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ROUGHLY GEODESIC B − r−PREINVEX FUNCTIONS ON

CARTAN HADAMARDMANIFOLDS ∗

Meraj Ali Khan and Izhar Ahmad

Abstract. In this paper, we introduce a new class of functions called roughly geodesic
B − r− preinvex function on a Hadamard manifold and establish some properties of
roughly geodesic B − r− preinvex functions on Hadamard manifolds. It is observed
that a local minimum point for a scalar optimization problem is also a global minimum
point under roughly geodesic B-r- preinvexity on the Hadamard manifolds. The results
presented in this paper extend to and generalize the results in the literature.
Keywords: Hadamard manifold, preinvex function, minimum point.

1. Introduction

In mathematics, the concept of convexity is well known and it contributes a
fundamental character to engineering, mathematical economics, optimization the-
ory, management science and Riemannian manifolds. One of the most significant
applications of the convex function is that any local minimum is also a global mini-
mum. However, convexity does not give accurate results in real world mathematical
problems and economic models. For this reason various authors have introduced
concepts of generalized convex functions. Initially in 1981 Hanson [11] presented a
significant generalization of the convex function which was later known as an invex
function. Further, the convex set and the convex function were generalized by Ben-
Israel and Mond [10], and called invex set and preinvex function, correspondingly.
The characterization of preinvex functions and its applications in optimization the-
ory have been discussed in [14, 27]. Noor [19, 23] studied the equilibrium problems
and variational inequalities under these functions. Many articles have appeared in
the literature on preinvex functions (see, [1, 2, 3, 5, 9, 12, 16, 20, 28]).
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Few results related to optimization theory and nonlinear analysis have been en-
hanced on Riemannian manifolds from the Euclidean space. Geodesic convexity
proposed by Rapcsak [25] and Udriste [26], which is a natural generalization of con-
vexity in which linear space is exchanged by Riemannian manifolds. Furthermore,
on a Riemannian manifold the concept of invexity was introduced by Pini [24] and
its generalization was explored by Mititelu [18]. On a Riemannian manifold, the
geodesic invex set, geodesic η-preinvex function and geodesic η-invex function have
been explained by Barani and Pouryayevali [9] and they have also discussed the re-
lationships between these functions. Moreover, the geodesic α-preinvex function is
a generalization of the notion of geodesic η-preinvexity introduced by R.P. Agrawal
et al. [1]. Recently, the notions of B-invex set and B-invex function were studied
on Riemannian manifolds by Zhou and Huang [28].

Analyzing the discussion of Barani and Pouryayevali [9] and Zhou and Huang
[28], we attempt to deliberate the notions of geodesic B − r-invex set and geodesic
B − r-preinvex function on a Riemannian manifold. These functions are a gener-
alization of the preinvex function defined in [9, 5, 28]. Barani [8] presented the
convexity and monotonicity of set valued mapping on Hadamard manifolds and
presented the mean value theorem. Zou et al. [32] introduced the classical Penot
generalized directional derivative and Clarke’s generalized gradient and used these
to discuss the first and second order necessary and sufficient conditions for a mini-
mum point of the nonlinear programming problem. Recently, Jana and Nahak [13]
obtained the optimality conditions for the nonlinear optimization problem under
generalized invexities on a Riemannian manifold.

The paper is divided sectionally in the following way. In Section 2, we recall
specific preliminaries, definitions and results, which are applied to demonstrate the
work of this paper. We derive a new class function, namely, geodesic B−r-preinvex
and geodesic B − r-invex function in Section 3. Some properties and relations
between the geodesic log-preinvex and the geodesic B − r-invex function on a Rie-
mannian manifold are studied in Section 4. Moreover, in Section 5, we discuss the
results based on a lower semi-continuous log-preinvexity function with a proximal
sub-differential and observe that for a mathematical optimization problem with
log-preinvexity on a Riemannian manifold, its local minimum point is also a global
minimum point. Finally, we obtain the mean value inequality on Hadamard mani-
folds in Section 6 and discuss the conclusions of the paper in Section 7.

2. Preliminaries

The present paper is based on the concept of generalized convexity on Cartan
Hadamard manifolds. The objective of this paper is to present a new notion of
roughly geodesic B − r− invex and roughly geodesic B − r− preinvex functions,
and some properties and relationships between these functions are discussed. First
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of all, we apply the smoothness condition on a roughly geodesic B − r− preinvex
function with lower semi-continuity and try to obtain the existence condition for a
global minimum. Finally, we obtain the mean value inequality for B− r− preinvex
function on Cartan Hadamard manifolds.

To recall some basic definitions of and results for Riemannian manifolds for
further study, we refer the reader to ( [9], [17], [28], [24]) and references therein.

Definition 2.1. A simply connected complete Riemannian manifold with a non-
positive sectional curvature is called a Hadamard manifold. On a Hadamard man-
ifold M̄, there exists an exponential mapping expp : TpM̄ → M̄ such that exppv =
γv(1), where γv is a geodesic defined by its position p and velocity γ at p.

Lemma 2.1.(Cartan-Hadamard theorem) Suppose X be a connected complete
metric space which is locally convex. Then, with respect to the induced length
metric d, the universal cover of X is a geodesic convex space. Let (M̄, 〈., .〉) be
a Hadamard manifold with a Riemannian metric 〈., .〉. For a subset U ⊂ M̄ , a
mapping η × η → TM̄ is a function such that for every u, v ∈ U, η(u, v) ∈ TM̄.

Definition 2.2. The geodesic distance d(u, v) is the length of a minimal geodesic
segment between any two points u, v on a manifold.

Definition 2.3. For a mapping ψ : U → R, if the following limit

limitλ→0
ψ(expvλη(u,v))−ψ(v)

λ‖η(u,v)‖ ,

exists, then ψ is said to be a η(u, v)−differentiable mapping at v ∈ M̄,

Moreover, the η(u, v)−differential of ψ at v is given by

dη(u,v)ψ(v) = limitλ→0
ψ(expvλη(u,v))−ψ(v)

λ‖η(u,v)‖ .

Definition 2.4[9]. On a Riemannian manifold M̄ for the function η : M̄×M̄ → TM̄

such that η(u, v) ∈ TvM̄, for every u, v ∈ M̄ . A non-empty subset U of M̄ is said to
be a geodesic invex set with respect to η if for every u, v ∈ U, there exists a unique
geodesic γu,v : [0, 1] → M̄ such that

γu,v(0) = v, γ′u,v(0) = η(u, v), γu,v(s) ∈ U, for all s ∈ [0, 1].

3. Results and Discussion

The present section is divided into three subsections.
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3.1. Geodesic B-invex sets and roughly geodesic B − r−preinvex

functions

Convexity and its generalizations play an important role in the development
of optimality conditions and duality theory. Various generalizations of convexity
have appeared in literature. In [10], Ben-Israel and Mond introduced a new gener-
alization of the convex function. Craven [29] named the invex function. Antczak
[5] presented a generalization of the V-invex function [15] and the r−invex function
[4], called a V-r-invex function. Bector and Singh [30] and Suneja et al. [31] intro-
duced B-vex and B-preinvex functions. Recently, Zhou and Huang [28] defined the
geodesic B−invex set as follows:

Definition 3.1 [28]. The set U is said to be a geodesic B−invex set on a Hadamard
manifold with respect to η and b(u, v, λ) : U × U × [0, 1] → R+, if for all u, v ∈ U

and λ ∈ [0, 1] such that expvλbη(u, v) ∈ U.

U is said to be a geodesic B−invex set with respect to η on a Hadamard man-
ifold, if U is B−invex for all u, v ∈ U on a Hadamard manifold with respect to η.

Definition 3.2 [28]. Let U be a geodesic B−invex set. Then a mapping ψ : U →
TM̄ is said to be a roughly geodesic B-preinvex function with respect to η with a
roughness degree ρ at v ∈ U, if there exists b(u, v, λ) : U ×U × [0, 1] → R such that

f(expvλbη(u, v)) ≤ λbψ(u) + (1− λb)ψ(v),

for all u ∈ U and λ ∈ [0, 1] with d(u, v) ≥ ρ, ψ is said to be a roughly geodesic
B−preinvex function on U with respect to η, if it is a roughly geodesic B-preinvex
function at any v ∈ U with respect to the same η on U .

Now we introduce a roughly geodesic B − r−preinvex function on M̄.

Definition 3.3. For a geodesic B−invex set U , the mapping ψ : U → TM̄ is said
to be a roughly geodesic B−r−preinvex function with respect to η with a roughness
degree ρ at v ∈ U, if there exists b(u, v, λ) : U × U × [0, 1] → R+ such that

ψ(expvλbη(u, v)) ≤

{

log(λberψ(u) + (1− λb)erψ(v))
1
r if r 6= 0,

λbψ(u) + (1− λb)ψ(v) if r = 0.

for any u ∈ S and λ ∈ [0, 1] with d(u, v) ≥ ρ. ψ is said to be a roughly geodesic
B − r−preinvex function on U with respect to η and b, if it is a roughly geodesic
B − r−preinvex function at any v ∈ U with respect to η on U.

The function ψ is called a strictly roughly geodesic B− r− preinvex function,
if the above inequality holds as a strict inequality.
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Remark 3.1. Every roughly geodesicB−preinvex function and geodesic η−preinvex
function are a roughly geodesic B − r−preinvex function for r = 0 and b = 1, re-
spectively. However, the converse does not hold in general.

We provide the following non-trivial example for the geodesic B− r−preinvex
function but not a geodesic B− preinvex function.

Example 3.1. Let M̄ = {eiθ : 0 < θ < 1} and ψ : M̄ → R defined by ψ(eiθ) = cos θ
with u, v ∈ M̄, u = eiα and v = eiβ . If expvλbη(u, v)) = ei((1−λb)β+λbα), then ψ

is a geodesic B − r−preinvex function but not a geodesic B−preinvex function at
α = π

2 , β = π
4 , b = 2, since cos[π4 + π

4 2λ] >
1−2λ√

2
for λ = 3

4 .

Proposition 3.1. If ψ : U → R is a roughly B− r−preinvex function with respect
to η : U × U → TM̄ and v ∈ U, then for any real number k ∈ R, the level set
Uk = {u|u ∈ U,ψ(u) ≤ k} is a geodesic B−invex set.

Proof. For any u, v ∈ Uk, we have ψ(u) ≤ k, ψ(v) ≤ k. Since ψ is a roughly
geodesic B − r−preinvex function, then we have

ψ(expvλbη(u, v)) ≤ log(λberψ(u) + (1− λb)erψ(v))
1
r ,

or
erψ(expvλbη(u,v)) ≤ λberψ(u) + (1− λb)erψ(v)

≤ λberk + (1− λb)erk.

Equivalently,
erψ(expvλbη(u,v)) ≤ erk,

or ψ(expvλbη(u, v) ≤ k.

Therefore, expvλbη(u, v) ∈ Uk for all λ ∈ [0, 1], and the result is proved.

Theorem 3.1. Let U be a geodesic B−invex set and let ψ : U → R be a roughly
geodesic B− r−preinvex with respect to η : U ×U → TM̄ with a roughness degree
ρ on U . Then epi(ψ) is a B−invex set on U ×R.

Proof. Let ψ be a roughly geodesic B − r−preinvex function with respect to
η : U × U → TM̄ with a roughness degree ρ on U. Then there exists b(u, v, λ) :
U × U × [0, 1] → R+ such that

ψ(expvλbη(u, v)) ≤ log(λberψ(u) + (1 − λb)erψ(v))
1
r ,

where expvλbη(u, v) ∈ U and d(u, v) ≥ ρ. Assume that (u, α), (v, β) ∈ epi(ψ). Then
it is easy to see that ψ(u) ≤ α, ψ(v) ≤ β, from these observations we have

ψ(expvλbη(u, v)) ≤ log(λberψ(α) + (1− λb)erψ(β))
1
r

= log(erβ + (erα − erβ)λb)
1
r .
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Therefore,

(expvλbη(u, v), log(e
rβ + (erα − erβ)λb)

1
r ) ∈ epi(ψ),

which implies that epi(ψ) is a B−invex set on U ×R.

Theorem 3.2. If φi : U → R, i = 1, 2, . . . ,m are roughly geodesic B − r−preinvex
functions with respect to the same η : M̄ × M̄ → TM̄ with a roughness degree ρ on
U , then the set defined by M̄ = {u ∈ U : φi(u) ≤ 0, i = 1, 2, . . . ,m} is a geodesic
B− invex set with respect to η.

Proof. Since φi(u), i = 1, 2, . . . ,m, are roughly geodesic B− r−preinvex functions,
then there exists b(u, v, λ) : M̄ × M̄ × [0, 1] → R+, such that

φi(expvλbη(u, v)) ≤ log(λberφi(u) + (1− λb)erφi(v))
1
r ≤ log(λbe0 + (1− λb)e0)

1
r ,

or equivalently,

φi(expvλbη(u, v)) ≤ 0, i = 1, 2, . . . ,m,

and so expvλbη(u, v) ∈ M̄. Thus, M̄ is a geodesic B− invex set.

Theorem 3.3. Let U be a geodesicB-invex set . If ψ : U → R is an η−differentiable
roughly geodesic B − r−preinvex function with respect to η : U × U → R with a
roughness degree ρ at v ∈ U. Then there exists a function b̄(u, v) : U × U → R+

such that

‖η(u, v)‖dη(u,v)ψ(v) ≤
b̄(u, v)

r
e−rψ(v)(erψ(u) − erψ(v)),

for each u ∈ U with d(u, v) ≥ ρ and b̄(u, v) = limλ→0b(u, v, λ).

Proof. If ψ is a roughly geodesic B − r−preinvex function at v, then there exists
b(u, v, λ) : U × U × [0, 1] → R+ such that

ψ(expvλbη(u, v)) ≤ log[λberψ(u) + (1 − λb)erψ(v)]
1
r ,

for each u ∈ U and λ ∈ [0, 1] with d(u, v) ≥ ρ. Since ψ is η− differentiable at v, we
have

dη(u,v)ψ(v) = limλ→0
ψ(expvλbη(u, v))− ψ(v)

λ‖η(u, v)‖
,

and so
ψ(v) + dη(u,v)ψ(v)λ‖η(u, v)‖ + O2(λb) = ψ(expvλbη(u, v)) ≤ log[λberψ(u) + (1 −

λb)erψ(v)]
1
r ,

or

erψ(v)+rdη(u,v)ψ(v)λ‖η(u,v)‖+rO2(λb) − erψ(v) ≤ λb(erψ(u) − erψ(v)).



Roughly Geodesic B − r−preinvex Functions on Cartan Hadamard Manifolds 331

Dividing by λ and taking the limit λ→ 0, we get

‖η(u, v)‖dη(u,v)ψ(v) ≤
b̄(u,v)
r

e−rψ(v)(erψ(u) − erψ(v)).

Remark 3.2. If r = 0, then the result in the above Theorem is similar to the result
of Theorem 4.4 [28].

3.2. Roughly Geodesic B − r− Preinvexity and semi continuity

Now we discuss geodesic B− r−preinvexity on a Cartan Hadamard manifold under
a proximal subdifferential of a lower semi-continuous function. First, we recall the
definition of the proximal subdifferentiable of a function defined on a Riemannian
manifold [9].

Definition 3. 4. Let M̄ be a Riemannian manifold and let ψ : M̄ → (−∞,∞]
be a lower semi-continuous function. A point ξ ∈ TvM̄ is said to be the proximal
subgradient of ψ at v ∈ dom(ψ), if there exist positive numbers δ and σ such that

ψ(u) ≥ ψ(v)+ < ξ, exp−1
v u >v −σd

2(u, v),

for all u ∈ B(v, δ), where domψ = {u ∈ M̄ : ψ(u) < ∞}. The set of all proximal
subgradients of v ∈ M̄ is denoted by ∂pψ(v).

Theorem 3.4. Let M̄ be a Hadamard manifold and U be a geodesic B−invex set
with respect to η : M̄×M̄ → TM̄ and b(u, v, λ) : U×U× [0, 1] → R. Let ψ : U → R

be a roughly geodesic B − r− preinvex function. If ū ∈ U is a local minimum of
the problem

(P) Minimize ψ(u), subject to u ∈ U,

then ū is a global minimum of (P).

Proof. If ū ∈ U is a local minimum, then there exists a neighbourhood Nǫ(ū) such
that

ψ(ū) ≤ ψ(u),(3.1)

for all u ∈ U ∩Nǫ(ū).

If ū is not a global minimum of ψ, then there exists a point u∗ ∈ U such that
ψ(u∗) < ψ(ū),

or
erψ(u

∗) < erψ(ū).
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As U is a geodesic B−invex set with respect to η and b, there exists a unique
geodesic γ(λb) = expv(λbη(u

∗, ū)) such that γ(0) = ū, γ′(0) = b̄(u∗, ū)η(u∗, ū)
where limλ→0b(u

∗, ū, λ) = b̄(u∗, ū), expv(λbη(u
∗, ū)) ∈ U, for all λ ∈ [0, 1]. If

we choose ǫ > 0 such that d(γ(λb), ū) < ǫ, then γ(λb) ∈ Nǫ(x̄). From the roughly
geodesic B − r− preinvexity of ψ, we have

ψ(expvλbη(u
∗, ū)) ≤ log(λberψ(u

∗) + (1− λb)erψ(ū))
1
r .

Equivalently, we have

erψ(expvλbη(u
∗,ū)) ≤ λberψ(u

∗) + (1− λb)erψ(ū) < λberψ(ū) + (1− λb)erψ(ū) = erψ(ū),

or
ψ(expvλbη(u

∗, ū)) < ψ(ū), for all λ ∈ (0, 1].

Therefore, for each expvλbη(u
∗, ū)) ∈ U ∩Nǫ(ū), ψ(expvλbη(u

∗, ū))) < ψ(ū), which
is a contradiction of (3.1). Hence the result.

Theorem 3.5. Let M̄ be a Cartan-Hadamard manifold and U be a geodesic
B−invex set with respect to η : M̄ × M̄ → TM̄ with η(u, v) 6= 0 for all u 6= v.
Assume that ψ : U → (−∞,∞] is lower semi-continuous roughly geodesic B − r−
preinvex function and v ∈ dom(ψ), ξ ∈ ∂pψ(v). Then there exists a positive number
δ such that

erψ(u) − erψ(v) ≥ erψ(v) < ξ, η(u, v) >v, for all u ∈ U ∩B(v, δ).

Proof. From the definition of ∂pψ(v), there are positive numbers δ and σ such that

ψ(u) ≥ ψ(v)+ < ξ, exp−1
v u >v −σd

2(u, v), for all u ∈ B(v, δ).(3.2)

Now, fix u ∈ U ∩ B(v, δ). Since U is a geodesic B−invex set with respect to η,

there exists a unique geodesic γu,v(λb) = expv(λbη(u, v)) : [0, 1] → M̄ such that
γu,v(0) = v, γ′u,v(0) = bη(u, v), γu,v(λb) ∈ U, for all λ ∈ [0, 1]. If we choose

λ0 = δ
‖η(u,v)‖v

, then expv(λbη(u, v)) ∈ U ∩B(v, δ) for all λ ∈ [0, λ0).

From the roughly geodesic B − r−preinvexity of ψ, we get

ψ(expv(λb(η(u, v)) ≤ log(λberψ(u) + (1− λb)erψ(v))
1
r ,

or
erψ(expv(λb(η(u,v)) ≤ λberψ(u) + (1 − λb)erψ(v).(3.3)

Using (3.1) for each λ ∈ (0, λ0), we get

ψ(expv(λb(η(u, v)) ≥ ψ(v)+ < ξ, exp−1
v expv(λbη(u, v)) >v −σd2(expv(λbη(u, v), v)

= ψ(v) + 〈ξ, λbη(u, v)〉v − σd2(expv(λb(η(u, v)), v).
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Since M̄ is a Cartan-Hadamard manifold for each λ ∈ (0, λ0), we have

d2(expv(λbη(u, v), v) = ‖λbη(u, v)‖2v = λ2b2‖η(u, v)‖2v.

Thus, we have

ψ(expv(λb(η(u, v)) ≥ ψ(v) + 〈ξ, λbη(u, v)〉v − σλ2‖bη(u, v)‖2v,

or
erψ(expv(λ(η(u,v)) ≥ erψ(v)e〈ξ,λbη(u,v)〉v−σλ

2‖bη(u,v)‖2
v .(3.4)

Inequalities (3.3) and (3.4) give

λberψ(u) + (1 − λb)erψ(v) ≥ erψ(v)e〈ξ,λbη(u,v)〉v−σλ
2‖bη(u,v)‖2

v .

By further calculation we arrive at

b(erψ(u) − erψ(v)) ≥ erψ(v)
1

λ
[e〈ξ,λbη(u,v)〉v−σλ

2‖bη(u,v)‖2
v − 1],

taking the limit λ→ 0

erψ(u) − erψ(v) ≥ erψ(v)〈ξ, η(u, v)〉v.

Which proves the theorem completely.

3.3. Mean value inequality

In the present sub-section, we obtain the mean value inequality for B − r−
preinvex function defined on a Cartan Hadamard manifold.

In the continuation of Definition 2.3, we have the following definition.

A set Pxy is said to be a closed η−path joining the points x and y = γ(1), if

Pxy = {v : v = γ(s), s ∈ [0, 1]}.

An open n−path connecting the points x and y is a set of the type

P 0
xy = {v : v = γ(s), s ∈ (0, 1)}.

If x = y, then P 0
xy = φ.

Theorem 3.6. Let M̄ be a Cartan Hadamard manifold and U be a geodesic
B−invex set with respect to η : M̄ × M̄ → TM̄ such that η(x, y) 6= 0 for all
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x, y ∈ U, x 6= y. Let γy,x(s) = expx(sbη(y, x)) for all x, y ∈ U, s ∈ [0, 1] and
z = γx,y(1). Then the function ψ : U → R is to be a geodesic B − r−preinvex if
and only if the following inequality

erψ(u) ≤ erψ(x) +
erψ(y) − erψ(x)

〈η(y, x), η(y, x)〉x
〈exp−1

x u, η(y, x)〉x.(3.5)

holds, for all u ∈ Pzx.

Proof. Let ψ : U → R be a B − r−preinvex function. If u = x or u = z. Then the
inequality (3.5) is true trivially. If u ∈ Pzx then u = exp(sbη(y, x)), for s ∈ [0, 1].
Since U is a B−invex set, then for u ∈ U, we have

s =
〈exp−1

x u, η(y, x)〉x
b〈η(y, x), η(y, x)〉x

.

By the B − r−invexity of ψ, we have

ψ(u) = ψ(expx(sbη(y, x))) ≤ log(sberψ(y) − (1− sb)erψ(x))
1
r ,

or
erψ(u) ≤ sberψ(y) + (1− sb)erψ(x)

= erψ(x) + sb(erψ(y) − erψ(x)).

Utilizing the value of s we get the required inequality.

Conversely, suppose the inequality (3.5) is true. Let x, y ∈ U and
u = expx(sbη(y, x)), for some s ∈ [0, 1]. Then for u ∈ U, we have ψ(u) = ψ(expx(sbη(y, x))).
From (??)

erψ(u) ≤ erψ(x) +
erψ(y) − erψ(x)

〈η(y, x), η(y, x)〉x
〈exp−1

x u, η(y, x)〉x

= erψ(x) +
erψ(y) − erψ(x)

〈η(y, x), η(y, x)〉x
〈exp−1

x expx(sbη(y, x), η(y, x)〉x

= sberψ(y) + (1 − sb)erψ(x),

or
ψ(u) ≤ log(sberψ(y) + (1 − sb)erψ(x))

1
r .

Equivalently,

ψ(expx(sbη(y, x)) ≤ log(sberψ(y) + (1− sb)erψ(x))
1
r ,

which shows that ψ is a geodesic B − r−preinvex function on U.

Remark 3.2. If r = 0 and b = 1, then the mean value inequality becomes the
inequality proved in [9].
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4. Conclusion

In the present paper, we have defined the concept of the roughly geodesic
B − r− preinvex function on a Riemannian manifold. This function generalizes
the preinvex functions defined in ([1], [2], [3], [4], [9], [16], [24]). Further, we have
proved that a local minimum point is also a global minimum point for a scalar opti-
mization problem under the aforesaid function. Finally, the mean value inequality is
also proved involving a geodesic B−r preinvex function. This inequality generalizes
the inequality obtained in ( [1], [9]). As a future work, the findings of this paper
can be utilized for multiobjective mathematical problems on Riemannian manifolds.
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