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COMMON HERMITIAN LEAST-RANK SOLUTION OF MATRIX
EQUATIONS A1X1A∗1 = B1 AND A2X2A∗2 = B2 SUBJECT TO INEQUALITY

RESTRICTIONS

SihemGuerarra and Said Guedjiba

Abstract. In this paper, we establish a set of explicit formulas for calculating the maximal
and minimal ranks and inertias of P − X with respect to X, where P ∈ Cn

H is given, X is a
commonHermitian least-rank solution of matrix equations A1XA∗1 = B1 and A2XA∗2 = B2.
As application, we drive necessary and sufficient conditions for X � P (≥ P, ≺ P, ≤ P) in
the Löwner partial ordering. As consequence,we give necessary and sufficient conditions
for the existence of common Hermitian positive (nonnegative, negative, nonpositive)
definite least-rank solution to A1XA∗1 = B1 and A2XA∗2 = B2.

Keywords: Matrix equation, Rank formulas, Moore-Penrose generalized inverse,
Hermitian, Least-rank solution, Inertia.

1. Introduction

Throughout this paper,Cm×n andCn
H stand for the sets of allm×n complexmatrices

and all n × n complex Hermitian matrices respectively. The symbols, A∗, r (A),
Re (A), stand for the conjugate transpose, the rank, and the range ofA, respectively.
Im denotes the identity matrix of order m. We write A � 0 (A ≥ 0) if A is Hermitian
positive (nonnegative) definite. Two Hermitian matrices A and B of the same size
are said to satisfy the inequality A � B (A ≥ B) in the Löwner partial ordering if
A − B is positive (nonnegative) definite. The Moore-Penrose generalized inverse
of a matrix A ∈ Cm×n, denoted by A+, is defined to be the unique matrix X ∈ Cn×m
satisfying the following four matrix equations:

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

Results on the generalized inverse and the Moore-Penrose generalized inverse
can be found in [1, 2, 4, 8, 11].

Further, define EA and FA stand for the two orthogonal projectors EA = I−AA+,
FA = I − A+A induced by A. Their ranks are given by r (EA) = m − r (A), r (FA) =
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n − r (A).
The inertia of A ∈ Cm

H is defined to be the triplet In (A) = {i+ (A) , i− (A) , i0 (A)}.
Where i+ (A), i− (A) and i0 (A) are the number of positive, negative and zero eigen-
values of A counted with multiplicities, respectively. The two numbers i+ (A) and
i− (A) are usually called the partial inertias of A. For a matrix A ∈ Cm

H, we have
r (A) = i+ (A) + i− (A) and i0 (A) = m − r (A).

We need the following lemmas concerning ranks and inertias of matrices in the
latter part of this paper.

Lemma 1.1. [9] Let S be a set consisting of matrices over Cm×n, and let H be a set con-
sisting of Hermitian matrices over Cm

H. Then,

a) For m = n, S has a non singular matrix if and only if max
X∈S

r (X) = m.

b) For m = n, all X ∈ S are non singular if and only if min
X∈S r

(X) = m.

c) 0 ∈ S if and only ifmin
X∈S r

(X) = 0.

d) All X ∈ S have the same rank if and only if max
X∈S

r (X) = min
X∈S r

(X) .

e) H has a matrix X�0 (X ≺ 0) if and only if max
X∈H i+ (X)=m (max

X∈H i− (X)=m).

f) H has a matrix X ≥ 0 (X ≤ 0) if and only if min
X∈H i− (X) = 0 (min

X∈H i+ (X) = 0).

g) All X ∈ H satisfy X�0 (X ≺ 0) if and only ifmin
X∈H i+

(X)=m (min
X∈H i−

(X)=m).

h) All X ∈ H satisfy X ≥ 0 (X ≤ 0) if and only if max
X∈H

i− (X)=0 (max
X∈H

i+ (X)=0).

Lemma 1.2. [11] Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n, D ∈ Cl×k. Then,

r
[
A, B

]
= r (A) + r (EAB) = r (B) + r (EBA) ,

r

(
A
C

)
= r (A) + r (CFA) = r (C) + r (AFC) ,

r

[
A B
C 0

]
= r (B) + r (C) + r (EBAFC) .

The following formulas follow from Lemma 1.2

r
[

A BFP
EQC 0

]
= r

⎡⎢⎢⎢⎢⎢⎢⎣
A B 0
C 0 Q
0 P 0

⎤⎥⎥⎥⎥⎥⎥⎦ − r (P) − r (Q) ,

r

[
M N
EPA EPB

]
= r

[
M N 0
A B P

]
− r (P) ,
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r

[
M AFP
N BFP

]
= r

⎡⎢⎢⎢⎢⎢⎢⎣
M A
N B
O P

⎤⎥⎥⎥⎥⎥⎥⎦ − r (P) .

Lemma 1.3. [9] Let A ∈ Cm
H, B ∈ Cm×n and denote M =

[
A B
B∗ 0

]
. Then,

i± (M) = r (B)+i± (EBAEB) .

In particular,
a) If A ≥ 0, then i+ (M) = r [A,B] and i− (M) = r (B),
b) If A ≤ 0, then i+ (M) = r (B) and i− (M) = r [A,B],
c) i± (A) ≤ i± (M) ≤ i± (A) + r (B).

Some useful formulas derived from lemma 1.3 are given below

i±
[

A BFP
FPB∗ 0

]
= i±

⎡⎢⎢⎢⎢⎢⎢⎣
A B 0
B∗ 0 P∗
0 P 0

⎤⎥⎥⎥⎥⎥⎥⎦−r (P) ,

i±
[
EQAEQ EQB
B∗EQ D

]
= i±

⎡⎢⎢⎢⎢⎢⎢⎣
A B Q
B∗ D 0
Q∗ 0 0

⎤⎥⎥⎥⎥⎥⎥⎦−r (Q) .

Lemma 1.4. [10, 12] Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n. Then,

i) min
X∈Ck×n,Y∈Cm×l

r (A − BX − YC) = r
[
A B
C 0

]
− r (B) − r (C).

ii) if A ∈ Cm×m, A∗ = −A. Then,
min
X∈Ck×m

r (A − BX − X∗B∗) = r

[
A B
B∗ 0

]
− 2r (B).

Lemma 1.5. [11] Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n and D ∈ Cl×k be given. Then the
rank of the Shur complement SA = D − CA†B satisfies the equality

r
(
D − CA†B

)
= r

[
A∗AA∗ A∗B
CA∗ D

]
− r (A) .

Lemma 1.6. [11] Let A1, A2, B1, B2, C1, C2, and D are matrices such that expression
D − C1A+1B1 − C2A+2B2 is defined. Then,

r
(
D − C1A†1B1 − C2A†2B2

)
= r

⎡⎢⎢⎢⎢⎢⎢⎣
A∗1A1A∗1 0 A∗1B1

0 A∗2A2A∗2 A∗2B2

C1A∗1 C2A∗2 D

⎤⎥⎥⎥⎥⎥⎥⎦−r (A1)−r (A2) .
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Lemma 1.7. [9] Let A ∈ Cm
H, B ∈ Cm×n and D ∈ Cn

H. Then,

i±
(
D − B∗A†B

)
= i±

[
A3 AB

(AB)∗ D

]
−i± (A) .

We consider the linear matrix equation

(1.1) AXA∗ = B

Where A ∈ Cm×n, B ∈ Cm
H, are given and X ∈ Cn

H is unknown matrix.
Equation (1.1) is one of the best knownmatrix equations inmatrix theory and appli-
cations. Many results have been obtained on solving rank minimization problems
and many results have been obtained on rank minimizations associated with ma-
trix equations and their solutions (see e.g. [5, 6, 7, 16]). Obviously, the concept of
least-rank solution was first proposed and studied in [14, 18].

In [13] The Hermitian least-rank solution of (1.1) is the matrix X which minimizes
the rank of the difference (B − AXA∗) or equivalently

(1.2) r (B − AXA∗) = min

The Hermitian least-rank solution of (1.1) is the solution of the consistent equa-
tion

(1.3) ET1 (X + TM+T∗)ET1 = 0

Equation (1.3) is called the normal equation associated with (1.2). Hence the
general expression of the Hermitian least-rank solution of (1.1) can be written by

(1.4) X = −TM+T∗ + T1U +U∗T∗1,

whereM =
[

B A
A∗ 0

]
, T =

[
0 In

]
, T1 = TFM, and U ∈ C(m+n)×n is arbitrary.

Many papers on the rank, inertia, consistency and solutions of the equation (1.1)
and its applications can be found in the literature, see, e.g. in [10, 15, 17, 19, 22]

2. Common Hermitian least rank solution of matrix equationsA1XA∗1 = B1 and
A2XA∗2 = B2 subject to inequality restrictions

Following the work of [3, 13, 20, 21, 22, 23], in this section we study the existence
of a Hermitian matrix satisfying the matrix inequality X � P (≥ P, ≺ P, ≤ P) in the
löwner partial ordering.
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Consider the pair of matrix equations

(2.1) A1XA∗1 = B1 and A2XA∗2 = B2.

where Aj ∈ Cmj×n, Bj ∈ Cmj

H , j = 1, 2.are given matrices and X ∈ Cn
H is unknown

matrix.

We need the following lemma

Lemma 2.1. [10, 16] Let M =

⎡⎢⎢⎢⎢⎢⎢⎣
C1 0 A1

0 −C2 A2
A∗1 A∗2 0

⎤⎥⎥⎥⎥⎥⎥⎦. Then the pair of matrix equations

A1X1A∗1 = C1 and A2X2A∗2 = C2 have a common solution X ∈ Cn
H if and only if Re

(
Cj

)
⊆

Re
(
Aj

)
and r (M) = 2r (A), j =1, 2.

where A =
[
A1

A2

]
. In this case the general common Hermitian solution of A1X1A∗1 = C1

and A2X2A∗2 = C2 can be written in the following parametric form

X = X0 + FAU1 + (FAU1)
∗ + FA1U2FA2 +

(
FA1U2FA2

)∗ .

where X0 is a special solution of A1X1A∗1 = C1 and A2X2A∗2 = C2, and U1, U2, U3 ∈ Cn×n
are arbitrary.

It is well known that the least squares solution ofmatrix equation is the solution
of its normal equation. Therefore the commonHermitian least-rank solution of pair
of matrix equations (2.1) is the common Hermitian solution of matrix equations:

(2.2) ET11XET11 = −ET11

(
T1M+1T

∗
1

)
ET11 and ET22XET22 = −ET22

(
T2M+2T

∗
2

)
ET22 .

From Lemma 2.1 the general common Hermitian solution of (2.1) can be written in
the following parametric form

(2.3) X = X0 + FGU1 + (FGU1)
∗ + FET11

U2FET22
+

(
FET11

U2FET22

)∗
.

Where G∗ =
[
ET11 , ET22

]
and U1, U2 ∈ Cn×n are arbitrary.

For convenience of representation, the following notation for the collection of all
common Hermitian least-rank solutions of (2.1) is adopted
(2.4)
S =

{
X ∈ Cn

H�ET11XET11 = −ET11

(
T1M+1T

∗
1

)
ET11 , ET22XET22 = −ET22

(
T2M+2T

∗
2

)
ET22

}
.

We need the following Lemma
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Lemma 2.2. [20] Let

(2.5) P (X,Y) = A − BX − (BX)∗ − CYD − (CYD)∗ .

Where A ∈ Cm
H, B ∈ Cm×n, C ∈ Cm×p and D ∈ Cq×m are given, and X ∈ Cn×m, Y ∈ Cp×q

are variable matrices. Also, let

M =

[
A B C D∗
B∗ 0 0 0

]
,M1 =

⎡⎢⎢⎢⎢⎢⎢⎣
A B C
B∗ 0 0
C∗ 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,M2 =

⎡⎢⎢⎢⎢⎢⎢⎣
A B D∗
B∗ 0 0
D 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

N1 =

⎡⎢⎢⎢⎢⎢⎢⎣
A B C D∗
B∗ 0 0 0
C∗ 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,N2 =

⎡⎢⎢⎢⎢⎢⎢⎣
A B C D∗
B∗ 0 0 0
D 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .
Then,

(2.6) max
X,Y

r [P (X,Y)] = min {m, r (M) , r (M1) , r (M2)} ,

(2.7) min
X,Y

r [P (X,Y)] = 2r (M) − 2r (B) +max
{

s+ + s−, s− + t+,
s+ + t−, t+ + t−

}
,

(2.8) max
X,Y

i± [P (X,Y)] = min {i± (M1) , i± (M2)} ,

(2.9) min
X,Y

i± [P (X,Y)] = r (M) − r (B) +max {s±, t±} ,

where s± = i± (M1) − r (N1) and t± = i± (M2) − r (N2).

Theorem 2.1. Let Aj ∈ Cmj×n, Bj ∈ Cmj

H , j = 1, 2 and P ∈ Cn
H be given, and assume that

(2.1) have a common Hermitian least-rank solution and S is as given in (2.4). Also, let

Q1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
M∗1M1M∗1 0 0 M∗1T

∗
1ET11 0

0 M∗2M2M∗2 0 0 M∗2T
∗
2ET22−ET11T1M∗1 0 ET11 ET11PET11 0

0 ET22T2M∗2 ET22 0 −ET22PET22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

Q2 =

⎡⎢⎢⎢⎢⎢⎢⎣
M∗1M1M∗1 0 M∗1T

∗
1ET11−ET11T1M∗1 ET11 ET11PET11

0 ET22 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Q3 =

⎡⎢⎢⎢⎢⎢⎢⎣
M∗2M2M∗2 0 M∗2T

∗
2ET22

ET22T2M∗2 ET11 0
0 ET22 −ET22PET22

⎤⎥⎥⎥⎥⎥⎥⎦ ,
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Q4 =

⎡⎢⎢⎢⎢⎢⎢⎣
M3

1 0 M1T∗1ET11

0 0 ET11

ET11T1M∗1 ET11 −ET11PET11

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Q5 =

⎡⎢⎢⎢⎢⎢⎢⎣
M3

2 0 M2T∗2ET22

0 0 ET22

ET22T2M∗2 ET22 −ET22PET22

⎤⎥⎥⎥⎥⎥⎥⎦ .
Then,

(2.10) max
X∈S

r (P − X) = min {n, c1, c2, c3} ,

(2.11) min
X∈S

r (P − X) = 2r (Q1) − 2r (M1) − 2r (M2) +max {s1, s2, s3, s4} ,

(2.12) max
X∈S

i± (P − X) = min
{

n + i± (Q4) − i± (M1) − r
(
ET11

)
,

n + i± (Q5) − i± (M2) − r
(
ET22

)
}
,

(2.13)

min
X∈S i± (P − X) = r (Q1)−r (M1)−r (M2)+max

{
i± (Q4) − i± (M1) + r (M1) − r (Q2) ,
i± (Q5) − i± (M2) + r (M2) − r (Q3)

}
,

where

c1 = 2n+r (Q1)−r (ET11

)−r (ET22

)−r (G)−r (M1)−r (M2) ,

c2 = 2n+r (Q4)−r (M1)−2r (ET11

)
, c3 = 2n+r (Q5)−r (M2)−2r (ET22

)
,

s1 = r (Q4)−2r (Q2)+r (M1) , s2 = r (Q5)−2r (Q3)+r (M2) ,

s3 = i+ (Q4)+i− (Q5)−r (Q2)−r (Q3)+i− (M1)+i+ (M2) ,

s4 = i− (Q4)+i+ (Q5)−r (Q2)−r (Q3)+i+ (M1)+i− (M2) .

Proof. Substituting (2.3) into P − X yields

(2.14) P − X = P − X0 − FGU1 − (FGU1)∗ − FET11
U2FET22

−
(
FET11

U2FET22

)∗
.

Let

L =

[
P − X0 FG FET11

FET22

FG 0 0 0

]
,

G1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 FG FET11

FG 0 0
FET11

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , G2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 FG FET22

FG 0 0
FET22

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
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L1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 FG FET11

FET22

FG 0 0 0
FET11

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , L2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 FG FET11

FET22

FG 0 0 0
FET22

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .
Applying Lemma 2.2 to (2.14) yields

(2.15) max
X∈S

r (P − X) = min {n, r (L) , r (G1) , r (G2)} ,

(2.16) min
X∈S

r (P − X) = 2r (L) − 2r (FG) +max {t1, t2, t3, t4} ,

(2.17) max
X∈S

i± (P − X) = min {i± (G1) , i± (G2)} ,

(2.18) min
X∈S i± (P − X) = r (L) − r (FG) +max

{
i± (G1) − r (L1) ,
i± (G2) − r (L2)

}
,

Where

(2.19) t1 = r (G1) − 2r (L1) ,

(2.20) t2 = r (G2) − 2r (L2) ,

(2.21) t3 = i+ (G1) + i− (G2) − r (L1) − r (L2) ,

(2.22) t4 = i− (G1) + i+ (G2) − r (L1) − r (L2) .

We will simplify r (L), r (L1), r (L2), i± (G1), i± (G2) by applying three types of ele-
mentary block matrix operations, elementary block congruence matrix operations
and Lemmas 1.2, 1.3, 1.5, 1.6 and 1.7.
It is easy to show that R (FG) ⊂ R

(
FET1

)
and R (FG) ⊂ R

(
FET2

)
. Therefore,

we obtain

r (L) =
[
P − X0 FG FET11

FET22

FG 0 0 0

]
= r

[
P − X0 FET11

FET22

FG 0 0

]

= r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 In In 0

In 0 0 G∗
0 ET11 0 0
0 0 ET22 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦−r
(
ET11

)−r (ET22

)−r (G)

= 2n+r
[
ET11 0
ET22 ET22 (X0 − P)G∗

]
−r (ET11

)−r (ET22

)−r (G)
= 2n+r

[
ET11 0 0
ET22 ET22 (X0 − P)ET11 ET22 (X0 − P)ET22

]
−r (ET11

)−r (ET22

)−r (G)
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= 2n+r
[
ET11 −ET11 (X0 − P)ET11 0
ET22 0 ET22 (X0 − P)ET22

]
−r (ET11

)−r (ET22

)−r (G)

= 2n + r
[
ET11 −ET11X0ET11 + ET11PET11 0
ET22 0 ET22X0ET22 − ET22PET22

]

(2.23) − r
(
ET11

) − r
(
ET22

) − r (G)

r

⎡⎢⎢⎢⎢⎣ ET11 −ET11

(
T1M†1T

∗
1

)
ET11 + ET11PET11 0

ET22 0 ET22

(
T2M†2T

∗
2

)
ET22 − ET22PET22

⎤⎥⎥⎥⎥⎦

= r

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
ET11 ET11PET11 0
ET22 0 −ET22PET22

]
−

[
ET11T1

0

]
M†1

[
0, T∗1ET11 , 0

]

−
[

0
ET22T2

]
M†2

[
0, 0, T∗2ET22

]
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
M∗1M1M∗1 0 0 M∗1T

∗
1ET11 0

0 M∗2M2M∗2 0 0 M∗2T
∗
2ET22−ET11T1M∗1 0 ET11 ET11PET11 0

0 ET22T2M∗2 ET22 0 −ET22PET22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦−r (M1)−r (M2)

(2.24) = r (Q1) − r (M1) − r (M2)

Substituting (2.24) into (2.23) yields

(2.25) r (L) = 2n + r (Q1) − r
(
ET11

) − r
(
ET22

) − r (G) − r (M1) − r (M2) ,

r (L1) = r

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 FG FET11

FET22

FG 0 0 0
FET11

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = r

[
P − X0 FET11

FET22

FET11
0 0

]

= r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 In In 0

In 0 0 ET11

0 ET11 0 0
0 0 ET22 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦−2r
(
ET11

)−r (ET22

)

= 2n+r
[
ET11 −ET11 (X0 − P)ET11

ET22 0

]
−2r (ET11

)−r (ET22

)

= 2n+r
[
ET11 −ET11X0ET11 + ET11PET11

ET22 0

]
−2r (ET11

)−r (ET22

)
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(2.26)

= 2n+r
[
ET11 −ET11

(
T1M†1T

∗
1

)
ET11 + ET11PET11

ET22 0

]
−2r (ET11

)−r (ET22

)

r

[
ET11 −ET11

(
T1M†1T

∗
1

)
ET11 + ET11PET11

ET22 0

]

= r
([

ET11 ET11PET11

ET22 0

]
−

[ −ET11T1
0

]
M†1

[
0, T∗1ET11

])

= r

⎡⎢⎢⎢⎢⎢⎢⎣
M∗1M1M∗1 0 M∗1T

∗
1ET11−ET11T1M∗1 ET11 ET11PET11

0 ET22 0

⎤⎥⎥⎥⎥⎥⎥⎦−r (M1)

(2.27) = r (Q2) − r (M1)

Substituting (2.27) into (2.26) yields

(2.28) r (L1) = 2n + r (Q2) − 2r
(
ET11

) − r
(
ET22

) − r (M1) ,

r (L2) = r

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 FG FET11

FET22

FG 0 0 0
FET22

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = r
[
P − X0 FET11

FET22

FET22
0 0

]

= r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 In In 0

In 0 0 ET22

0 ET11 0 0
0 0 ET22 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦−r
(
ET11

)−2r (ET22

)

= 2n+r
[
ET11 0
ET22 ET22 (X0 − P)ET22

]
−r (ET11

)−2r (ET22

)

= 2n+r
[
ET11 0
ET22 ET22X0ET22 − ET22PET22

]
−r (ET11

)−2r (ET22

)
(2.29)

= 2n+r
[
ET11 0
ET22 −ET22

(
T2M†2T

∗
2

)
ET22 − ET22PET22

]
−r (ET11

)−2r (ET22

)

r
[
ET11 0
ET22 −ET22

(
T2M†2T

∗
2

)
ET22 − ET22PET22

]

= r

([
ET11 0
ET22 −ET22PET22

]
−

[
0

ET22T2

]
M†2

[
0, T∗2ET22

])
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= r

⎡⎢⎢⎢⎢⎢⎢⎣
M∗2M2M∗2 0 M∗2T

∗
2ET22

ET22T2M∗2 ET11 0
0 ET22 −ET22PET22

⎤⎥⎥⎥⎥⎥⎥⎦−r (M2)

(2.30) = r (Q3) − r (M2)

Substituting (2.30) into (2.29) yields

(2.31) r (L2) = 2n + r (Q3) − r
(
ET11

) − 2r
(
ET22

) − r (M2) ,

i± (G1) = i±

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 FG FET11

FG 0 0
FET11

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = i±
[
P − X0 FET11

FET11
0

]

= i±

⎡⎢⎢⎢⎢⎢⎢⎣
P − X0 In 0

In 0 ET11

0 ET11 0

⎤⎥⎥⎥⎥⎥⎥⎦−r
(
ET11

)

= i±

⎡⎢⎢⎢⎢⎢⎢⎣
0 In 1

2 (X0 − P)ET11

In 0 ET11
1
2ET11 (X0 − P) ET11 0

⎤⎥⎥⎥⎥⎥⎥⎦−r (ET11

)

= n+i±
[

0 ET11

ET11 ET11 (X0 − P)ET11

]
−r (ET11

)

= n+i±
[

0 ET11

ET11 −ET11

(
T1M†1T

∗
1

)
ET11 + ET11PET11

]
−r (ET11

)

= n+i±
([

0 ET11

ET11 −ET11PET11

]
−

[
0

ET11T1

]
M†1

[
0, T∗1ET11

])

= n+i±

⎡⎢⎢⎢⎢⎢⎢⎣
M3

1 0 M1T∗1ET11

0 0 ET11

ET11T1M∗1 ET11 −ET11PET11

⎤⎥⎥⎥⎥⎥⎥⎦−i± (M1)−r (ET11

)

So

(2.32) i± (G1) = n + i± (Q4) − i± (M1) − r
(
ET11

)
,

i± (G2) = i±

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P − X0 FG FET22

FG 0 0
FET22

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = i±
[
P − X0 FET22

FET22
0

]

= i±

⎡⎢⎢⎢⎢⎢⎢⎣
P − X0 In 0

In 0 ET22

0 ET22 0

⎤⎥⎥⎥⎥⎥⎥⎦−r
(
ET22

)
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= i±

⎡⎢⎢⎢⎢⎢⎢⎣
0 In 1

2 (X0 − P)ET22

In 0 ET22
1
2ET22 (X0 − P) ET22 0

⎤⎥⎥⎥⎥⎥⎥⎦−r
(
ET22

)

= n+i±
[

0 ET22

ET22 ET22 (X0 − P)ET22

]
−r (ET22

)

= n+i±
[

0 ET22

ET22 −ET22

(
T2M†2T

∗
2

)
ET22 − ET22PET22

]
−r (ET22

)

= n+i±
([

0 ET22

ET22 −ET22PET22

]
−

[
0

ET22T2

]
M†2

[
0, T∗2ET22

])
−r (ET22

)

= n+i±

⎡⎢⎢⎢⎢⎢⎢⎣
M3

2 0 M2T∗2ET22

0 0 ET22

ET22T2M∗2 ET22 −ET22PET22

⎤⎥⎥⎥⎥⎥⎥⎦−i± (M2)−r (ET22

)

So

(2.33) i± (G2) = n + i± (Q5) − i± (M2) − r
(
ET22

)
.

Therefore we get

(2.34) r (G1) = 2n + r (Q4) − r (M1) − 2r
(
ET11

)
,

(2.35) r (G2) = 2n + r (Q5) − r (M2) − 2r
(
ET22

)
.

Substituting the above results into (2.19)-(2.22) yields

(2.36) t1 = r (Q1) − 2r (Q2) + r (M1) + 2r
(
ET11

)
+ 2r

(
ET22

) − 2n,

(2.37) t2 = r (Q5) − 2r (Q3) + r (M2) + 2r
(
ET11

)
+ 2r

(
ET22

) − 2n,

t3 = i+ (Q4) − i− (Q5) − r (Q3) − r (Q2) + 2r
(
ET11

)
+

(2.38) 2r
(
ET22

)
+ i− (M1) + i+ (M2) − 2n,

t4 = i− (Q4) + i+ (Q5) − r (Q3) − r (Q2) + 2r
(
ET11

)
+

(2.39) 2r
(
ET22

)
+ i+ (M1) + i− (M2) − 2n.

Substituting (2.36)-(2.39) into (2.15)-(2.18) yields (2.10)-(2.13).

From Theorem 2.1 and Lemma 1.1 we have the result
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Theorem 2.2. The assumption and the symbols are the same as in Theorem 2.1. Then,
a) Eq (2.1) has a common Hermitian least-rank solution X ≥ P if and only if

r (Q1) = r (Q2) + r (M2) = r (Q3) + r (M1) ,
Q4 ≥ 0, Q5 ≥ 0, M1 ≤ 0, M2 ≤ 0.

b) Eq (2.1) has a common Hermitian least-rank solution X ≤ P if and only if

r (Q1) = r (Q2) + r (M2) = r (Q3) + r (M1) ,
Q4 ≥ 0, Q5 ≥ 0, M1 ≥ 0, M2 ≥ 0.

c) Eq (2.1) has a common Hermitian least-rank solution X � P if and only if

i− (Q4) = i− (M1) + r
(
ET11

)
, i− (Q5) = i− (M2) + r

(
ET22

)
.

d) Eq (2.1) has a common Hermitian least-rank solution X ≺ P if and only if

i+ (Q4) = i+ (M1) + r
(
ET11

)
, i+ (Q5) = i+ (M2) + r

(
ET22

)
.

e) There exists a nonsingular matrix P −X such that X is a common Hermitian least-rank
solution to (2.1) if and only if

n + r (Q1) ≥ r
(
ET11

)
+ r

(
ET22

)
+ r (G) + r (M1) + r (M2) ,

n + r (Q4) ≥ r (M1) + 2r
(
ET11

)
and n + r (Q5) ≥ r (M2) + 2r

(
ET22

)
.

If P is the zero matrix in Theorem 2.2, we can achieve equivalent conditions
for the existence of common Hermitian positive (negative, nonpositive, nonnega-
tive)definite least-rank solution to(2.1)

Corollary 2.1. The assumption and the symbols are the same as in Theorem 2.1.
Define

R1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
M∗1M1M∗1 0 0 M∗1T

∗
1ET11 0

0 M∗2M2M∗2 0 0 M∗2T
∗
2ET22−ET11T1M∗1 0 ET11 0 0

0 ET22T2M∗2 ET22 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

R2 =

⎡⎢⎢⎢⎢⎢⎢⎣
M∗1M1M∗1 0 M∗1T

∗
1ET11−ET11T1M∗1 ET11 0

0 ET22 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

R3 =

⎡⎢⎢⎢⎢⎢⎢⎣
M∗2M2M∗2 0 M∗2T

∗
2ET22

ET22T2M∗2 ET11 0
0 ET22 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

R4 =

⎡⎢⎢⎢⎢⎢⎢⎣
M3

1 0 M1T∗1ET11

0 0 ET11

ET11T1M∗1 ET11 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,
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R5 =

⎡⎢⎢⎢⎢⎢⎢⎣
M3

2 0 M2T∗2ET22

0 0 ET22

ET22T2M∗2 ET22 0

⎤⎥⎥⎥⎥⎥⎥⎦ .
Then,

a) Eq (2.1) has a common Hermitian positive definite least-rank solution if and only
if

i− (R4) = i− (M1) + r
(
ET11

)
, i− (R5) = i− (M2) + r

(
ET22

)
.

b) Eq (2.1) has a common Hermitian negative definite least-rank solution if and only if

i+ (R4) = i+ (M1) + r
(
ET11

)
, i+ (R5) = i+ (M2) + r

(
ET22

)
.

c) Eq (2.1) has a common Hermitian nonpositive definite least-rank solution if and only if

r (R1) = r (R2) + r (M2) = r (R3) + r (M1) ,
R4 ≥ 0, R5 ≥ 0, M1 ≥ 0, M2 ≥ 0.

d) Eq (2.1) has a common Hermitian nonnegative definite least-rank solution if and only if

r (R1) = r (R2) + r (M2) = r (R3) + r (M1) ,
R4 ≥ 0, R5 ≥ 0, M1 ≤ 0, M2 ≤ 0.

e) There exists a nonsingular common Hermitian least-rank solution to (2.1) if and only if

n + r (R1) ≥ r
(
ET11

)
+ r

(
ET22

)
+ r (G) + r (M1) + r (M2) ,

n + r (R4) ≥ r (M1) + 2r
(
ET11

)
and n + r (R5) ≥ r (M2) + 2r

(
ET22

)
.

REFERENCES

1. A. Ben IsraelandT.Greville, Generalized Inverse ,Theory andApplications, Kreiger, (1980).

2. S.L. Cambell and C. D. Meyer, Generalized Inverse of Linear Transformations, Society for
industrial and applied Mathematics, (2009).

3. S. Guerarra and S. Guedjiba, Common least-rank solution of matrix equations A1X1B1 = C1

and A2X2B2 = C2 with applications, Facta universitatis (Niš). Ser. Math. Inform, 29 (2014),
313-323.

4. S. Karanasios and D. Pappas, Generalized inverses and special type operator algebras, Facta
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