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Abstract. In this paper, we introduce the concept of generalized φ - weakly contractive
random operators and study a new type of stability introduced by Kim [15] which is
called a comparably almost stability and then prove the comparably almost (S,T)- sta-
bility for the Jungck-type random iterative schemes. Our results extend and improve
the recent results in [15], [18], [32] and many others. We also give stochastic version of
many important known results.
Keywords. Weakly contractive random operators; stability; Jungck-type random it-
erative schemes.

1. Introduction

The theory of random operator is an important branch of probabilistic anal-
ysis which plays a key role in many applied areas. The study of random fixed
points forms a central topic in this area. Research of this direction was initiated
by the Prague School of probabilists in connection with random operator theory
[7, 8, 29]. Random fixed point theory has attracted much attention in recent times
since the publication of the survey article by Bharucha-Reid [6] in 1976, in which
the stochastic versions of some well-known fixed point theorems were proved. A lot
of efforts have been devoted to random fixed point theory and applications (see e.g.
[2, 3, 4, 5, 13, 24, 30]) and many others.
In (1953) Mann [16] introduced an iterative scheme and employed it to approx-
imate the solution of a fixed point problem defined by non-expansive mapping
where Picard iterative scheme failed to converge. After that in (1974) Ishikawa
[12] introduced an iterative scheme and employed it to obtain the convergence of
a Lipschitzian pseudo-contractive operator when Manns iterative scheme is not ap-
plicable. Later in (2000) Noor [17] introduced the iterative algorithm to solve vari-
ational inequality problems. Recently, Phuengrattana and Suantai [25] introduced
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SP iterative scheme and proved that it has a better convergence rate as compared
to Mann, Ishikawa and Noor iterative schemes.
About Jungck iterative, in (1976), Jungck [14] introduced the Jungck iterative pro-
cess as follows:
Suppose that X is a Banach space, Y an arbitrary set and S, T : Y → X are such
that T (Y ) ⊆ S(Y ). For x0 ∈ Y , consider the iterative scheme:

Sxn+1 = Txn, n = 0, 1, ... .

He used this iterative process to approximate the common fixed points of the map-
pings S and T satisfying the Jungck contraction. Clearly, this iterative process
reduces to the Picard iteration when S = Id (identity mapping) and Y = X. Later,
Singh et al. [28] introduced the Jungck- Mann iterative process as:

Sxn+1 = (1 − αn)Sxn + αnTxn, αn ∈ [0, 1].

For αn, βn, γn ∈ [0, 1], Olatinwo [21] defined the Jungck-Ishikawa and Jungck-Noor
iterative processes as follows:

Sxn+1 = (1− αn)Sxn + αnTyn,

Syn = (1 − βn)Sxn + βnTxn.

Sxn+1 = (1− αn)Sxn + αnTyn,

Syn = (1 − βn)Sxn + βnTzn,

Szn = (1 − γn)Sxn + γnTxn.

The concept of the φ- weak contraction was introduced by Alber and Guerre-
Delabriere [1] in 1997, who proved the existence of fixed points in Hilbert spaces.
Later Rhoades [27] in 2001, extended the results of [1] to metric spaces. In 2016,
Xue [31] introduced a kind of generalized φ-weak contraction as follows:

Definition 1.1. [31]. Let (X,d) be a metric space. A mapping T : X → X is
a generalized φ-weak contraction if there exists a continuous and nondecreasing
function φ : [0,∞] → [0,∞] with φ(0) = 0 such that

d(Tx, T y) 6 d(x, y) − φ(d(Tx, T y)), ∀x, y ∈ X.(1.1)

The concept of stable fixed point iterative scheme was introduced and studied by
Harder [9], Harder and Hicks [10, 11]. Many other stability results for several fixed
point iterative schemes and various classes of nonlinear mappings were obtained.

Definition 1.2. [11] Let (X, d) be a metric space, T : X → X be a self-mapping
and x0 ∈ X . Assume that the iterative scheme

xn+1 = f(T, xn), n ≥ 0.(1.2)
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converges to a fixed point p of T. Let zn be an arbitrary sequence in X and define

εn = d(zn+1, f(T, zn)), n ≥ 0.(1.3)

The iterative scheme defined by (1.2) is said to be T-stable or stable with respect
to T if and only if

lim
n→∞

εn = 0 ⇒ lim
n→∞

zn = p.(1.4)

Osilike [23] introduced a weaker concept of stability.

Definition 1.3. [23] Let (X, d) be a metric space, T : X → X be a self-mapping
and x0 ∈ X . Assume that the iterative scheme (1.2) converges to a fixed point p of
T. Let zn be an arbitrary sequence in X and defined by (1.3). The iterative scheme
defined by (1.2) is said to be almost T-stable or almost stable with respect to T if
and only if

∞∑

n=0

εn < ∞ ⇒ lim
n→∞

zn = p.(1.5)

Remark 1.1. It is obvious that any stable iterative scheme is also almost stable but the
reverse is not true in general. For examples see [23].

The definition of (S, T)-stability can be found in Singh et al. [28].

Definition 1.4. [28] Let S, T : Y → X be non-self operators for an arbitrary set Y
such that T (Y ) ⊆ S(Y ) and p a point of coincidence of S and T. Let {Sxn}

∞
n=0 ⊂ X

be the sequence generated by an iterative procedure

Sxn+1 = f(T, xn), n = 0, 1, 2, ...,(1.6)

where x0 ∈ X is the initial approximation and f is some functions. Suppose that
{Sxn}

∞
n=0 converges to p. Let{Syn}

∞
n=0 ⊂ X be an arbitrary sequence and set

εn = d(Syn, f(T, yn)), n = 0, 1, 2, ... .

Then, the iterative procedure (1.6) is said to be (S,T)-stable if and only if limn→∞ εn =
0 implies limn∞ Syn = p.

In 2017, Kim [15] introduced a new concept of stability which is called comparably
almost T- stability defined as:

Definition 1.5. Let (X, d) be a metric space, T : X → X be a self-mapping and
x0 ∈ X . Assume that the iterative scheme (1.2) converges to a fixed point p of T.
Let zn be an arbitrary sequence in X and defined by (1.3). The iterative scheme
defined by (1.2) is said to be comparably almost T-stable or comparably almost
stable with respect to T if and only if

∞∑

n=0

(θn + εn) < ∞, θn ≥ 0 ⇒ lim
n→∞

zn = p, lim
n→∞

θn = 0.(1.7)
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Also, he proved some convergence results of Mann and Ishikawa iterative schemes
containing a generalized φ- weak contractive self maps defined as in (1.1).

Remark 1.2. 1. It is obvious that any almost stable iterative scheme is also compa-
rably almost stable. See [15].

2. If θn = 0 in (1.7), then (1.7) reduces to (1.5). So an almost stable iterative scheme
is a special case of comparably almost stable iterative scheme.

The aim of this paper is to introduce the concept of generalized φ- weakly contrac-
tive random operators and study a new type of stability which is called compara-
bly almost stability and then prove the comparably almost (S,T)- stability for the
Jungck- type and SP-Jungck-type random iterative schemes. Our results extend,
improve and unify the recent results in [15], [18], [32] and many others. We also
give the stochastic version of many important known results.

2. Preliminaries

Let (Ω,Σ) be a measurable space, E be nonempty subset of a separable Banach space
X . A mapping ξ : Ω → E is called measurable if ξ−1(B ∩ E) ∈ Σ for every Borel
subset B of X . A mapping T : Ω×E → E is said to be random mapping if for each
fixed x ∈ E, the mapping T (., x) : Ω → E is measurable. A measurable mapping
ξ∗ : Ω → E is called a random fixed point of the random mapping T : Ω× E → E

if T (ω, ξ∗(ω)) = ξ∗(ω) for each ω ∈ Ω. Let S, T : Ω × E → E be two random
self-maps. A measurable map ξ∗ is called a common random fixed point of the pair
(S,T) if ξ∗(ω) = S(ω, ξ∗(ω)) = T (ω, ξ∗(ω)), for each ω ∈ Ω and some ξ∗(ω) ∈ E.
let S, T : Ω × E ↔ E be two random operator defined on E and E a nonempty
subset of a separable Banach space X . Let x0(w) ∈ E be arbitrary measurable
mapping for w ∈ Ω, n = 0, 1, ... with T (w,X) ⊆ S(w,X), S is injective.
The Jungck-Noor type random iterative scheme is a sequence {S(w, xn(ω))}

∞
n=0

defined by

S(w,xn+1(w)) = (1−αn)S(w,xn(w))+αnT (w,yn(w)),

S(w,yn(w)) = (1−βn)S(w,xn(w))+βnT (w,zn(w)),

S(w,zn(w)) = (1−γn)S(w,xn(w))+γnT (w,xn(w)),(2.1)

where {αn}
∞
n=0, {βn}

∞
n=0 and {γn}

∞
n=0 are real sequences in (0,1).

The Jungck-SP type random iterative scheme is a sequence {S(w, xn(ω))}
∞
n=0 de-

fined by

S(w,xn+1(w)) = (1−αn)S(w,yn(w))+αnT (w,yn(w)),

S(w,yn(w)) = (1−βn)S(w,zn(w))+βnT (w,zn(w)),

S(w,zn(w)) = (1−γn)S(w,xn(w))+γnT (w,xn(w)),(2.2)

where {αn}
∞
n=0, {βn}

∞
n=0 and {γn}

∞
n=0 are real sequences in (0,1).
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Remark 2.1. 1. If γn = 0 for each n ∈ N in (2.1), then the Jungck-Noor type random
iterative scheme reduce to Jungck-Ishikawa type random iterative scheme.

S(w, xn+1(w)) = (1− αn)S(w, xn(w)) + αnT (w, yn(w)),

S(w, yn(w)) = (1− βn)S(w, xn(w)) + βnT (w,xn(w)),(2.3)

where {αn}
∞

n=0 and {βn}
∞

n=0 are real sequences in (0,1).

2. If βn = γn = 0 for each n ∈ N in (2.1), then the Jungck-Noor type random iterative
scheme reduce to Jungck-Mann type random iterative scheme.

S(w, xn+1(w)) = (1− αn)S(w, xn(w)) + αnT (w, xn(w)),(2.4)

where {αn}
∞

n=0 is real sequence in (0,1).

Zhang et al. [32] in (2011), studied the almost sure T-stability and convergence
of Ishikawa-type and Mann-type random iterative processes for certain φ- weakly
contractive-type random operators in a separable Banach space. The following is
the contractive condition studied by Zhang et al. [32].

Definition 2.1. [32] Let (Ω,Σ, µ) be a complete probability measure space and
E be a nonempty subset of a separable Banach space X. A random operator T :
Ω × E ↔ E is called a φ- weakly contractive-type random operator if there exists
a continuous and non- decreasing function φ : R+ → R

+ with φ(t) > 0 for each
t ∈ (0,∞) and φ(0) = 0 such that for each x, y ∈ E,ω ∈ Ω,

∫
Ω
‖T (w,x)−T (w,y)‖dµ(w)≤

∫
Ω
‖x−y‖dµ(w)−φ(

∫
Ω
‖x−y‖dµ(w))(2.5)

Recently, in (2015) Okeke and Abbas [18] introduced the concept of generalized φ-
weakly contraction random operators and then proved the convergence and almost
sure T-stability of Mann-type and Ishikawa-type random iterative schemes. Their
results improved the results of Zhang et al. [32] and Olatinwo [22] and others. The
generalized φ- weakly contraction is defined as follows:

Definition 2.2. [18] Let (Ω,Σ, µ) be a complete probability measure space and
E be a nonempty subset of a separable Banach space X. A random operator T :
Ω × E ↔ E is called a φ- weakly contractive-type random operator if there exists
L(w) ≥ 0 and a continuous and non- decreasing function φ : R+ → R

+ with φ(t) > 0
for each t ∈ (0,∞) and φ(0) = 0 such that for each x, y ∈ E,ω ∈ Ω,

∫
Ω
‖T (w,x)−T (w,y)‖dµ(w)≤eL(w)‖x−y‖(

∫
Ω
‖x−y‖dµ(w)−φ(

∫
Ω
‖x−y‖dµ(w)))(2.6)

If L(w) = 0 for each w ∈ Ω in (2.6), then it reduces to condition (2.5).
Furthermore, Okeke and Kim in [19] introduced the random Picard-Mann hybrid
iterative process. They established strong convergence theorems and summable al-
most T-stability of the random PicardMann hybrid iterative process and the random
Mann-type iterative process generated by a generalized class of random operators in
separable Banach spaces. Their results improved and generalized several well-known
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deterministic stability results in a stochastic version. In addition, Okeke and Kim
[20] proved some convergence and (S,T)- stability results for random Jungck-Mann
type and random Ishikawa type iterative processes. Rashwan et al. [26] studied the
convergence and almost sure (S,T)- stability for the random Jungck-Noor type and
the random Jungck-SP type under some contractive conditions.
Keeping in mind the generalized φ-weakly contractive conditions (1.1) and (2.6),
we introduce the following generalized φ-weakly contractive condition:

Definition 2.3. Let (Ω,Σ) be a measurable space and E be a nonempty subset
of a separable Banach space X. Let S, T : Ω × E ↔ E be random operators such
that T (w,X) ⊆ S(w,X). Then the random operators S and T are satisfying the
following generalized φ- weakly contractive-type if there exist L(w) ≥ 0 and a
continuous and non- decreasing function φ : R

+ → R
+ with φ(t) > 0 for each

t ∈ (0,∞) and φ(0) = 0 such that for each x, y ∈ E,ω ∈ Ω,

(2.7) ‖T (w,x)−T (w,y)‖≤eL(w)‖S(w,x)−T(w,x)‖(‖S(w,x)−S(w,y)‖−φ(‖T (w,x)−T (w,y)‖))

If L(w) = 0 for each ω ∈ Ω and S = Id (identity random mapping) in the condition
(2.7), then it reduces to the stochastic version of the condition (1.1).
Motivated by the definition of a comparably almost stability in [15] together with the
definition of (S,T)-stability in [28], we state the stochastic version of the comparably
almost (S,T)- stability as follows:

Definition 2.4. Let (Ω,Σ) be a measurable space and E be a nonempty subset
of a separable Banach space X. Let S, T : Ω × E ↔ E be random operators such
that T (w,X) ⊆ S(w,X) and ξ∗(ω) be a common random fixed point of S and T.
For any given random variable x0 : Ω → E. Define a random iterative scheme with
the functions {S(ω, xn(ω))}

∞
n=0 as follows:

S(ω, xn+1(ω)) = f(T ;xn(ω)) n = 0, 1, 2, ...,(2.8)

where f is some function measurable in the second variable.
Suppose that {S(ω, xn(ω))}

∞
n=0 converges to ξ∗(ω), and Let {S(ω, ξn(ω))}

∞
n=0 ⊂ E

be an arbitrary sequence of a random variable. Denote by

εn(ω) = ‖S(ω, ξn+1(ω))− f(T ; ξn(ω))‖.

Then the iterative scheme (2.8) is a comparably almost (S,T)- stable or comparably
almost stable with respect to (S,T) if and only if for ω ∈ Ω,

∞∑

n=0

(θn(ω) + εn(ω)) < ∞, θn(ω) ≥ 0 ⇒ S(ω, ξn(ω)) → ξ∗, θn(ω) → 0 as n → ∞.

The following lemma is useful for proving our results
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Lemma 2.1. [1] Let {λn} and {γn} be two sequences of nonnegative real numbers
and {σn} be a sequence of positive numbers satisfying

λn+1 ≤ λn − σnφ(λn) + γn, ∀n ≥ 1,

where φ : [0,∞) → [0,∞) is a continuous and nondecreasing function with φ(0) = 0.

If
∞∑

n=1
σn = ∞ and limn→∞

γn

σn
= 0, then {λn} converges to 0 as n → ∞.

3. Main Results

In this section, we present our main results. First, we prove the comparably almost
(S,T)- stability of the Jungck-Noor type random iterative scheme.

Theorem 3.1. Let (Ω,Σ) be a measurable space and E be a nonempty subset
of a separable Banach space X and let S, T : Ω× E ↔ E be two random operators
defined on E satisfying a generalized φ- weakly contractive-type (2.7) with T (w,X) ⊆
S(w,X). Let ξ∗(ω) be a common random fixed point of (S,T) and {S(ω, xn(ω))}

∞
n=0

be a Jungck-Noor type random iterative scheme defined by (2.1) converging strongly
to ξ∗(ω), where {αn}, {βn} and {γn} are sequences of positive numbers in [0,1]
satisfying

•
∑∞

n=1 αnβnγn = ∞,

• αn(1 + βn + βnγn) ≤ 1.

Let {S(w, ξn(w))}
∞
n=0 be any sequence of random variable in E and define

εn = ‖S(w, ξn+1(w)) − (1 − αn)S(w, ξn(w)) − αnT (w, ηn(w))‖,

S(w, ηn(w)) = (1−βn)S(w,ξn(w))+βnT (w,ζn(w)),

S(w, ζn(w)) = (1−γn)S(w,ξn(w))+γnT (w,ξn(w)).

Then

1. If
∑∞

n=0(θn + εn) < ∞, where

θn = φ(‖S(w, ξn(w)) − ξ∗(w)‖)− αnβnγnφ(‖T (w, ξn(w)) − ξ∗(w)‖)

−αnβnφ(‖T (w, ζn(w)) − ξ∗(w)‖) − αnφ(‖T (w, ηn(w)) − ξ∗(w)‖).

Then the Jungck-Noor type random iterative scheme {S(w, xn(w))}
∞
n=0 is a

comparably almost (S,T)- stable.

2. If the sequence {S(w, ξn(w))}
∞
n=0 converge to the fixed point ξ∗(w) of (S,T),

then limn→∞ εn = 0.
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Proof. Using the random Jungck-Noor iterative scheme (2.1) and the sequence
{S(w, ξn(w))}

∞
n=0 defined in (3.1), we have

‖S(w,ξn+1(w))−ξ∗(w)‖ ≤ ‖S(w,ξn+1(w))−(1−αn)S(w,ξn(w))−αnT (w,ηn(w))‖

+ (1−αn)‖S(w,ξn(w))−ξ∗(w)‖+αn‖T (w,ηn(w))−ξ∗(w)‖

= εn+(1−αn)‖S(w,ξn(w))−ξ∗(w)‖+αn‖T (w,ηn(w))−ξ∗(w)‖

(3.1)

Now, we compute the last estimate of (3.1) by using (2.7) and (3.1)

‖T (w,ηn(w))−ξ∗(w)‖ = ‖T (w,ξ∗(w))−T (w,ηn(w))‖

≤ eL(w)‖S(w,ξ∗(w))−T (w,ξ∗(w))‖(‖S(w,ξ∗(w))−S(w,ηn(w))‖

− φ(‖T (w,ξ∗(w))−T (w,ηn(w))‖))

= ‖ξ∗(w)−S(w,ηn(w))‖−φ(‖T (w,ξ∗(w))−T (w,ηn(w))‖)

≤ (1−βn)‖S(w,ξn(w))−ξ∗(w)‖+βn‖T (w,ζn(w))−ξ∗(w)‖

− φ(‖ξ∗(w)−T (w,ηn(w))‖)

≤ (1−βn)‖S(w,ξn(w))−ξ∗(w)‖+βn[e
L(w)‖S(w,ξ∗(w))−T (w,ξ∗(w))‖

( ‖S(w,ξ∗(w))−S(w,ζn(w))‖−φ(‖T (ω,ξ∗(ω))−T (w,ζn(w))‖))]

− φ(‖ξ∗(w)−T (w,ηn(w))‖)

= (1−βn)‖S(w,ξn(w))−ξ∗(w)‖+βn‖ξ
∗(w)−S(w,ζn(w))‖

− βnφ(‖ξ
∗(w)−T (w,ζn(w))‖)−φ(‖ξ∗(w)−T (w,ηn(w))‖)

≤ (1−βn)‖S(w,ξn(w))−ξ∗(w)‖+βn[(1−γn)‖S(w,ξn(w))−ξ∗(w)‖

+ γn‖T (w,ξn(w))−ξ∗(w)‖]−βnφ(‖ξ
∗(w)−T (w,ζn(w))‖)

− φ(‖ξ∗(w)−T (w,ηn(w))‖)

≤ (1−βn)‖S(w,ξn(w))−ξ∗(w)‖+βn(1−γn)‖S(w,ξn(w))−ξ∗(w)‖

+ βnγn[e
L(w)‖S(w,ξ∗(w))−T (w,ξ∗(w))‖(‖S(w,ξn(w))−ξ∗(w)‖

− φ(‖T (w,ξn(w))−ξ∗(w)‖)]−βnφ(‖T (w,ζn(w))−ξ∗(w)‖)

− φ(‖T (w,ηn(w))−ξ∗(w)‖)

= (1−βn+βn−βnγn+βnγn)‖S(w,ξn(w))−ξ∗(w)‖

− βnγnφ(‖T (w,ξn(w))−ξ∗(w)‖)−βnφ(‖T (w,ζn(w))−ξ∗(w)‖)

− φ(‖T (w,ηn(w))−ξ∗(w)‖)

= ‖S(w,ξn(w))−ξ∗(w)‖−βnγnφ(‖T (w,ξn(w))−ξ∗(w)‖)

− βnφ(‖T (w,ζn(w))−ξ∗(w)‖)−φ(‖T (w,ηn(w))−ξ∗(w)‖)

(3.2)

Applying (3.2) in (3.1), we obtain
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‖S(w,ξn+1(w))−ξ∗(w)‖ ≤ εn+(1−αn)‖S(w,ξn(w))−ξ∗(w)‖+αn‖S(w,ξn(w))−ξ∗(w)‖

− αnβnγnφ(‖T (w,ξn(w))−ξ∗(w)‖)−αnβnφ(‖T (w,ζn(w))−ξ∗(w)‖)

− αnφ(‖T (w,ηn(w))−ξ∗(w)‖)

= ‖S(w,ξn(w))−ξ∗(w)‖−φ(‖S(w,ξn(w))−ξ∗(w)‖)+(εn+θn),

(3.3)

where, θn=φ(‖S(w,ξn(w))−ξ∗(w)‖)−αnβnγnφ(‖T (w,ξn(w))−ξ∗(w)‖)−αnβnφ(‖T (w,ζn(w))−ξ∗(w)‖)

− αnφ(‖T (w,ηn(w))−ξ∗(w)‖).

Now, we want to prove that θn ≥ 0, note that

‖T (w,ξn(w))−ξ∗(w)‖ ≤ eL(w)‖S(w,ξ∗(w))−T (w,ξ∗(w))‖(‖S(w,ξ∗(w))−S(w,ξn(w))‖

− φ(‖T (w,ξ∗(w))−T (w,ξn(w))‖))

≤ ‖S(w,ξn(w))−ξ∗(w)‖.(3.4)

Also, we have by (3.4)

‖T (w,ζn(w))−ξ∗(w)‖ = ‖T (w,ξ∗(w))−T (w,ζn(w))‖

≤ eL(w)‖S(w,ξ∗(w))−T (w,ξ∗(w))‖(‖S(w,ξ∗(w))−S(w,ζn(w))‖

− φ(‖T (w,ξ∗(w))−T (w,ζn(w))‖))

≤ ‖S(w,ζn(w))−ξ∗(w)‖

≤ (1−γn)‖S(w,ξn(w))−ξ∗(w)‖+γn‖T (w,ξn(w))−ξ∗(w)‖

≤ (1−γn)‖S(w,ξn(w))−ξ∗(w)‖+γn‖S(w,ξn(w))−ξ∗(w)‖

= ‖S(w,ξn(w))−ξ∗(w)‖.(3.5)

Similarly, from (3.5), we get

‖T (w,ηn(w))−ξ∗(w)‖ = ‖T (w,ξ∗(w))−T (w,ηn(w))‖

≤ eL(w)‖S(w,ξ∗(w))−T (w,ξ∗(w))‖(‖S(w,ξ∗(w))−S(w,ηn(w))‖

− φ(‖T (w,ξ∗(w))−T (w,ηn(w))‖))

≤ ‖S(w,ηn(w))−ξ∗(w)‖

≤ (1−βn)‖S(w,ξn(w))−ξ∗(w)‖+βn‖T (w,ζn(w))−ξ∗(w)‖

≤ (1−βn)‖S(w,ξn(w))−ξ∗(w)‖+βn‖S(w,ξn(w))−ξ∗(w)‖

= ‖S(w,ξn(w))−ξ∗(w)‖.(3.6)

Now, we can study the sign of θn by using (3.4), (3.5), (3.6) and the condition
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αn(1 + βn + βnγn) ≤ 1 as:

θn = φ(‖S(w,ξn(w))−ξ∗(w)‖)−αnβnγnφ(‖T (w,ξn(w))−ξ∗(w)‖)

− αnβnφ(‖T (w,ζn(w))−ξ∗(w)‖)−αnφ(‖T (w,ηn(w))−ξ∗(w)‖)

≥ φ(‖S(w,ξn(w))−ξ∗(w)‖)−αnβnγnφ(‖S(w,ξn(w))−ξ∗(w)‖)

− αnβnφ(‖S(w,ξn(w))−ξ∗(w)‖)−αnφ(‖S(w,ξn(w))−ξ∗(w)‖)

= [1−αn(1+βn+βnγn)]φ(‖S(w,ξn(w))−ξ∗(w)‖)

≥ 0.

Since
∑∞

n=0(θn + εn) < ∞, we have limn→∞(θn + εn) = 0 . Back to the relation
(3.3) and by Lemma 2.1, we get

limn→∞ ‖S(w,ξn(w))−ξ∗(w)‖=0 or S(w,ξn(w))→ξ∗(w) as n→∞.(3.7)

From (3.4) and (3.7), we get

0≤‖T (w,ξn(w))−ξ∗(w)‖≤‖S(w,ξn(w))−ξ∗(w)‖→0 as n→∞.(3.8)

Similarly, from (3.5), (3.6) and using (3.7)

0≤‖T (w,ζn(w))−ξ∗(w)‖≤‖S(w,ξn(w))−ξ∗(w)‖→0 as n→∞.(3.9)

0≤‖T (w,ηn(w))−ξ∗(w)‖≤‖S(w,,ξn(w))−ξ∗(w)‖→0 as n→∞.(3.10)

Since φ is continuous, from (3.7)-(3.10), we obtain

limn→∞ θn=limn→∞[φ(‖S(w,ξn(w))−ξ∗(w)‖)−αnβnγnφ(‖T (w,ξn(ω))−ξ∗(w)‖)

− αnβnφ(‖T (w,ζn(w))−ξ∗(w)‖)−αnφ(‖T (w,ηn(w))−ξ∗(w)‖)]

= 0.

Hence the Jungck-Noor type random iterative scheme {S(w, xn(w))}
∞
n=0 is a com-

parably almost (S,T)- stable.
Next, suppose that S(w, ξn(w)) → ξ∗(w) as n → ∞, and using (3.6) and (3.7), then
we can write

εn = ‖S(w,ξn+1(w))−(1−αn)S(w,ξn(w))−αnT (w,ηn(w))‖

≤ ‖S(w,ξn+1(w))−ξ∗(w)‖+(1−αn)‖S(w,ξn(ω))−ξ∗(w)‖

+ αn‖T (w,ηn(w))−ξ∗(w)‖

≤ ‖S(w,ξn+1(w))−ξ∗(w)‖+(1−αn)‖S(w,ξn(ω))−ξ∗(w)‖

+ αn‖S(w,ξn(w))−ξ∗(w)‖

= ‖S(w,ξn+1(w))−ξ∗(w)‖+‖S(w,ξn(ω))−ξ∗(w)‖.

Hence, we get εn → 0 as n → ∞.
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From Theorem 3.1, we can present the following corollaries.

Corollary 3.1. Let (Ω,Σ) be a measurable space and E be a nonempty subset
of a separable Banach space X and let S, T : Ω × E ↔ E be two random oper-
ators defined on E satisfying a generalized φ- weakly contractive-type (2.7) with
T (w,X) ⊆ S(w,X). Let ξ∗(w) be a common random fixed point of (S,T) and
{S(w, xn(w))}

∞
n=0 be a Jungck-Ishikawa type random iterative scheme defined by

(2.3) converging strongly to ξ∗(w), where {αn} and {βn} are sequences of positive
numbers in [0,1] satisfying

•
∑∞

n=1 αnβn = ∞,

• αn(1 + βn) ≤ 1.

Let {S(w, ξn(w))}
∞
n=0 be any sequence of random variable in E and define

εn = ‖S(w, ξn+1(w)) − (1− αn)S(w, ξn(w))− αnT (w, ηn(w))‖,

S(w, ηn(w)) = (1− βn)S(w, ξn(w)) + βnT (w, ξn(w)).

Then

1. If
∑∞

n=0(θn + εn) < ∞, where

θn=φ(‖S(w,ξn(w))−ξ∗(w)‖)−αnβnφ(‖T (w,ξn(w))−ξ∗(w)‖)−αnφ(‖T (w,ηn(w))−ξ∗(w)‖).

Then the Jungck-Ishikawa type random iterative scheme {S(w, xn(w))}
∞
n=0 is

a comparably almost (S,T)- stable.

2. If the sequence {S(w, ξn(w))}
∞
n=0 converge to the fixed point ξ∗(w) of (S,T),

then limn→∞ εn = 0.

Proof. Putting γn = 0 in the Jungck-Noor type random iterative scheme in Theorem
3.1. Then we obtain the Jungck-Ishikawa type random iterative scheme and then
can be prove the Corollary 3.1 by following the same steps of proofing of Theorem
3.1.

Corollary 3.2. Let (Ω,Σ) be a measurable space and E be a nonempty subset
of a separable Banach space X and let S, T : Ω× E ↔ E be two random operators
defined on E satisfying a generalized φ- weakly contractive-type (2.7) with T (w,X) ⊆
S(w,X). Let ξ∗(w) be a common random fixed point of (S,T) and {S(w, xn(w))}

∞
n=0

be a Jungck-Mann type random iterative scheme defined by (2.4) converging strongly
to ξ∗(w), where {αn} is a sequence of positive numbers in [0,1] such that

∑∞
n=1 αn =

∞. Let {S(w, ξn(w))}
∞
n=0 be any sequence of random variable in E and define

εn = ‖S(w, ξn+1(w)) − (1− αn)S(w, ξn(w)) − αnT (w, ξn(w))‖,

Then
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1. If
∑∞

n=0(θn + εn) < ∞, where

θn=φ(‖S(w,ξn(w))−ξ∗(w)‖)−αnφ(‖T (w,ξn(w))−ξ∗(w)‖).

Then the Jungck-Mann iterative scheme {S(w, xn(w))}
∞
n=0 is a comparably

almost (S,T)- stable.

2. If the sequence {S(w, ξn(w))}
∞
n=0 converge to the fixed point ξ∗(w) of (S,T),

then limn→∞ εn = 0.

Proof. If γn = βn = 0 in the Jungck-Noor type random iterative scheme in Theorem
3.1. Then we obtain the Jungck-Mann type random iterative and then the proof of
the Corollary 3.2 is similar to that of Theorem 3.1.

Remark 3.1. If the random mapping S = Id (Identity random mapping) and L(ω) = 0
in Corollary 3.1 and Corollary 3.2. Then Corollary 3.1 and Corollary 3.2 are random
versions of Theorem 3.2 and Corollary 3.3 respectively of Kim in [15].

Next, we prove that the Jungck- SP type random iterative scheme {S(w, xn(w))}
∞
n=0

is a comparably almost (S,T)- stable.

Theorem 3.2. Let (Ω,Σ) be a measurable space and E be a nonempty subset
of a separable Banach space X and let S, T : Ω× E ↔ E be two random operators
defined on E satisfying a generalized φ- weakly contractive-type (2.7) with T (w,X) ⊆
S(w,X). Let ξ∗(w) be a common random fixed point of (S,T) and {S(w, xn(w))}

∞
n=0

be a Jungck-SP type random iterative scheme defined by (2.2) converging strongly
to ξ∗(w), where {αn}, {βn} and {γn} are sequences of positive numbers in [0,1]
satisfying

•
∑∞

n=1 αn = ∞ or
∑∞

n=1 βn = ∞ or
∑∞

n=1 γn = ∞.

• αn(1 + βn + γn) ≤ 1.

Let {S(w, ξn(w))}
∞
n=0 be any sequence of random variable in E and define

εn = ‖S(w,ξn+1(w))−(1−αn)S(w,ηn(ω))−αnT (w,ηn(w))‖,

S(w,ηn(w)) = (1−βn)S(w,ζn(w))+βnT (w,ζn(w)),

S(w,ζn(w)) = (1−γn)S(w,ξn(w))+γnT (w,ξn(w)).(3.11)

Then

1. If
∑∞

n=0(θn + εn) < ∞, where

θn=φ(‖S(w,ξn(w))−ξ∗(w)‖)−αnγnφ(‖T (w,ξn(w))−ξ∗(w)‖)

−αnβnφ(‖T (w,ζn(w))−ξ∗(w)‖)−αnφ(‖T (w,ηn(w))−ξ∗(w)‖).

Then the Jungck-SP iterative scheme {S(w, xn(w))}
∞
n=0 is a comparably al-

most (S,T)- stable.
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2. If the sequence {S(w, ξn(w))}
∞
n=0 converge to the fixed point ξ∗(w) of (S,T),

then limn→∞ εn = 0.

Proof. By the same steps of proofing of Theorem 3.1, using the random Jungck-SP
iterative scheme (2.2) and the sequence {S(w, ξn(w))}

∞
n=0 defined in (3.11), we have

‖S(w,ξn+1(w))−ξ∗(w)‖ ≤ ‖S(w,ξn+1(w))−(1−αn)S(w,ηn(w))−αnT (w,ηn(w))‖

+ (1−αn)‖S(w,ηn(w))−ξ∗(w)‖+αn‖T (w,ηn(w))−ξ∗(w)‖

= εn+(1−αn)‖S(w,ηn(w))−ξ∗(w)‖+αn‖T (w,ηn(w))−ξ∗(w)‖

(3.12)

Using (2.7) to compute the following

‖T (w,ηn(w))−ξ∗(w)‖ = ‖T (w,ξ∗(w))−T (w,ηn(w))‖

≤ eL(w)‖S(w,ξ∗(w))−T (w,ξ∗(w))‖(‖S(w,ξ∗(w))−S(w,ηn(w))‖

− φ(‖T (ω,ξ∗(w))−T (w,ηn(w))‖))

= ‖S(w,ηn(w))−ξ∗(w)‖−φ(‖T (w,ηn(w))−ξ∗(w)‖)

(3.13)

Applying (3.13) in (3.12), we obtain
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‖S(w,ξn+1(w))−ξ∗(w)‖ ≤ εn+(1−αn)‖S(w,ηn(w))−ξ∗(w)‖

+ αn[‖S(w,ηn(w))−ξ∗(w)‖−φ(‖T (w,ηn(w))−ξ∗(w)‖)]

= εn+‖S(w,ηn(w))−ξ∗(w)‖−αnφ(‖T (w,ηn(w))−ξ∗(w)‖)

≤ εn+(1−βn)‖S(w,ζn(w))−ξ∗(w)‖+βn‖T (w,ζn(w))−ξ∗(w)‖

− αnφ(‖T (w,ηn(w))−ξ∗(w)‖)

≤ εn+(1−βn)‖S(w,ζn(w))−ξ∗(w)‖+βn[e
L(w)‖S(w,ξ∗(w))−T (w,ξ∗(w))‖

( ‖S(w,ξ∗(w))−S(w,ζn(w))‖−φ(‖T (ω,ξ∗(w))−T (w,ζn(w))‖))]

− αnφ(‖T (w,ηn(w))−ξ∗(w)‖)

= εn+(1−βn)‖S(w,ζn(w))−ξ∗(w)‖+βn‖S(w,ζn(w))−ξ∗(w)‖

− βnφ(‖T (w,ζn(w))−ξ∗(w)‖)−αnφ(‖T (w,ηn(w))−ξ∗(w)‖)

= εn+‖S(w,ζn(w))−ξ∗(w)‖−βnφ(‖T (w,ζn(w))−ξ∗(w)‖)

− αnφ(‖T (w,ηn(w))−ξ∗(w)‖)

≤ εn+(1−γn)‖S(w,ξn(w))−ξ∗(w)‖+γn‖T (w,ξn(w))−ξ∗(w)‖

− βnφ(‖T (w,ζn(w))−ξ∗(w)‖)−αnφ(‖T (w,ηn(w))−ξ∗(w)‖)

≤ εn+(1−γn)‖S(w,ξn(w))−ξ∗(w)‖

+ γn[e
L(w)‖S(w,ξ∗(w))−T (w,ξ∗(w))‖(‖S(w,ξ∗(w))−S(w,ξn(w))‖

− φ(‖T (w,ξ∗(w))−T (w,ξn(w))‖))]−βnφ(‖T (w,ζn(w))−ξ∗(w)‖)

− αnφ(‖T (w,ηn(w))−ξ∗(w)‖)

= εn+‖S(w,ξn(w))−ξ∗(w)‖−γnφ(‖T (w,ξn(w))−ξ∗(w)‖)

− βnφ(‖T (w,ζn(w))−ξ∗(w)‖)−αnφ(‖T (w,ηn(w))−ξ∗(w)‖)

= ‖S(w,ξn(w))−ξ∗(w)‖−φ(‖S(w,ξn(w))−ξ∗(w)‖)+(θn+εn)(3.14)

where

θn=φ(‖S(w,ξn(w))−ξ∗(w)‖)−γnφ(‖T (w,ξn(w))−ξ∗(w)‖)

−βnφ(‖T (w,ζn(w))−ξ∗(w)‖)−αnφ(‖T (w,ηn(w))−ξ∗(w)‖).

Note that,

‖T (w,ξn(w))−ξ∗(w)‖ ≤ eL(w)‖S(w,ξ∗(w))−T (w,ξ∗(w))‖(‖S(w,ξ∗(w))−S(w,ξn(w))‖

− φ(‖T (w,ξ∗(w))−T (w,ξn(w))‖))

≤ ‖S(w,ξn(w))−ξ∗(w)‖.(3.15)
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Also, from (3.15) , we get

‖T (w,ζn(w))−ξ∗(w)‖ = ‖T (w,ξ∗(w))−T (w,ζn(w))‖

≤ eL(w)‖S(w,ξ∗(w))−T (w,ξ∗(w))‖(‖S(w,ξ∗(w))−S(w,ζn(w))‖

− φ(‖T (w,ξ∗(w))−T (w,ζn(w))‖))

≤ ‖S(w,ζn(w))−ξ∗(w)‖

≤ (1−γn)‖S(w,ξn(w))−ξ∗(w)‖+γn‖T (w,ξn(w))−ξ∗(w)‖

≤ (1−γn)‖S(w,ξn(w))−ξ∗(w)‖+γn‖S(w,ξn(w))−ξ∗(w)‖

= ‖S(w,ξn(w))−ξ∗(w)‖

(3.16)

Similarly, from (3.16), we get,

‖T (w,ηn(w))−ξ∗(w)‖ = ‖T (w,ξ∗(w))−T (w,ηn(w))‖

≤ eL(w)‖S(w,ξ∗(w))−T (w,ξ∗(w))‖(‖S(w,ξ∗(w))−S(w,ηn(w))‖

− φ(‖T (w,ξ∗(w))−T (w,ηn(w))‖))

≤ ‖S(w,ηn(w))−ξ∗(w)‖

≤ (1−βn)‖S(w,ζn(w))−ξ∗(w)‖+βn‖T (w,ζn(w))−ξ∗(w)‖

≤ (1−βn)‖S(w,ξn(w))−ξ∗(w)‖+βn‖S(w,ξn(w))−ξ∗(w)‖

= ‖S(w,ξn(w))−ξ∗(w)‖

(3.17)

Using (3.15), (3.16) and (3.17) with the condition αn + βn + γn ≤ 1 we obtain,

θn = φ(‖S(w,ξn(w))−ξ∗(w)‖)−γnφ(‖T (w,ξn(w))−ξ∗(w)‖)

− βnφ(‖T (w,ζn(w))−ξ∗(w)‖)−αnφ(‖T (w,ηn(w))−ξ∗(w)‖)

≥ φ(‖S(w,ξn(w))−ξ∗(w)‖)−γnφ(‖S(w,ξn(w))−ξ∗(w)‖)

− βnφ(‖S(w,ξn(w))−ξ∗(w)‖)−αnφ(‖S(w,ξn(w))−ξ∗(w)‖)

= [1−(αn+βn+γn)]φ(‖S(w,ξn(w))−ξ∗(w)‖)

≥ 0

Since
∑∞

n=0(θn + εn) < ∞, then limn→∞(θn + εn) = 0 and by Lemma 2.1, we get

limn→∞ ‖S(w,ξn(w))−ξ∗(w)‖=0 or S(w,ξn(w))→ξ∗(w) as n→∞.(3.18)

Also, we have by using (3.15), (3.16), (3.17) and (3.18)

0≤‖T (w,ξn(w))−ξ∗(w)‖≤‖S(w,ξn(w))−ξ∗(w)‖→0 as n→∞.(3.19)

0≤‖T (w,ζn(w))−ξ∗(w)‖≤‖S(w,ξn(w))−ξ∗(w)‖→0 as n→∞.(3.20)

0≤‖T (w,ηn(w))−ξ∗(w)‖≤‖S(w,ξn(w))−ξ∗(w)‖→0 as n→∞.(3.21)
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Since φ is continuous, from (3.18)- (3.21), we obtain

limn→∞ θn = limn→∞[φ(‖S(w,ξn(w))−ξ∗(w)‖)−γnφ(‖T (w,ξn(w))−ξ∗(w)‖)

− βnφ(‖T (w,ζn(w))−ξ∗(w)‖)−αnφ(‖T (w,ηn(w))−ξ∗(w)‖)]

= 0.

Hence the Jungck-SP type random iterative scheme {S(w, xn(w))}
∞
n=0 is a compa-

rably almost (S,T)- stable.
Next, suppose that S(w, ξn(w)) → ξ∗(w) as n → ∞, and using (3.21), then we
obtain

εn = ‖S(w,ξn+1(w))−(1−αn)S(w,ηn(w))−αnT (w,ηn(w))‖

≤ ‖S(w,ξn+1(w))−ξ∗(w)‖+(1−αn)‖S(w,ηn(ω))−ξ∗(w)‖

+ αn‖T (w,ηn(w))−ξ∗(w)‖

≤ ‖S(w,ξn+1(w))−ξ∗(w)‖+(1−αn)‖S(w,ξn(ω))−ξ∗(w)‖

+ αn‖S(w,ξn(w))−ξ∗(w)‖

= ‖S(w,ξn+1(w))−ξ∗(w)‖+‖S(w,ξn(ω))−ξ∗(w)‖

→ 0 as n→∞.
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