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Abstract. The objective of the present paper is to study the Kenmotsu manifold
admitting the Schouten-van Kampen connection. We study the Kenmotsu manifold
admitting the Schouten-van Kampen connection satisfying certain curvature conditions.
Also, we prove the equivalent conditions for the Ricci soliton in a Kenmotsu manifold
to be steady with respect to the Schouten-van Kampen connection.
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1. Introduction

The Schouten-van Kampen connection has been introduced for studying non-
holomorphic manifolds. It preserves - by parallelism - a pair of complementary
distributions on a differentiable manifold endowed with an affine connection [2] [9]
[17]. Then, Olszak studied the Schouten-van Kampen connection to adapt it to an
almost contact metric structure [14]. He characterized some classes of almost con-
tact metric manifolds with the Schouten-van Kampen connection and established
certain curvature properties with respect to this connection. Recently, Gopal Ghosh
[7] and Yildiz [24] studied the Schouten-van Kampen connection in Sasakian man-
ifolds and f -Kenmotsu manifolds, respectively. Kenmotsu manifolds introduced by
Kenmotsu in 1971[10] have been extensively studied by many authors [20] [15] [16].
In 1982, Hamilton [8] introduced the notion of Ricci flow to find a canonical metric
on a smooth manifold. Since then the Ricci flow has become a powerful tool for the
study of Riemannian manifolds. The Ricci soliton, considered to be a self-similar
solution to the Ricci flow is a Riemannian metric g on a manifold M , together with
a vector field V such that

(LVg)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0,(1.1)
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where LV denotes the Lie derivative along V , and S and λ are respectively the
Ricci tensor and a constant. A Ricci soliton is said to be shrinking or steady or
expanding depending on whether λ is negative, zero or positive. A Ricci soliton
is said to be a gradient Ricci soliton if the vector field V is the gradient of some
smooth function f on M . In [18], Sharma started the study of Ricci solitons in
the K-contact geometry. In 2016, the authors in [21] explained the nature of Ricci
solitons in f -Kenmotsu manifolds with a semi-symmetric non-metric connection.
Ramesh Sharma et al. [18] [19], De et al. [4][1], and Nagaraja et al. [12] [11]
[13] extensively studied Ricci solitons in contact metric manifolds in many different
ways.
This paper is structured as follows. After a brief review of Kenmotsu manifolds
in Section 2, in Section 3 we obtain the expressions of the curvature tensor, Ricci
tensor and scalar curvature with respect to the Schouten-van Kampen connection,
study the curvature properties of the Kemotsu manifold admitting the Schouten-van
Kampen connection, and prove the conditions for the Kenmotsu manifold admitting
the Schouten-van Kampen connection to be isomorphic to the hyperbolic space.
In the last section we prove the equivalent conditions for the Ricci soliton in a
Kenmotsu manifold admitting the Schouten-van Kampen connection to be steady.

2. Preliminaries

A (2n+ 1)-dimensional smooth manifold M is said to be an almost contact metric
manifold if it admits an almost contact metric structure (φ, ξ, η, g) consisting of a
tensor field φ of type (1, 1), a vector field ξ, a 1-form η and a Riemannian metric g

compatible with (φ, ξ, η) satisfying

φ2X = −X + η(X)ξ, φξ = 0, g(X, ξ) = η(X), η(ξ) = 1, η ◦ φ = 0,(2.1)

and
g(φX, φY ) = g(X,Y )− η(X)η(Y ).(2.2)

An almost contact metric manifold is said to be a Kenmotsu manifold [3] if

(∇Xφ)Y = −g(X,φY )ξ − η(Y )φX,(2.3)

where ∇ denotes the Riemannian connection of g.
In a Kenmotsu manifold the following relations hold [6].

∇Xξ = X − η(X)ξ,(2.4)

(∇Xη)Y = g(∇Xξ, Y ),(2.5)

R(X,Y )ξ = η(X)Y − η(Y )X,(2.6)

S(X, ξ) = −2nη(X),(2.7)

S(φX, φY ) = S(X,Y ) + 2nη(X)η(Y ),(2.8)

for any vector fields X,Y, Z on M , where R denote the curvature tensor of type
(1, 3) on M .
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3. Kenmotsu manifolds admitting Schouten-van Kampen connection

Throughout this paper we associate ∗ with the quantities with respect to the
Schouten-van Kampen connection. The Schouten-van Kampen connection ∇∗ as-
sociated to the Levi-Civita connection ∇ is given by [14]

∇∗

XY = ∇XY − η(Y )∇Xξ + (∇Xη)(Y )ξ,(3.1)

for any vector fields X , Y on M .
Using (2.4) and (2.5), the above equation yields,

∇∗

X
Y = ∇XY + g(X,Y )ξ − η(Y )X.(3.2)

By taking Y = ξ in (3.2) and using (2.4) we obtain

∇∗

Xξ = 0.(3.3)

We now calculate the Riemann curvature tensor R∗ using (3.2) as follows:

R∗(X,Y )Z = R(X,Y )Z + g(Y, Z)X − g(X,Z)Y.(3.4)

Using (2.6) and taking Z = ξ in (3.4), we get

R∗(X,Y )ξ = 0.(3.5)

On contracting (3.4), we obtain the Ricci tensor S∗ of a Kenmotsu manifold with
respect to the Schouten-van Kampen connection ∇∗ as

S∗(Y, Z) = S(Y, Z) + 2ng(Y, Z).(3.6)

This gives
Q∗Y = QY + 2nY.(3.7)

Contracting with respect to Y and Z in (3.6), we get

r∗ = r + 2n(2n+ 1),(3.8)

where r∗ and r are the scalar curvatures with respect to the Schouten-van Kampen
connection ∇∗ and the Levi-Civita connection ∇, respectively.

From the above discussions we state the following:

Theorem 3.1. The curvature tensor R∗, the Ricci tensor S∗ and the scalar cur-
vature r∗ of a Kenmotsu manifold M with respect to the Schouten-van Kampen
connection ∇∗ are given by (3.4), (3.6) and (3.8), respectively. Further, the curva-
ture tensor R∗ of ∇∗ satisfies
i) R∗(X,Y )Z = −R∗(Y,X)Z,
ii) R∗(X,Y, Z,W ) +R∗(Y,X,Z,W ) = 0,
iii) R∗(X,Y, Z,W ) +R∗(X,Y,W,Z) = 0,
iv)R∗(X,Y )Z +R∗(Y, Z)X +R∗(Z,X)Y = 0,
v) S∗ is symmetric.
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From (3.6), it follows that

Theorem 3.2. A Kenmotsu manifold M admitting the Schouten-van Kampen
connection is Ricci flat with respect to the Schouten-van Kampen connection if and
only if M is an Einstein manifold with respect to Levi-Civita connection.

Now, if R∗(X,Y )Z = 0, then by virtue of (3.4), we get

R(X,Y, Z, U) = g(X,Z)g(Y, U)− g(Y, Z)g(X,U).(3.9)

Thus, we state that

Theorem 3.3. Let M be a Kenmotsu manifold admitting the Schouten-van Kam-
pen connection. The curvature tensor of M with respect to the Schouten-van Kam-
pen connection vanishes if and only if M with respect to the Levi-Civita connection
is isomorphic to the hyperbolic space H2n+1(−1).

An interesting invariant of the concircular transformation is concircular curvature
tensor. The concircular curvature tensor [22] C∗ with respect to the Schouten-van
Kampen connection ∇∗ is defined by

C∗(X,Y )Z = R∗(X,Y )Z −
r∗

2n(2n+ 1)
{g(Y, Z)X − g(X,Z)Y },(3.10)

for all vector fields X , Y , Z on M .
If C∗ vanishes, the conditions in theorem (3.1) are satisfied.

Definition 3.1. A Kenmotsu manifold with respect to the Schouten-van Kampen
connection ∇∗ is said to be ξ- concircularly flat if C∗(X,Y )ξ = 0.

In view of (3.4) and (3.8) in (3.10), we get

C∗(X,Y )Z = R(X,Y )Z + g(Y, Z)X − g(X,Z)Y

−
r + 2n(2n+ 1)

2n(2n+ 1)
{g(Y, Z)X − g(X,Z)Y }.(3.11)

By taking Z = ξ in (3.11) and then using (2.1) and (2.6), we find

C∗(X,Y )ξ =
r + 2n(2n+ 1)

2n(2n+ 1)
R(X,Y )ξ.(3.12)

Thus, from (3.4), (3.8), (3.11) and (3.12), we have the following theorem:

Theorem 3.4. Let M be a Kenmotsu manifold admitting the Schouten-van Kam-
pen connection. In M , the following three conditions are equivalent:
i) M is ξ- concircularly flat,
ii) r = −2n(2n+ 1),
iii) r∗ = 0.
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Definition 3.2. A Kenmotsu manifold is said to be φ-concircularly flat with re-
spect to the Schouten-van Kampen connection ∇∗ if

g(C∗(φX, φY )φZ, φW ) = 0,(3.13)

for any vector fields X,Y, Z on M .

Using (3.10) in (3.13), we have

g(R∗(φX, φY )φZ, φW ) =
r∗

2n(2n+ 1)
{g(φY, φZ)g(φX, φW )

− g(φX, φZ)g(φY, φW )}.(3.14)

Let {e1, e2, e3, .......e2n+1} be a local orthonormal basis of vector fields in M . Then
{φe1, φe2, φe3, .......φe2n+1} is also a local orthonormal basis. If we put X = W = ei
in (3.14) and summing up with respect to i, 1 6 i 6 2n+ 1, we obtain

2n∑

i=1

g(R∗(φei, φY )φZ, φei) =
r∗

2n(2n+ 1)

2n∑

i=1

{g(φY, φZ)g(φei, φei)

− g(φei, φZ)g(φY, φei)}.(3.15)

From (3.15), it follows that

S∗(φY, φZ) =
r∗(2n− 1)

2n(2n+ 1)
g(φY, φZ).(3.16)

Using (2.1), (3.6) and (3.8) in (3.16), we get

S(φY, φZ) + 2ng(φY, φZ) =
(r + 2n(2n+ 1))(2n− 1)

2n(2n+ 1)
g(φY, φZ).(3.17)

By using (2.2) and (2.8) in (3.17), we obtain

S(Y, Z) + 2nη(Y )η(Z) + {2n−
(r + 2n(2n+ 1))(2n− 1)

2n(2n+ 1)
}g(φY, φZ) = 0.(3.18)

Hence by contracting (3.18), we get

r = −2n.(3.19)

By substituting the equation (3.19) in (3.10), we get

C∗(X,Y )Z = R(X,Y )Z +
1

2n+ 1
{g(Y, Z)X − g(X,Z)Y }.(3.20)

This leads to the following:

Theorem 3.5. Let the Kenmotsu manifold M admitting the Schouten-van Kam-
pen connection be φ-concircularly flat. Then M is of constant sectional curvature
− 1

2n+1
if and only if the concircular curvature tensor C∗ vanishes.
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We consider

C∗.S∗ = S∗(C∗(X,Y )Z,U) + S∗(Z,C∗(X,Y )U).(3.21)

By making use of (3.10) and (3.6) in (3.21), we obtain

C∗.S∗ = S(R(X,Y )Z −
r

2n(2n+ 1)
{g(Y, Z)X − g(X,Z)Y }, U)

+ S(Z,R(X,Y )U −
r

2n(2n+ 1)
{g(Y, U)X − g(X,U)Y }).(3.22)

Suppose C∗.S∗ = 0. Then we have

S∗(C∗(X,Y )Z,U) + S∗(Z,C∗(X,Y )U) = 0.(3.23)

Taking U = ξ in (3.23) and using (3.6), it follows that

S∗(Z,C∗(X,Y )ξ) = 0.(3.24)

Making use of (2.1), (2.6) and (3.11) in (3.24), we get

r + 2n(2n+ 1)

2n(2n+ 1)
S∗(Z, η(X)Y − η(Y )X) = 0.(3.25)

Replacing X by ξ in (3.25) and using (2.1) and (3.6), we see that

r + 2n(2n+ 1)

2n(2n+ 1)
{S(Z, Y ) + 2ng(Z, Y )} = 0.(3.26)

Contracting (3.26) with respect to Y and Z, we get

r = −2n(2n+ 1).(3.27)

From (3.22) and (3.27), we obtain

S(Y, Z) = −2ng(Y, Z).(3.28)

Thus M is an Einstein manifold.
Again, by substituting (3.27) in (3.11), we obtain

C∗(X,Y )Z = R(X,Y )Z + {g(Y, Z)X − g(X,Z)Y }.(3.29)

Thus, from the above discussion and using (3.4), (3.8) and (3.12), we state the
following:

Theorem 3.6. Let M be a Kenmotsu manifold admitting the Schouten-van Kam-
pen connection. Then C∗.S∗ = 0 if and only if S(Y, Z) = −2ng(Y, Z).
Further if C∗ = 0 then M is isomorphic to the hyperbolic space H2n+1(−1).
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Theorem 3.7. If in a Kenmotsu manifold M admitting the Schouten-van Kampen
connection, C∗.S∗ = 0 holds, then the following three conditions are equivalent:
i) M is ξ- concircularly flat,
ii) r = −2n(2n+ 1),
iii) r∗ = 0.

The projective curvature tensor [23] P ∗ with respect to the Schouten-van Kampen
connection ∇∗ is defined by

P ∗(X,Y )Z = R∗(X,Y )Z −
1

2n
{S∗(Y, Z)X − S∗(X,Z)Y }.(3.30)

If the projective curvature tensor P ∗ with respect to the Schouten-van Kampen
connection ∇∗ vanishes, then from (3.30), we have

R∗(X,Y )Z =
1

2n
{S∗(Y, Z)X − S∗(X,Z)Y }.(3.31)

Now in view of (3.4) and (3.6), (3.31) takes the form

g(R(X,Y )Z,W ) + g(Y, Z)g(X,W )− g(X,Z)g(Y,W ) =

1

2n
[{S(Y, Z) + 2ng(Y, Z)}g(X,W )− {S(X,Z) + 2ng(X,Z)}g(Y,W )].(3.32)

Now taking W = ξ in (3.32), we obtain

S(Y, Z)η(X)− S(X,Z)η(Y ) = 2n{g(X,Z)η(Y )− g(Y, Z)η(X)}.(3.33)

Again, setting X = ξ in (3.33), we get

S(Y, Z) = −2ng(Y, Z).(3.34)

Contracting the above equation (3.34), we get

r = −2n(2n+ 1).(3.35)

Using (3.34) in (3.31), we have R∗ = 0.
Thus we state the following:

Theorem 3.8. Let M be a Kenmotsu manifold admitting the Schouten-van Kam-
pen connection. In M , the vanishing of the projective curvature tensor with respect
to the Schouten-van Kampen connection leads to the vanishing of the curvature
tensor with respect to the Schouten-van Kampen connection.

By making use of (3.4) and (3.6) in (3.30), we get

P ∗(X,Y )Z = R(X,Y )Z −
1

2n
{S(Y, Z)X − S(X,Z)Y }.(3.36)
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Suppose (P ∗(X,Y ).S∗)(Z,U) = 0 holds in a Kenmotsu manifold M . Then we
have

S∗(P ∗(X,Y )Z,U) + S∗(Z, P ∗(X,Y )U) = 0.(3.37)

Taking X = ξ in the equation (3.37), we get

S∗(P ∗(ξ, Y )Z,U) + S∗(Z, P ∗(ξ, Y )U) = 0.(3.38)

By using (3.36), equation (3.38) turns into

S∗(Y, Z)η(U) + S∗(Y, U)η(Z) = 0.(3.39)

In view of the equation (3.6), (3.39) becomes

S(Y, Z)η(U) + S(Y, U)η(Z) + 2n{g(Y, Z)η(U) + g(Y, U)η(Z)} = 0.(3.40)

In (3.40), taking U = ξ and contracting with respect to Y and Z, we get

S(Y, Z) = −2ng(Y, Z).(3.41)

and
r = −2n(2n+ 1).(3.42)

Again, by substituting (3.42) in (3.30), we obtain

P ∗(X,Y )Z = R(X,Y )Z + {g(Y, Z)X − g(X,Z)Y }.(3.43)

Thus we can state that

Theorem 3.9. In a Kenmotsu manifold M admitting the Schouten-van Kampen
connection, P ∗.S∗ = 0 if and only if S(Y, Z) = −2ng(Y, Z).
Further, if P ∗ = 0 then M is isomorphic to the hyperbolic space H2n+1(−1).

The conharmonic curvature tensor [5] K∗ with respect to the Schouten-van Kampen
connection ∇∗ is defined by

K∗(X,Y )Z = R∗(X,Y )Z −
1

2n− 1
{S∗(Y, Z)X − S∗(X,Z)Y

+ g(Y, Z)Q∗X − g(X,Z)Q∗Y }.(3.44)

If the conharmonic curvature tensor K∗ with respect to the Schouten-van Kampen
connection ∇∗ vanishes, then from (3.44), we have

R∗(X,Y )Z =
1

2n− 1
{S∗(Y, Z)X − S∗(X,Z)Y

+ g(Y, Z)Q∗X − g(X,Z)Q∗Y }.(3.45)
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By using (3.4), (3.6) and (3.7) in (3.45), we get

g(R(X,Y )Z,W ) + g(Y, Z)g(X,W )− g(X,Z)g(Y,W )

=
1

2n− 1
[{S(Y, Z) + 4ng(Y, Z)}g(X,W )

− {S(X,Z) + 4ng(X,Z)}g(Y,W )

+ S(X,W )g(Y, Z)− S(Y,W )g(X,Z)].(3.46)

Taking W = ξ in (3.46), we obtain

S(Y, Z)η(X)− S(X,Z)η(Y )− 2n{g(X,Z)η(Y )− g(Y, Z)η(X)} = 0.(3.47)

Taking X = ξ in (3.47), we get

S(Y, Z) = −2ng(Y, Z).(3.48)

Contracting the equation (3.48), we get

r = −2n(2n+ 1).(3.49)

Using (3.48) in (3.45), we have R∗ = 0.

Thus we state the following :

Theorem 3.10. Let M be a Kenmotsu manifold admitting the Schouten-van Kam-
pen connection. In M , the vanishing of the conharmonic curvature tensor with re-
spect to the Schouten-van Kampen connection leads to the vanishing of the curvature
tensor with respect to the Schouten-van Kampen connection.

4. Ricci solitons in Kenmotsu manifold admitting Schouten-van

Kampen connection

Suppose the Kenmotsu manifold M admits a Ricci soliton with respect to the
Schouten-van Kampen connection ∇∗. Then

(L∗

V g)(X,Y ) + 2S∗(X,Y ) + 2λg(X,Y ) = 0.(4.1)

If the potential vector field V is the structure vector field ξ, then since ξ is a parallel
vector field with respect to the Schouten-van Kampen connection (from (3.3)), the
first term in the equation (4.1) becomes zero, hence M reduces to an Einstein
manifold. In this case, the results in Theorem (3.6) and (3.9) hold.
If V is pointwise collinear with the structure vector field ξ, i.e. V = bξ, where b is
a function on M , then the equation (1.1) implies that

bg(∇∗

X
ξ, Y ) + (Xb)η(Y ) + bg(X,∇∗

Y
ξ) + (Y b)η(X) +

2S∗(X,Y ) + 2λg(X,Y ) = 0.(4.2)
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Using (3.3) and (3.6) in (4.2), it follows that

(Xb)η(Y ) + (Y b)η(X) + 2S(X,Y ) + 2{2n+ λ}g(X,Y ) = 0.(4.3)

By setting Y = ξ in (4.3) and using (2.7), we obtain

(Xb) = −{2λ+ ξb}η(X).(4.4)

Again replacing X by ξ in (4.4), we get

(ξb) = −λ.(4.5)

Substituting this in (4.4), we have

(Xb) = −λη(X).(4.6)

By applying d on (4.6), we get
λdη = 0.(4.7)

Since dη 6= 0 from (4.7), we have
λ = 0.(4.8)

Substituting (4.8) in (4.6), we conclude that b is a constant. Hence it is verified
from (4.3) that

S(X,Y ) = −(2n+ λ)g(X,Y ) + λη(X)η(Y ).(4.9)

This leads to the following:

Theorem 4.1. If a Kenmotsu manifold with respect to the Schouten-van Kampen
connection admits a Ricci soliton (g, V, λ) with V , pointwise collinear with ξ, then
the manifold is an η-Einstein manifold and the Ricci soliton is steady.
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