [7], while studying the conformal transformation of Finsler spaces,
introduced the concept of h-vector bi, which is v-covariant constant with respect
to the Cartan connection and satisfies L Ch

ij bh = ρ hij, where ρ is a non-zero scalar

function, Ch
ij are components of Cartan tensor and hij are components of angular

metric tensor. Thus if bi is an h-vector then

(1.1) (i) bi|k = 0 , (ii) L Ch
ij bh = ρ hij .
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This gives

(1.2) L ∂̇ jbi = ρ hij .

Since ρ � 0 and hij � 0, the h-vector bi depends not only on positional coordinates
but also on directional arguments. Izumi [7] showed that ρ is independent of
directional arguments. M. Matsumoto [11] discussed the Cartan connection of
Randers change of Finsler metric, while B. N. Prasad [14] obtained the Cartan
connection of (Mn, ∗L) where ∗L(x, y) is given by ∗L(x, y) = L(x, y) + bi(x, y) yi, and
bi(x, y) is an h-vector. Present authors [4, 5] discussed the hypersurface of a Finsler
space whose metric is given by certain transformations with an h-vector. In this
paper we obtain the relation between the Cartan connections of Fn = (Mn, L) and
∗Fn = (Mn, ∗L) where ∗L(x, y) is obtained by the transformation

(1.3) ∗L(x, y) =
L2(x, y)

bi(x, y) yi
,

and bi(x, y) is an h-vector in (Mn, L).

The paper is organized as follows: In Section 2, we study how the fundamental
metric tensor and the Cartan tensor change by Kropina change with an h-vector.
The relation between the Cartan connection coefficients of both spaces is obtained
in the Section 3 and we find the necessary and sufficient condition when these
connection coefficients are the same. In Section 4, we find the necessary and
sufficient condition for the Kropina change with an h-vector to be projective.

2. The Finsler space ∗Fn = (Mn, ∗L)

Let Fn = (Mn, L) be an n-dimensional Finsler space equipped with the fundamental
function L(x, y). We consider a change of Finsler metric ∗L(x, y) which is defined
by (1.3) and have another Finsler space ∗Fn = (Mn, ∗L). If we denote bi yi by β then
the indicatory property of hij yields ∂̇iβ = bi. Throughout this paper, the geometric
objects associated with ∗Fn will be marked by the asterisk. We shall use the notation

Li = ∂̇iL = li , Lij = ∂̇i ∂̇ jL , Lijk = ∂̇k Lij , . . .

etc. From (1.3), we get

(2.1) ∗Li = 2 τLi − τ2 bi ,

(2.2) ∗Lij = (2τ − ρτ2) Lij +
2 τ2

β
mi mj ,

∗Lijk =(2τ − ρτ2) Lijk +
2 τ
β

(ρτ − 1) (miLjk +mjLik +mkLij)

− 2τ2

Lβ
(mimjlk +mjmkli +mkmilj) − 6τ2

β2 mimjmk ,
(2.3)
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where τ = L/β , mi = bi− 1
τ li. The normalized supporting element, the metric tensor

and Cartan tensor of ∗Fn are obtained as

(2.4) ∗li = 2 τli − τ2 bi ,

(2.5) ∗�i j = (2τ2 − ρτ3) �i j + 3τ4 bibj − 4τ3(libj + bilj) + (4τ2 + ρτ3)lil j ,

(2.6) ∗Cijk = (2τ2 − ρτ3) Cijk − τ
2

2 β
(4 − 3ρτ)(hijmk + hjkmi + hkimj) − 6τ2

β
mimjmk .

For the computation of the inverse metric tensor, we use the following lemma [10]:

Lemma 2.1. Let (mij) be a non-singular matrix and lij = mij + ninj. The elements li j of
the inverse matrix and the determinant of the matrix (li j) are given by

lij = mij − (1 + nkn
k)−1 ninj, det(li j) = (1 + nkn

k) det(mij)

respectively, where mij are elements of the inverse matrix of (mij) and nk = mkini.

The inverse metric tensor of ∗Fn is derived as follows:

∗�i j = (2τ2 − ρτ3)−1
[
�i j − 2τ

2b2τ − ρbi bj +
4 − ρτ

2b2τ − ρ (li bj + bi lj)

− 3ρb2τ3 − ρ2τ2 − 4b2τ2 − 2ρτ + 8
τ(2b2τ − ρ) li l j

]
(2.7)

where b is the magnitude of the vector bi = �i jbj.
From (2.6) and (2.7), we get

∗Ch
ij = Ch

ij −
(4 − 3ρτ)τ
2L(2 − ρτ)

(
hij mh+hh

j mi + hh
i mj

)
− 6τ

L(2 − ρτ)mimjmh

+
2τ bh − (4 − ρτ)lh

L(2 − ρτ)(2b2τ − ρ)
[
hij

{1
2

m2τ(4 − 3ρτ) − ρ(2 − ρτ)
}

+mimj

{
6τm2 + τ(4 − 3ρτ)

}]
.

(2.8)

3. Cartan connection of the space ∗Fn

Let C ∗Γ = ( ∗F i
jk,
∗N i

j ,
∗Ci

jk) be the Cartan connection for the space ∗Fn = (Mn, ∗L). Since
for a Cartan connection Li| j = 0, we obtain

(3.1) ∂ jLi = LirNr
j + LrF r

i j .
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Differentiating (2.1) with respect to xj, we get

(3.2) ∂ j
∗Li = 2τ ∂ jLi + 2Li ∂ jτ − τ2 ∂ jbi − 2τ bi ∂ jτ .

This equation may be written in tensorial form as

∗Lir
∗Nr

j +
∗Lr
∗F r

ij = 2τ (LirNr
j + LrF r

i j) +
2Li

β
(Nr

j Lr − τβ j − τNr
jbr)

− τ2(bi| j + ρLirNr
j + brF r

i j) −
2τ
β

bi(Nr
j Lr − τβ j − τNr

jbr) ,
(3.3)

where β j = β| j. If we put

(3.4) ∗F i
jk = F i

jk +D i
jk ,

then in view of (2.2), equation (3.3) may be written as

(3.5) (2τlr − τ2br) Dr
ij +
{
(2τ − ρτ2)Lir +

2τ2

β
mimr

}
Dr

0 j =
2τ2

β
miβ j − τ2bi| j ,

where the subscript ‘0’ denote the contraction by yi.

In order to find the difference tensor Di
jk, we construct supplementary equations

to (3.5). From (2.2), we obtain

∂k
∗Lij =(2τ − ρτ2) ∂kLij + Lij(2∂kτ − 2ρτ ∂kτ − τ2∂kρ)

+
2 τ2

β
mi ∂kmj +

2 τ2

β
mj ∂kmi + 2mimj

1
β2

(
2τβ ∂kτ − τ2 ∂kβ

)
.

(3.6)

From Lij|k = 0, equation (3.6) is written in the form

∗Lijr
∗Nr

k +
∗Lrj

∗F r
ik +

∗Lir
∗F r

jk =(2τ − ρτ2) {LijrN
r
k + LrjF

r
ik + LirF

r
jk}

+ Lij

{2
β

(1 − ρτ)(−τβk − τNr
kmr) − τ2ρk

}

+
2τ2

β
mi

{
F r

jkmr +Nr
kLjr

(
ρ − 1
τ

)
− 1
βτ

Nr
kljmr

}

+
2τ2

β
mj

{
F r

ikmr +Nr
kLir

(
ρ − 1
τ

)
− 1
βτ

Nr
klimr

}

+
2
β2 mimj

{
2τ(−τβk − τNr

kmr) − τ2(βk +Nr
kbr)
}
,
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where ρk = ρ|k = ∂kρ. In view of (2.2), (2.3) and (3.4), above equation is written as

(2τ − ρτ2) {LijrD
r
0k + LrjD

r
ik + LirD

r
jk} +

2τ2

β
mr(mjDr

ik +miDr
jk)

− 2τ2

β2 (mimjbr +mjmrbi +mrmibj)Dr
0k +

2τ
β
βkLij − 2ρτ2

β
βkLij

+
2τ2

β
(ρ − 1

τ
)(Ljrmi + Lirmj + Lijmr)Dr

0k +
6τ2

β2 βkmimj + τ
2ρkLij = 0.

(3.7)

Now we will prove:

Proposition 3.1. The difference tensor Di
jk is completely determined by the equations

(3.5) and (3.7).

To prove this, first we will prove a lemma:

Lemma 3.1. The system of algebraic equations

(i) ∗LirAr = Bi , (ii) ∗LrAr = B ,

has a unique solution Ar for given B and Bi.

Proof. It follows from (2.2) that (i) is written in the form

(3.8)
{
(2τ − ρτ2)

1
L

(�ir − lilr) +
2τ2

β
mimr

}
A r = Bi.

Contracting by bi, we get

{
(2τ − ρτ2)

1
L

(
br − 1

τ
lr
)
+

2τ2

β
m2 mr

}
A r = Bβ,

i.e.

(3.9) mr A r = Bβ
(2τ2 b2

β
− ρτ

2

L

)−1
,

where the subscript β denote the contraction by bi, i.e. Bβ = Bib
i.

Also from (2.1), equation (ii) is written in the form

(2τ lr − τ2br) Ar = B

i.e.

(3.10) τ2mrAr − τ lrAr = −B.
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Using (3.9) in (3.10), we get

lr A r = τ−1B + τBβ
(2τ2 b2

β
− ρτ

2

L

)−1
.

Then (3.8) is written as

�ir A r =
L

2τ − ρτ2 Bi+ li
{
τ−1B+τBβ

(2τ2 b2

β
− ρτ

2

L

)−1}− 2τ2

2 − ρτ mi Bβ
(2τ2 b2

β
− ρτ

2

L

)−1
.

This gives
(3.11)

A i =
L

2τ − ρτ2 Bi + li
{
τ−1B + τBβ

(2τ2 b2

β
− ρτ

2

L

)−1} − 2τ2

2 − ρτ mi Bβ
(2τ2 b2

β
− ρτ

2

L

)−1
,

which is the concrete form of the solution Ai.

We are now in a position to prove the proposition.
Taking the symmetric and anti-symmetric parts of (3.5), we get

2(2τlr − τ2br) Dr
ij +
{
(2τ − ρτ2)Lir +

2τ2

β
mimr

}
Dr

0 j

+
{
(2τ − ρτ2)Ljr +

2τ2

β
mjmr

}
Dr

0i =
2τ2

β
(miβ j +mjβi) − 2τ2Eij ,

(3.12)

and
{
(2τ − ρτ2)Lir+

2τ2

β
mimr

}
Dr

0 j −
{
(2τ − ρτ2)Ljr +

2τ2

β
mjmr

}
Dr

0i

=
2τ2

β
(miβ j −mjβi) − 2τ2Fij ,

(3.13)

where we put 2Eij = bi| j + bj|i and 2Fij = bi| j − bj|i.
On the other hand, applying Christoffel process with respected to indices i, j, k

in equation (3.7), we get

(2τ − ρτ2)
{
LijrD

r
0k + LjkrD

r
0i − LkirD

r
0 j

}
+ 2Dr

ik

{
(2τ − ρτ2)Lrj +

2τ2

β
mrmj

}

− 2τ
β

{
βk

(
(ρτ − 1)Lij − 3τ

β
mimj

)
+ βi

(
(ρτ − 1)Ljk − 3τ

β
mjmk

)
− β j

(
(ρτ − 1)Lki − 3τ

β
mkmi

)}

+
2τ
β

Dr
0kS(i jr)mi

{
(ρτ − 1)Ljr − τβmjbr

}
+

2τ
β

Dr
0iS( jkr)mj

{
(ρτ − 1)Lkr − τβmkbr

}

− 2τ
β

Dr
0 jS(kir)mk

{
(ρτ − 1)Lir − τβmibr

}
+ τ2(ρkLij + ρiLjk − ρ jLki) = 0,

(3.14)
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whereS(i jk) denote cyclic interchange of indices i, j, k and summation. Contracting
(3.12) and (3.13) by y j, we get

(3.15) (4τ lr − 2τ2br)D
r
0i +
{
(2τ − ρτ2)Lir +

2τ2

β
mimr

}
D r

00 =
2τ2

β
β0mi − 2τ2Ei0,

and {
(2τ − ρτ2)Lir +

2τ2

β
mimr

}
D r

00 =
2τ2

β
β0mi − 2τ2Fi0,

i.e.

(3.16) ∗LirD r
00 =

2τ2

β
β0mi − 2τ2Fi0,

which on contraction by bi gives

mr D r
00 =
(2
β
β0m2 − 2Fβ0

)(2
β

b2 − ρ
L

)−1
,

where β0 = β jy
j. Similarly contraction of (3.14) by yk gives

(2τ − ρτ2)
{
LijrD

r
00 − LjrD

r
0i + LirD

r
0 j

}
+ 2Dr

0i

{
(2τ − ρτ2)Lrj +

2τ2

β
mrmj

}

+
2τ
β

Dr
00S(i jr)mi

{
(ρτ − 1)Ljr − τβmjbr

}
− 2τ2

β
Dr

0i mjmr +
2τ2

β
Dr

0 j mimr

− 2τ
β
β0

(
(ρτ − 1)Lij − 3τ

β
mimj

)
+ τ2ρ0Lij = 0 ,

(3.17)

Contraction of (3.15) by yi gives

(2τ lr − τ2br)D
r
00 = −τ2E00,

i.e.

(3.18) ∗LrD
r
00 = E00.

We can apply Lemma 3.1 to equations (3.16) and (3.18) to obtain

D i
00 =li τ

{(2
β
β0m2 − 2Fβ0

)(2
β

b2 − ρ
L

)−1 − E00

}

− 2τ2

2 − ρτ
(2
β
β0m

2 − 2Fβ0
)(2
β

b2 − ρ
L

)−1
mi +

2Lτ
2 − ρτ

(1
β
β0 mi − F i

0

)
,

(3.19)

where Fi
0 = �

i jFj0. Also note that

E00 = Eij yi yj = bi| j yi yj = (bi yi)| jyj = β|0 = β0.
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Now adding (3.13) and (3.17), we obtain

D r
0 j

{
(2τ − ρτ2)Lir +

2τ2

β
mimr

}
= Gij ,

i.e.

(3.20) ∗Lir D r
0 j = Gij ,

where we put

Gij =
τ2

β
(miβ j −mjβi) − τ2 Fij − 1

2
(2τ − ρτ2)LijrD r

00 −
τ2

2
ρ0Lij

− τ
β

D r
00S(i jr)mi

{
(ρτ − 1)Ljr − τβmjbr

}
+
τ
β
β0

{
(ρτ − 1)Lij − 3τ

β
mimj

}
.

(3.21)

The equation (3.15) is written in the form

(2τ lr − τ2 br)D r
0 j = Gj ,

i.e.

(3.22) ∗LrD
r
0 j = −

1
τ2 Gj ,

where

Gj =
τ2

β
β0mj − τ2Ej0 −

{1
2

(2τ − ρτ2)Ljr +
τ2

β
mjmr

}
D r

00.

In view of (3.16), Gj are written as

(3.23) Gj = τ
2(Fj0 − Ej0) .

Applying Lemma 3.1 to equations (3.20) and (3.22) to obtain

(3.24) D i
0 j = li

{1
τ

(2
β

b2 − ρ
L

)−1
Gβ j +

1
τ

Gj

}
− 2 mi

2 − ρτ
(2
β

b2 − ρ
L

)−1
Gβ j +

L
2τ − ρτ2 G i

j ,

where G i
j = �

ikGkj.

Finally we solve (3.12) and (3.14) for D i
jk. These equations may be written as

(3.25) ∗Lrj Dr
ik = Hjik ,

and

(3.26) ∗Lr Dr
ik = Hik ,
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where

Hjik =
(ρτ2 − 2τ)

2

{
LijrD

r
0k + LjkrD

r
0i − LkirD

r
0 j

}

− τ
β

Dr
0kS(i jr)mi

{
(ρτ − 1)Ljr − τβmjbr

}
− τ
β

Dr
0iS( jkr)mj

{
(ρτ − 1)Lkr − τβmkbr

}

+
τ
β

Dr
0 jS(kir)mk

{
(ρτ − 1)Lir − τβmibr

}
− τ

2

2
(ρkLij + ρiLjk − ρ jLki)

+
τ
β

{
βk

(
(ρτ − 1)Lij − 3τ

β
mimj

)
+ βi

(
(ρτ − 1)Ljk − 3τ

β
mjmk

)

− β j

(
(ρτ − 1)Lki − 3τ

β
mkmi

)}
,

(3.27)

and

(3.28) Hik =
τ2

β
(miβk +mkβi) − τ2Eik − 1

2
(Gik + Gki) .

Again applying Lemma 3.1 to equations (3.25) and (3.26) to obtain

(3.29) Dj
ik = l j

{1
τ

(2
β

b2 − ρ
L

)−1
Hβik +

1
τ

Hik

}
− 2 mj

2 − ρτ
(2
β

b2 − ρ
L

)−1
Hβik +

L
2τ − ρτ2 H j

ik ,

where we put H j
ik = �

jmHmik. This completes the Proposition 3.1.

We now propose a lemma:

Lemma 3.2. If the h-vector is gradient then the scalar ρ is constant.

Proof. Taking h-covariant derivative of (1.2) and using L|k = 0 and hij|k = 0, we get

L (∂̇ jbi)|k = ρ|k hij .

Utilizing the commutation formula exhibited by

∂̇k(T i
j|h) − (∂̇k T i

j )|h = T r
j ∂̇kFi

rh − T i
r ∂̇kFr

jh − (∂̇rT i
j )C

r
hk|0 ;

we get
2L ∂̇ jFik = ρ|k hij − ρ|i hjk .

If bi is a gradient vector, i.e. 2Fij = bi| j − bj|i = 0. Then above equation becomes

ρ|k hij − ρ|i hjk = 0

which after contraction by yk gives ρ|k yk = 0. Differentiating ρ|k yk = 0 partially

with respect to yj, and using the commutation formula ∂̇ j(ρ|k)− (∂̇ jρ)|k = −(∂̇rρ)C r
jk|0

and the fact that ρ is a function of position only, we get ρ| j = 0 and therefore ∂ jρ = 0.
This completes the proof.
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Now, we find the condition for which the Cartan connection coefficients for
both spaces Fn and ∗Fn are the same, i.e. ∗F i

jk = F i
jk then Di

jk = 0. Therefore (3.15) and
(3.16) gives Ei0 = Fi0. This will give

(3.30) b0|i = 0 ,

i.e. β|i = 0. Differentiating β|i = 0 partially with respect to yj, and using the

commutation formula ∂̇ j(β|i) − (∂̇ jβ)|i = −(∂̇rβ)C r
ij|0, we get

(3.31) bj|i = br Cr
ij|0.

This gives Fij = 0 and then in view of Lemma 3.2, Fij = 0 implies ρi = ρ|i = 0.
Taking h-covariant derivative of (1.1)(ii) and using L|k = 0, ρ|k = 0 and hij|k = 0, we

get (br Cr
ij)|k =

(
ρ
L hij

)
|k = 0. This gives

br|k C r
ij + br Cr

ij|k = 0 .

From (3.31), we get br|k = bk|r, then above equation becomes

bk|r C r
i j + br Cr

ij|k = 0 .

Contracting by yk, we get b0|r C r
i j + br Cr

ij|0 = 0. Using (3.30) and (3.31), this gives
bi| j = 0, i.e. the h-vector bi is parallel with respect to the Cartan connection of Fn.

Conversely, if bi| j = 0 then we get Eij = 0 = Fij and βi = β|i = bj|i y
j = 0. In view

of Lemma 3.2, Fij = 0 implies ρi = ρ|i = 0. Therefore from (3.19) we get Di
00 = 0 and

then Gij = 0 and Gj = 0. This gives Di
0 j = 0 and then Hjik = 0 and Hik = 0. Therefore

(3.29) implies Di
jk = 0 and then ∗F i

jk = F i
jk . Thus, we have:

Theorem 3.1. For the Kropina change with an h-vector, the Cartan connection coefficients
for both spaces Fn and ∗Fn are the same if and only if the h-vector bi is parallel with respect
to the Cartan connection of Fn.

Transvecting (3.4) by yj and using F i
jk yj = G i

k, we get

(3.32) ∗G i
k = G i

k +D i
0k .

Further transvecting (3.32) by yk and using Gi
k yk = 2 G i, we get

(3.33) 2 ∗G i = 2 G i +D i
00 .

Differentiating (3.32) partially with respect to yh and using ∂̇hGi
k = G i

kh, we have

(3.34) ∗G i
kh = G i

kh + ∂̇hD i
0k ,
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where G i
kh are the Berwald connection coefficients.

Now, if the h-vector bi is parallel with respect to the Cartan connection of Fn,
then by Theorem 3.1, the Cartan connection coefficients for both spaces Fn and ∗Fn

are the same, therefore Di
jk = 0. Then from (3.34), we get ∗G i

kh = G i
kh.

Thus, we have:

Theorem 3.2. For the Kropina change with an h-vector, if the h-vector bi is parallel with
respect to the Cartan connection of Fn. Then the Berwald connection coefficients for both
the spaces Fn and ∗Fn are the same.

4. Relation between Projective change and Kropina change with an h-vector

We consider two Finsler spaces Fn = (Mn, L) and ∗Fn = (Mn, ∗L). If any geodesic on
Fn is also a geodesic on ∗Fn and the inverse is true, the change L→ ∗L of the metric
is called projective. A geodesic on Fn is given by

dyi

dt
+ 2 Gi(x, y) = τ yi ; τ =

d2s/dt2

ds/dt
.

The change L → ∗L is a projective change if and only if there exists a scalar P(x, y)
which is positively homogeneous of degree one in yi and satisfies [13]

∗G i(x, y) = G i(x, y)+ P(x, y) y i .

Now, we find condition for the Kropina change (1.3) with h-vector to be projective.
From (3.33), it follows that the Kropina change with an h-vector is projective if and
only if Di

00 = 2 P yi. Then from (3.19), we get

2 P yi =li τ
{(2
β
β0m2 − 2Fβ0

)(2
β

b2 − ρ
L

)−1 − E00

}

− 2τ2

2 − ρτ
(2
β
β0m2 − 2Fβ0

)(2
β

b2 − ρ
L

)−1
mi +

2Lτ
2 − ρτ

(1
β
β0 mi − F i

0

)
.

(4.1)

Contracting (4.1) by yi and using mi yi = 0 = Fi
0 yi, we get

2 P L2 = τ
{(2
β
β0m2 − 2Fβ0

)(2
β

b2 − ρ
L

)−1 − E00

}
L , i.e.,

(4.2) P =
τ

2 L

{(2
β
β0m

2 − 2Fβ0
)(2
β

b2 − ρ
L

)−1 − E00

}
.

Putting the value of P in (4.1), we get

− 2τ2

2 − ρτ
(2
β
β0m

2 − 2Fβ0
)(2
β

b2 − ρ
L

)−1
mi +

2Lτ
2 − ρτ

(1
β
β0 mi − F i

0

)
= 0,
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i.e.,

Fi
0 =
β0

β
mi − 1

β
mrD

r
00 mi.

Transvecing by �i j, we get

(4.3) Fi0 =
β0

β
mi −

1
β

mrD
r
00 mi .

Using (4.3) in (3.16), and referring 2τ−ρτ2 � 0, we get Lir D r
00 = 0, which transvect-

ing by mi and using Lirmi = 1
L mr, we get mrD

r
00 = 0, and then (4.3) becomes

(4.4) Fi0 =
β0

β
mi .

This equation (4.4) is a necessary condition for the Kropina change with an h-vector
to be a projective change.

Conversely, if (4.4) satisfies, then (3.16) gives

{
(2τ − ρτ2)Lir +

2τ2

β
mimr

}
D r

00 = 0.

Transvecting by mi and referring (2τ−ρτ2)
L + 2τ2

β m2 � 0, we get mrD
r
00 = 0 and then

(3.19) gives D i
00 = −E00 τ li. Therefore ∗Fn is projective to Fn. Thus, we have:

Theorem 4.1. The Kropina change (1.3) with an h-vector is projective if and only if the
condition (4.4) is satisfied.
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