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A FRACTIONAL INTEGRAL OPERATOR INVOLVING THE
MITTAG-LEFFLER TYPE FUNCTION WITH FOUR

PARAMETERS∗

Praveen Agarwal, Gradimir V. Milovanović and K. S. Nisar

Abstract. In this paper our main aim is establishing a fractional integration for-
mula (of pathway type) involving the Mittag-Leffler type function with four parameters

ζ,ηEμ,ν [z] which was recently introduced by Garg, Sharma and Manohar [Thai J. Math.
(2015)]. Some interesting special cases of the main result are also considered and shown
to be connected with certain known ones.
Keywords: Pathway fractional Integral operators, Mittag-Leffler type function, Gen-
eralized Wright function.

1. Introduction and Preliminaries

The Mittag-Leffler function and its various generalizations have been investi-
gated by many researchers in both mathematics and engineering. Yet, during the
twentieth century, they were practically unknown to the majority of scientists since
they were ignored in the common books on special functions. Nowadays the Mittag-
Leffler function and its numerous generalizations have gotten real and new lives. An
extremely growing interest in the study of their diverse properties is due mainly to
the close connection of the Mittag-Leffler function to fractional calculus, its appli-
cation to the study of differential and integral equations of, in particular, fractional
orders (see [1], [2], [5]–[7], [10], [11], [14], [20]–[23], [27], [28]).

In recent years, the fractional calculus has become one of the most rapidly grow-
ing parts of science as well as mathematics. The present far-reaching development
of the fractional calculus has been shown by the remarkably large number of contri-
butions (cf. [8], [9], [12], [13], [17], [19], [29]–[32] and the related references therein).

Very recently, Garg, Sharma and Manohar [3] introduced the generalized Mittag-
Leffler type function with four parameters and study of its various properties, which
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mainly motivated our present investigation. Throughout this paper, let C, R, R+,
Z
+
0 , N be sets of complex numbers, real and positive real numbers, nonpositive

integers, and positive integers, respectively, and N0 := N ∪ {0}.
The following definition is given in [3]:

Definition 1.1. The Mittag-Leffler type function with four parameters is defined
in the following manner:

(1.1) ζ,ηEμ,ν [z] =

+∞∑
n=0

(ζ)ηn
Γ(μn+ ν)

zn (μ, ν, ζ, η, z ∈ C, Re(μ) > Re(ν) > 0),

where (ζ)n is the Pochhammer symbol defined, for ζ ∈ C, as follows (cf. [25, p. 2
and p. 5]):

(ζ)n =

{
1, n = 0,

ζ(ζ + 1) · · · (ζ + n− 1), n ∈ N,

i.e., (ζ)n = Γ(ζ + n)/Γ(ζ)
(
ζ ∈ C \ Z−

0

)
and Γ being the familiar Gamma function

(cf. [24, Section 1.1] and [25, Section 1.1]).

A detail account of several results which include integral representations, recur-
rence relations, differential formula, fractional derivative and integral, Mellin Barnes
integral representation and fractional calculus integral operator involving (1.1) can
be found in the article [3]. Some important special cases of this function are listed
below:

(i) When η = 1, with μ, ν, ζ, z ∈ C, Re(μ) > Re(ν) > 0, the function (1.1)
reduces to the one that has been considered by Garg et al.:

ζ,1Eμ,ν [z] =

+∞∑
n=0

(ζ)n
Γ(μn+ ν)

zn.

(ii) If we set η = 0 with min {Re(μ),Re(ν)} > 0, then (1.1) reduces to the gen-
eralized Mittag-Leffler function considered by Wiman [33]. The case when
η = 0 and ν = 1 can be found in [16].

In recent years, the Mittag-Leffler function and its various generalizations have
become a very popular subject of mathematics and its applications. Among the
large number of works regarding the Mittag-Leffler function, for a remarkably clear,
insightful, and systematic exposition of the investigations carried out by various
authors in the field of mathematical analysis and its applications, we refer the
interested reader to a survey-cum-expository book by Gorenflo, Kilbas, Mainardi,
and Rogosin[4], which contains a fairly comprehensive bibliography on this subject.
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Definition 1.2. The H-function is defined in terms of a Mellin-Barnes integral in
the following manner (see [15]):

Hm,n
p,q

[
z

∣∣∣∣(ai, αi)1,p
(bj , βj)1,q

]
= Hm,n

p,q

[
z

∣∣∣∣(a1, α1) , · · · , (ap, αp)
(b1, β1) , · · · , (bq, βq)

]
=

1

2πi

∫
L

Θ(s) z−sds,

where

Θ (s) =

∏m
j=1 Γ (bj + βjs)

∏n
i=1 Γ (1− ai − αis)∏p

i=n+1 Γ (ai + αis)
∏q

j=m+1 Γ (1− bj − βjs)
,

and m, n, p, q are integers such that 0 ≤ m ≤ q, 0 ≤ n ≤ p, and for parameters
ai, bi ∈ C and for parameters αi, βj ∈ R+ (i = 1, . . . , p; j = 1, . . . , q) with the
contour L suitably chosen, and an empty product, if it occurs, is taken to be unity.

The theory of the H-function is well explained in the book of Srivastava, Gupta
and Goyal ([26, Chap. 1]).

Definition 1.3. The generalized Wright’s function is defined as follows (see, e.g.,
[34]):

(1.2) pΨq

[
(α1, A1) , . . . , (αp, Ap) ;

(β1, B1) , . . . , (βq, Bq) ;
z

]
=

+∞∑
k=0

∏p
j=1 Γ (αj +Aj k)∏q
j=1 Γ (βj +Bj k)

zk

k!
,

where the coefficients A1, . . . , Ap ∈ R
+ and B1, . . . , Bq ∈ R

+ with

1 +

q∑
j=1

Bj −
p∑

j=1

Aj � 0.

Here, in this paper, our main aim is to establish a (presumably) new fractional
integration formula (of pathway type) involving the Mittag–Leffler type function

ζ,ηEμ,ν [z]. Some interesting special cases of our main result are also considered. Our
main result is obtained by applying the ζ,ηEμ,ν [z] to the pathway type fractional
integral operator given in (1.3). So we continue to recall the following definition.

Definition 1.4. Let f(x) ∈ L(a, b), ρ ∈ C, Re(ρ) > 0, a > 0 and let us take a
pathway parameter α < 1. Then the pathway fractional integration operator is
defined and represented as follows (see [18, p. 239]):

(1.3)
(
P

(ρ,α,a)
0+ f

)
(t) = tρ

∫ t
a(1−α)

0

[
1− a (1− α) τ

t

] ρ
1−α

f(τ) dτ,

where L(a, b) is the set of Lebesgue measurable functions defined on (a, b).

Let [a, b] (−∞ < a < b < +∞) be a finite interval on the real line R. The
left-sided and right-sided Riemann-Liouville fractional integrals Iρa+ f and Iρb− f of
order ρ ∈ C (Re(ρ) > 0) are defined, respectively, by

(1.4)
(
Iρa+ f

)
(x) :=

1

Γ(ρ)

∫ x

a

f(t) dt

(x− t)1−ρ
(x > a; Re(ρ) > 0)
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and (
Iρb− f

)
(x) :=

1

Γ(ρ)

∫ b

x

f(t) dt

(t− x)1−ρ
(x < b; Re(ρ) > 0),

where f ∈ Cξ (ξ ≥ −1) (cf. [8, p. 69]).

Remark 1.1. It is easy to see that the pathway fractional integration operator (1.3) with
several parameters is essentially a special case of the left-sided Riemann-Liouville fractional
integral (1.4). Indeed, by setting t = a(1 − α)x in (1.3), after a little simplification, we
find the following relationship between the two integral operators:

(
P

(ρ,α,a)

0+
f
)(
a(1− α)x

)
= aρ ρ (1− α)ρ−1 Γ

(
ρ

1− α

)
x

αρ
α−1

(
I
1+ ρ

1−α
0+ f

)
(x),

where x > 0, a > 0, α < 1, Re(ρ) > 0.

2. Pathway Fractional Integration of Generalized Multiindex
Mittag-Leffler Functions

In this section we consider composition of the pathway fractional integral P
(η,α)
0+

given by (1.3) with the Mittag-Leffler type function ζ,ηEμ,ν [z] given by (1.1). We
begin by stating the following theorem.

Theorem 2.1. Let the parameters β, μ, ν, ζ, η, ρ ∈ C, a > 0, c ∈ R, ρ > 0,
Re(μ) > Re(ν) > 0, β > 0, and α < 1. Then we have the following relation:

P
(ρ,α,a)
0+

{
xλ−1

ζ,ηEμ,ν [c x
β ]
}
=

xρ+λ Γ

(
1 +

ρ

1− α

)
Γ(ζ) (a(1 − α))λ

(2.1)

× 3Ψ2

[
(ζ, η), (λ, β), (1, 1);(

ν, μ
)
,
(
1 + λ+

ρ

1− α
, β

)
;
c

(
x

a(1− α)

)β
]
.

Proof. Let the left-hand side of the formula (2.1) be denoted by J . Applying (1.1)
and using the definition (1.3) to (2.1), we get

J = P
(ρ,α,a)
0+

{
xλ−1

+∞∑
n=0

(ζ)ηn
Γ(μn+ ν)

[cxβ ]n

}

=

+∞∑
n=0

(ζ)ηn
Γ(μn+ ν)

cnP
(ρ,α,a)
0+

{
xλ+βn−1

}
.

By using the well-known relationship between the Beta function B(α, β) and
the Gamma function (cf. [24, pp. 9–11] and [25, pp. 7–10]), it is easy to find the
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following formula (see also [18, Eq. (12)]):

(2.2) P
(ρ,α,a)
0+

{
tβ−1

}
=

tρ+β

[a(1− α)]β

Γ(β) Γ

(
1 +

ρ

1− α

)

Γ

(
ρ

1− α
+ β + 1

) ,

where α < 1; Re(ρ) > 0; Re(β) > 0. Here, applying (2.2) with β replaced by
(λ+ β n) to the pathway integral, after a little simplification, we obtain the following
expression

J =

+∞∑
n=0

Γ(ζ + η n)

Γ(ζ)Γ(μn + ν)

Γ (λ+ β n) Γ

(
1 +

ρ

1− α

)

Γ
(
1 + ρ

1−α + λ+ β n
) cnxρ+βn+λ

[a(1− α)]λ+nβ

=
xρ+λ Γ(1 +

ρ

1− α
)

Γ(ζ) (a(1 − α))λ

+∞∑
n=0

Γ (ζ + η n) Γ (λ+ β n) Γ (1 + n)

Γ

(
1 +

ρ

1− α
+ λ+ β n

)
Γ(μn+ ν)n!

cnxβ n

[a(1 − α)]β n
,

whose last summation, in view of (1.2), is easily seen to arrive at the expression in
(2.1). This completes the proof.

Indeed, by suitably specializing the values of the parameters β, μ, ν, ζ, η, ρ ∈ C,
one can deduce numerous fractional calculus results involving the various types of
Mittag-Leffler functions as the corollary of our main result. Further we can present
a large number of special cases of our main result (2.1). Here we give only two
examples of this type.

Setting η = 1 in the result of Theorem 2.1 yields the following result.

Corollary 2.1. Let the parameters β, μ, ν, ζ, ρ ∈ C, a > 0, c ∈ R, ρ > 0, Re(μ) >
Re(ν) > 0, β > 0, and α < 1, then we have the following relation:

P
(ρ,α,a)
0+

{
xλ−1

ζ,1Eμ,ν [c x
β ]
}
=

xρ+λ Γ(1 + ρ
1−α )

Γ(ζ) (a(1 − α))λ
(2.3)

× 3Ψ2

[
(ζ, 1), (λ, β), (1, 1);(

ν, μ
)
,
(
1 + λ+

ρ

1− α
, β

)
;
c

(
x

a(1− α)

)β
]
.

If we replace μ, ν, β by λ and taking η = 0, ζ = 1 in (2.1), Theorem 2.1 reduces
to the following corollary.

Corollary 2.2. Let x, ρ ∈ C, a > 0, c ∈ R, Re(λ) > 0, and α < 1 then we have
the following relation:

(2.4) P
(ρ,α,a)
0+ {ec xλ } =

xρ+λΓ(1 + ρ
1−α )

(a(1 − α))λ
Eλ,1+λ+ ρ

1−α

[
cxλ

(a(1 − α))λ

]
,
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where ec xλ is called the λ-Exponential function defined by (see [8, p. 50, Eq. (1.10.12)]):

ec xλ = xλ−1
+∞∑
n=0

cn
xλn

Γ [(n+ 1)λ]
(Re(λ) > 0).

Remark 2.1. Setting η = 0 in the main result (2.1), the resulting formula is seen to
become the known result given by Nair [18, p. 245, Eq. (26)] and if we set η = 0 and
ν = 1 in (2.1), it becomes in to the known result given by Nair [18, p. 245, Eq. (27)].

3. Further Special Cases and Concluding Remarks

By setting α = 0, a = 1 and ρ → ρ − 1 in (2.1), (2.3) and (2.4), respectively,
and applying the following easily-derivable relation:

(
P

(ρ−1,0,1)
0+ f

)
(t) =

∫ t

0

(t− τ)ρ−1 f(τ) dτ = Γ(η)
(
Iη0+ f

)
(t) (Re(ρ) > 0),

we obtain three fractional integral formulas involving left-sided Riemann–Liouville
fractional integral operators stated in the next corollaries below.

Corollary 3.1. Let the parameters β, μ, ν, ζ, η, ρ ∈ C, a > 0, c ∈ R, ρ > 0,
Re(μ) > Re(ν) > 0, β > 0, and α < 1. Then the following relation

Iρ0+
{
xλ−1

ζ,ηEμ,ν [c x
β ]
}
=

xρ+λ−1 Γ(ρ)

Γ(ζ)
3Ψ2

[
(ζ, η), (λ, β), (1, 1);(
ν, μ

)
,
(
λ+ α, β

)
;
c (x)

β

]

holds.

Corollary 3.2. Let the parameters β, μ, ν, ζ, ρ ∈ C, a > 0, c ∈ R, ρ > 1, Re(μ) >
Re(ν) > 0, β > 0, and α < 1. Then we have the following relation:

Iρ
0+

{
xλ−1

ζ,1Eμ,ν [c x
β]
}
=

xρ+λ−1 Γ(ρ)

Γ(ζ)
3Ψ2

[
(ζ, 1), (λ, β), (1, 1);(
ν, μ

)
,
(
λ+ ρ, β

)
;
c

(
x

a(1− α)

)β
]
.

Corollary 3.3. Let x, ρ ∈ C, a > 0, c ∈ R, Re(λ) > 0, and α < 1. Then we have
the following relation:

Iρ0+ {ec xλ } = xρ+λ−1Γ(ρ)Eλ,1+λ+ρ

[
cxλ

]
.

It is noted that if we set α = 0, a = 1, and f(t) is replaced by

2F1

(
ρ+ β,−γ; ρ; 1− t

x

)
f(t),
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(1.3) yields the Saigo fractional integral operator. Thus we can obtain the gener-
alizations of left-sided fractional integrals, like Saigo, Erdélyi-Kober (see [27]; see
also [8]), and so on, by suitable substitutions. Therefore, the results presented here
are easily shown to be converted to those corresponding to the above well known
fractional operators.

Several further consequences of Theorem 2.1, as well as Corollaries 2.1, 2.1,
and 3.1 – 3.3, can easily be derived by using some known and new relationship
between Mittag-Leffler type function ζ,ηEμ,ν [z], which is an elegant unification of
various special functions (see [3]), and Fox H-function as given in Definition 1.2,
after some suitable parametric replacements. These relatively simpler fractional
integral formulas for pathway fractional integral operator (1.3) can be deduced from
Theorem 2.1, and the previous corollaries by appropriately applying the following
relationships:

ζ,ηEμ,ν [z] =
1

Γ(γ)
H1,2

2,2

[
z

∣∣∣∣∣
(1 − ζ, η), (0, 1)

(0, 1), (1− ν, μ)

]
.
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