FACTA UNIVERSITATIS (NIŠ) Ser. Math. Inform. Vol. 33, No 4 (2018), 587–597 https://doi.org/10.22190/FUMI1804587N

SOME RESULTS ON $(k,\mu)'$ -ALMOST KENMOTSU MANIFOLDS *

Wenfeng Ning, Ximin Liu and Jin Li

Abstract. In this paper, we study the quasi-conformal curvature tensor \tilde{C} and projective curvature tensor P on a $(k, \mu)'$ -almost Kenmotsu manifold M^{2n+1} of dimension greater than 3. We obtain that if M^{2n+1} is non-Kenmotsu and satisfies $R \cdot \tilde{C} = 0$ or $P \cdot P = 0$, then it is locally isometric to the Riemannian product $\mathbb{H}^{n+1}(-4) \times \mathbb{R}^n$.

Keywords: Almost Kenmotsu manifold, $(k, \mu)'$ -nullity condition, quasi-conformal curvature tensor, projective curvature tensor.

1. Introduction

In 1972, K. Kenmotsu introduced a new class of almost contact metric manifolds, nowadays known as Kenmotsu manifolds [8]. The concept of almost Kenmotsu manifolds, regarded as a generalization of Kenmotsu manifolds, was studied by Janssens and Vanhecke (see [4]). In 2007, Pitis [7] published a book containing many systematic studies related to Kenmotsu manifolds. Some geometric properties and fundamental formulas of almost Kenmotsu manifolds were obtained by Kim and Pak [11] and Pastore et al. [5, 6]. Several authors studied almost Kenmotsu manifolds considering some curvature conditions (see [12, 13, 14]). Recently, some curvature properties of some types of almost Kenmotsu manifolds were obtained by Wang and Liu in [15, 16, 17, 18].

The projective curvature tensor is an important tensor from the differential geometric point of view. Let M be a $(2n + 1)$ -dimensional Riemannian manifold. If there exists a one-to-one correspondence between each coordinate neighbourhood of M and a domain in Euclidian space such that any geodesic of the Riemannian manifold corresponds to a straight line in the Euclidean space, then M is said to be locally projectively flat (see [2]). For $n \geq 1$, M is locally projectively flat if and

Received March 12, 2018; accepted May 15, 2018

²⁰¹⁰ Mathematics Subject Classification. Primary 53D15; Secondary 53C25

[∗]The authors were supported in part by the National Natural Science Foundation of China (No. 11431009)

588 W. Ning, X. and J. Li

only if the projective curvature tensor P vanishes. Here P is defined by

(1.1)
$$
P(X,Y)U = R(X,Y)U - \frac{1}{2n}[S(Y,U)X - S(X,U)Y]
$$

for any vector fields $X, Y, U \in \mathfrak{X}(M)$, where S is the Ricci tensor of M.

The Weyl conformal curvature tensor C on a $(2n + 1)$ -dimensional manifold M is defined by [20]

(1.2)
\n
$$
C(X,Y)Z = R(X,Y)Z + \frac{r}{2n(2n-1)}[g(Y,Z)X - g(X,Z)Y]
$$
\n
$$
-\frac{1}{2n-1}[S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY]
$$

for any vector fields X, Y, Z on M, where S, Q and r denote the Ricci curvature tensor, the Ricci operator with respect to the metric q and the scalar curvature, respectively. Note that the Weyl conformal curvature tensor on any three dimension Riemannian manifold vanishes.

For a $(2n+1)$ -dimensional manifold M, the quasi-conformal curvature tensor \tilde{C} is defined by [21]

(1.3)
$$
\tilde{C}(X,Y)Z = aR(X,Y)Z - \frac{r}{2n+1}[\frac{a}{2n} + 2b][g(Y,Z)X - g(X,Z)Y] + b[S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY],
$$

where a and b are two constants. If $a = 1$ and $b = -\frac{1}{2n-1}$, then the quasi-conformal curvature tensor reduces to the Weyl conformal curvature tensor.

In this paper, we aim to extend some known results regarding the projective and quasi-conformal curvature tensor on Kenmotsu manifolds (see [1, 2, 9, 10]) to a class of almost Kenmotsu manifolds. In Section 2, we recall some basic formulas and properties of almost Kenmotsu manifolds and the notion of $(k, \mu)'$ -almost Kenmotsu manifolds. In Section 3, we introduce some properties of such manifolds used to prove our main results. In Section 4 and 5, we classify almost Kenmotsu manifolds satisfying $R \cdot \tilde{C} = 0$ and $P \cdot P = 0$, respectively.

2. Almost Kenmotsu manifolds

Let M^{2n+1} be an almost contact metric manifold of dimension $2n+1$, equipped with an almost contact metric structure (ϕ, ξ, η, g) (see [3]) satisfying

(2.1)
$$
\phi^2 = -id + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \eta \circ \xi = 0, \quad \phi \xi = 0,
$$

(2.2)
$$
g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad \eta(X) = g(X, \xi)
$$

for any $X, Y \in \mathfrak{X}(M)$, where ϕ, ξ, η, g and $\mathfrak{X}(M)$ denote a $(1, 1)$ -tensor field, a vector field, a 1-form, the Riemannian metric and the Lie algebra of all differentiable vector fields on M^{2n+1} , respectively.

The fundamental 2-form Φ of an almost contact metric manifold M^{2n+1} is defined by $\Phi(X, Y) = q(X, \phi Y)$ for any fields $X, Y \in \mathfrak{X}(M)$. M^{2n+1} is called an almost Kenmotsu manifold if $d\eta = 0$ and $d\Phi = 2\eta \wedge \Phi$. The almost contact metric manifold is said to be normal if the Nijenhuis tensor of ϕ is given by $[\phi, \phi] = -2d\eta \otimes \xi$, where $[\phi, \phi](X, Y) = \phi^2[X, Y] + [\phi X, \phi Y] - \phi[\phi X, Y] - \phi[X, \phi Y]$. A normal almost Kenmotsu manifold is said to be a Kenmotsu manifold [4].

On an almost Kenmotsu manifold M^{2n+1} , the two $(1, 1)$ -type tensor fields $l =$ $R(\cdot,\xi)\xi$ and $h = \frac{1}{2}\mathcal{L}_{\xi}\phi$ are symmetric, where R is the Riemannian curvature tensor of g and $\mathcal L$ is the Lie differentiation. Then we get

(2.3)
$$
h\xi = 0
$$
, $l\xi = 0$, $tr(h) = 0$, $tr(h\phi) = 0$, $h\phi + \phi h = 0$.

We also have the following formulas presented in [5, 6]:

(2.4)
$$
\nabla_X \xi = -\phi^2 X - \phi h X (\Rightarrow \nabla_\xi \xi = 0),
$$

(2.5)
$$
\phi l \phi - l = 2(h^2 - \phi^2),
$$

(2.6)
$$
trl = S(\xi, \xi) = g(Q\xi, \xi) = -2n - trh^{2},
$$

(2.7)
$$
R(X,Y)\xi = \eta(X)(Y + h'Y) - \eta(Y)(X + h'X) + (\nabla_X h')Y - (\nabla_Y h')X
$$

for any $X, Y \in \mathfrak{X}(M)$, where $h' = h \circ \phi$ and $S, Q, \nabla, \mathfrak{X}(M)$ denote the Ricci tensor, the Ricci operator with respect to g , the Levi-Civita connection of g and the Lie algebra of all vector fields on M^{2n+1} , respectively.

3. Some properties of $(k, \mu)'$ -almost Kenmotsu manifolds

If the characteristic vector field ξ of an almost Kenmotsu manifold $(M^{2n+1},$ ϕ, ξ, η, g satisfies the $(k, \mu)'$ -nullity condition (see [6]), then it is called a $(k, \mu)'$ almost Kenmotsu manifold. The $(k, \mu)'$ -nullity condition is defined as follows:

(3.1)
$$
R(X,Y)\xi = k[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)h'X - \eta(X)h'Y]
$$

for any vector fields X, Y, where both k and μ are constant on M^{2n+1} . M^{2n+1} is said to be a (k, μ) -almost manifold Kenmotsu manifold if there holds $R(X, Y) \xi =$ $k[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)hX - \eta(X)hY]$ for any vector fields X, Y and $k, \mu \in \mathbb{R}$. A (k, μ) -almost Kenmotsu manifold satisfies $k = -1$ and $h = 0$ (see [6]). A (k, μ) almost Kenmotsu manifold is a special case of $(k, \mu)'$ -almost Kenmotsu manifolds. Following [6], on any $(k, \mu)'$ -almost Kenmotsu manifold M^{2n+1} , we have

(3.2)
$$
h'^2 X = -(k+1)X + (k+1)\eta(X)\xi
$$

for any vector field $X \in \mathfrak{X}(M)$ and $\mu = -2$. From (3.2), we know that $h' = 0$ is equivalent to $k = -1$ and $h' \neq 0$ everywhere if and only if $k < -1$. Furthermore, by (3.1) and the symmetry of the Riemannian curvature tensor R, it is easy to see that

(3.3)
$$
R(\xi, X)Y = k[g(X, Y)\xi - \eta(Y)X] - 2[g(h'X, Y)\xi - \eta(Y)h'X]
$$

for any $X, Y \in \mathfrak{X}(M)$. In case of $k < -1$, we denote by $[\lambda]'$ and $[-\lambda]'$ the eigenspaces of h' corresponding two eigenvalues $\lambda > 0$ and $-\lambda$, respectively. Obviously, by (3.2), we have

$$
\lambda = \sqrt{-k-1} > 0.
$$

Before presenting one of our main results, we give the following two lemmas.

Lemma 3.1. [6, Proposition 4.2] Let M^{2n+1} be a $(k,\mu)'$ -almost Kenmotsu manifold such that $h' = 0$. Then, for any $X_{\lambda}, Y_{\lambda}, Z_{\lambda} \in [\lambda]'$ and $X_{-\lambda}, Y_{-\lambda}, Z_{-\lambda} \in [-\lambda]'$, the Riemannian curvature tensor satisfies

(3.5)
$$
R(X_{\lambda}, Y_{\lambda})Z_{-\lambda} = 0,
$$

\n(3.6)
$$
R(X_{-\lambda}, Y_{-\lambda})Z_{\lambda} = 0,
$$

\n(3.7)
$$
R(X_{\lambda}, Y_{-\lambda})Z_{\lambda} = (k+2)g(X_{\lambda}, Z_{\lambda})Y_{-\lambda},
$$

\n(3.8)
$$
R(X_{\lambda}, Y_{-\lambda})Z_{-\lambda} = -(k+2)g(Y_{-\lambda}, Z_{-\lambda})X_{\lambda},
$$

\n(3.9)
$$
R(X_{\lambda}, Y_{\lambda})Z_{\lambda} = (k-2\lambda)[g(Y_{\lambda}, Z_{\lambda})X_{\lambda} - g(X_{\lambda}, Z_{\lambda})Y_{\lambda}],
$$

\n(3.10)
$$
R(X_{-\lambda}, Y_{-\lambda})Z_{-\lambda} = (k+2\lambda)[g(Y_{-\lambda}, Z_{-\lambda})X_{-\lambda} - g(X_{-\lambda}, Z_{-\lambda})Y_{-\lambda}].
$$

Lemma 3.2. [18, Lemma 3.2] Let M^{2n+1} be a $(k,\mu)'$ -almost Kenmotsu manifold such that $h' \neq 0$. Then the Ricci operator of M^{2n+1} is given by

(3.11)
$$
Q = -2ni d + 2n(k+1)\eta \otimes \xi - 2nh'.
$$

Moreover, the scalar curvature of M^{2n+1} is $2n(k-2n)$.

Proof. See the proof of [19, Lemma 3.2]. \square

4. $(k, \mu)'$ -almost Kenmotsu manifolds satisfying $R(X, Y) \cdot \tilde{C} = 0$

In this section, we consider a non-Kenmotsu $(k, \mu)'$ -almost Kenmotsu manifold ${\cal M}^{2n+1}$ satisfying the condition

$$
(4.1) \t R(X,Y) \cdot \tilde{C} = 0,
$$

or equivalently

(4.2)
\n
$$
(R(X,Y) \cdot \tilde{C})(U,V)W = R(X,Y)\tilde{C}(U,V)W - \tilde{C}(R(X,Y)U,V)W
$$
\n
$$
- \tilde{C}(U,R(X,Y)V)W - \tilde{C}(U,V)R(X,Y)W
$$
\n
$$
= 0
$$

for any $X, Y, U, V, W \in \mathfrak{X}(M)$.

From the definition of \tilde{C} (see (1.3)), we have

(4.3)
\n
$$
\tilde{C}(\xi, Y)Z = [ak - \frac{r}{2n+1}(\frac{a}{2n} + 2b) + 2nkb - 2nb]g(Y, Z)\xi
$$
\n
$$
- [ak - \frac{r}{2n+1}(\frac{a}{2n} + 2b) + 2nkb - 2nb]\eta(Z)Y
$$
\n
$$
- (-a\mu + 2nb)g(h'Y, Z)\xi + (-a\mu + 2nb)\eta(Z)h'Y,
$$

(4.4)
\n
$$
\tilde{C}(\xi, Y)\xi = [ak - \frac{r}{2n+1}(\frac{a}{2n} + 2b) + 2nkb - 2nb]\eta(Y)\xi
$$
\n
$$
- [ak - \frac{r}{2n+1}(\frac{a}{2n} + 2b) + 2nkb - 2nb]Y
$$
\n
$$
+ (-a\mu + 2nb)h'Y,
$$

where r , a and b denote the scalar curvature and two constants, respectively. Let us denote by $A = [ak - \frac{r}{2n+1}(\frac{a}{2n} + 2b) + 2nkb - 2nb], B = -A, D = (-a\mu + 2nb)$ and $E = -D$.

Substituting $X = U = \xi$ in (4.2) we have

(4.5)
\n
$$
(R(\xi, Y) \cdot \tilde{C})(\xi, V)W = R(\xi, Y)\tilde{C}(\xi, V)W - \tilde{C}(R(\xi, Y)\xi, V)W
$$
\n
$$
- \tilde{C}(\xi, R(\xi, Y)V)W - \tilde{C}(\xi, V)R(\xi, Y)W
$$
\n
$$
= 0
$$

for any $Y, V, W \in \mathfrak{X}(M)$.

Making use of (3.3) , (4.3) and (4.4) we calculate every term in equation (4.5) straightly. Then we have

$$
R(\xi, Y)\tilde{C}(\xi, V)W
$$

\n
$$
= k[g(Y, \tilde{C}(\xi, V)W)\xi - \eta(\tilde{C}(\xi, V)W))Y]
$$

\n
$$
+ \mu[g(h'Y, \tilde{C}(\xi, V)W)\xi - \eta(\tilde{C}(\xi, V)W))h'Y]
$$

\n(4.6)
\n
$$
= k\{A[\eta(Y)g(V, W)\xi - \eta(W)g(Y, V)\xi]\}
$$

\n
$$
+ E[\eta(Y)g(h'V, W)\xi - \eta(W)g(Y, h'V)\xi]\}
$$

\n
$$
- k\{A[g(V, W)Y - \eta(W)\eta(V)Y] + Eg(h'V, W)Y\}
$$

\n
$$
+ \mu\{-A\eta(W)g(h'Y, V)\xi - E\eta(W)g(h'Y, h'V)\xi\}
$$

\n
$$
- \mu\{A[g(V, W)h'Y - \eta(W)\eta(V)h'Y] + Eg(h'V, W)h'Y\}.
$$

 $\tilde{C}(R(\xi, Y)\xi, V)W$

(4.7)
$$
= k\eta(Y)\tilde{C}(\xi, V)W - k\tilde{C}(Y, V)W - \mu\tilde{C}(h'Y, V)W
$$

$$
= k\{A[\eta(Y)g(V,W)\xi - \eta(W)\eta(Y)V] + E[\eta(Y)g(h'V,W)\xi - \eta(W)\eta(Y)h'V]\} - k\tilde{C}(Y, V)W - \mu\tilde{C}(h'Y, V)W.
$$

$$
\tilde{C}(\xi, R(\xi, Y)V)W
$$
\n
$$
= kg(Y, V)\tilde{C}(\xi, \xi)W - k\eta(V)\tilde{C}(\xi, Y)W
$$
\n
$$
+ \mu g(h'Y, V)\tilde{C}(\xi, \xi)W - \mu\eta(V)\tilde{C}(\xi, h'Y)W
$$
\n
$$
= -k\{A[\eta(V)g(Y, W)\xi - \eta(W)\eta(V)Y] + E[\eta(V)g(h'Y, W)\xi - \eta(W)\eta(V)h'Y]\}
$$
\n
$$
- \mu\{A[\eta(V)g(h'Y, W)\xi - \eta(W)\eta(V)h'Y]\}
$$
\n
$$
+ E[\eta(V)g(h'^2Y, W)\xi - \eta(W)\eta(V)h'^2Y]\}.
$$

$$
\tilde{C}(\xi, V)R(\xi, Y)W
$$
\n
$$
= kg(Y, W)\tilde{C}(\xi, V)\xi - k\eta(W)\tilde{C}(\xi, V)Y
$$
\n
$$
+ \mu g(h'Y, W)\tilde{C}(\xi, V)\xi - \mu\eta(W)\tilde{C}(\xi, V)h'Y
$$
\n(4.9)\n
$$
= k\{A[g(Y, W)\eta(V)\xi - g(Y, W)V] + Dg(Y, W)h'V\}
$$
\n
$$
- k\{A[\eta(W)g(V,Y)\xi - \eta(Y)\eta(W)h'V]\}
$$
\n
$$
+ E[\eta(W)g(h'Y,Y)\xi - \eta(Y)\eta(W)h'V]\}
$$
\n
$$
+ \mu\{A[g(h'Y,W)\eta(V)\xi - g(h'Y,W)V] + Dg(h'Y,W)h'V\}
$$
\n
$$
- \mu\{A\eta(W)g(V,h'Y)\xi + E\eta(W)g(h'V,h'Y)\xi\}
$$
\nfor any Y, V, W \in \mathfrak{X}(M).
\nSubstituting (4.6)-(4.9) into (4.5) and using (3.2) gives\n
$$
k\tilde{C}(Y,V)W + \mu\tilde{C}(h'Y,V)W - kAg(V,W)Y
$$
\n
$$
- kEg(h'V,W)Y - \mu Ag(V,W)h'Y - \mu E(g(h'V,W)h'Y - \mu E(k+1)\eta(V)g(Y,W)\xi + \mu E(k+1)\eta(V)\eta(W)Y + kAg(Y,W)W)V + \mu Ag(h'Y,W)V + \mu Eg(h'Y,W)h'V = 0
$$
\nfor any Y, V, W \in \mathfrak{X}(M).
\nSubstituting Y = h'Y in (4.10) and using (3.2) we obtain\n
$$
k\tilde{C}(h'Y,V)W - \mu(k+1)\tilde{C}(Y,V)W - kAg(V,W)h'Y - kEg(h'V,W)h'Y + \mu E(k+1)g(h'V,W)Y
$$

 (4.11) $-kE(k+1)\eta(V)g(Y,W)\xi + kE(k+1)\eta(V)\eta(W)Y$ $-\mu E(k+1)\eta(V)g(h'Y,W)\xi + \mu E(k+1)\eta(V)\eta(W)h'Y + kAg(h'Y,W)V$ $+ kEg(h'Y, W)h'V - \mu A(k+1)g(Y, W)V - \mu E(k+1)g(Y, W)h'V = 0$

for any $Y, V, W \in \mathfrak{X}(M)$. Subtracting μ multiple of (4.11) from k multiple of (4.10) and using $\mu = -2$ implies

$$
(4.12)\quad\begin{aligned} (k+2)^2 \tilde{C}(Y,V)W-(k+2)^2 \{A g(V,W)Y+E g(h'V,W)Y\\ -E \eta(V)g(h'Y,W)\xi+E \eta(V)\eta(W)h'Y-A g(Y,W)V-E g(Y,W)h'V\}=0 \end{aligned}
$$

for any $Y, V, W \in \mathfrak{X}(M)$. Next, we assume that $Y = V = W \in [-\lambda]'$ in (1.3), where $[-λ]'$ is eigenspace of h' corresponding eigenvalue $-λ$. Thus, by applying Lemma 3.1 and Lemma 3.2, we get

(4.13)
$$
\tilde{C}(Y, V)W = [a(k+2\lambda) - \frac{r}{2n+1}(\frac{a}{2n} + 2b) + 4nb(\lambda - 1)][g(V, W)Y - g(Y, W)V]
$$

for any $Y, V, W \in \mathfrak{X}(M)$.

With the help of (4.13) and assuming $Y = V = W \in [-\lambda]'$, from (4.12) we get

(4.14)
$$
2nb(k+2)^{2}(\lambda-1-k)[g(V,W)Y-g(Y,W)V]=0.
$$

Putting (3.4) into (4.14) we have

$$
\lambda(\lambda - 1)^2(\lambda + 1)^3 = 0.
$$

In view of the fact $\lambda > 0$, we obtain $\lambda = 1$ and hence $k = -2$. From [6, Corollary 4.2] and [5, Theorem 6], we know that M^{2n+1} is locally isometric to the Riemannian product $\mathbb{H}^{n+1}(-4) \times \mathbb{R}^n$.

Therefore we have the following:

Theorem 4.1. If a non-Kenmotsu $(k,\mu)'$ -almost Kenmotsu manifold M^{2n+1} of dimension greater than 3 satisfies $R \cdot \tilde{C} = 0$, then it is locally isometric to the Riemannian product $\mathbb{H}^{n+1}(-4) \times \mathbb{R}^n$.

Since quasi-conformally symmetric manifold ($\nabla \tilde{C} = 0$) implies $R \cdot \tilde{C} = 0$, therefore from Theorem 4.1 we state the following:

Corollary 4.1. A quasi-conformally symmetric non-Kenmotsu $(k, \mu)'$ -almost Kenmotsu manifold $M^{2n+1}(n > 1)$ is locally isometric to the Riemannian product $\mathbb{H}^{n+1}(-4) \times \mathbb{R}^n$.

Since $R \cdot R$ implies $R \cdot \tilde{C} = 0$, we get the following:

Corollary 4.2. A semisymmetric non-Kenmotsu $(k, \mu)'$ -almost Kenmotsu manifold $M^{2n+1}(n > 1)$ is locally isometric to the Riemannian product $\mathbb{H}^{n+1}(-4) \times \mathbb{R}^n$.

The above corollary has been proved by Wang and Liu [15].

5. $(k, \mu)'$ -almost Kenmotsu manifolds satisfying $P(X, Y) \cdot P = 0$

In this section, we consider a non-Kenmotsu $(k, \mu)'$ -almost Kenmotsu manifolds M^{2n+1} satisfying the condition

$$
(5.1) \t\t P(X,Y) \cdot P = 0,
$$

which implies

(5.2)
\n
$$
(P(X,Y) \cdot P)(U,V)W
$$
\n
$$
= P(X,Y)P(U,V)W - P(P(X,Y)U,V)W
$$
\n
$$
- P(U,P(X,Y)V)W - P(U,V)P(X,Y)W
$$
\n
$$
= 0
$$

for any $X, Y, U, V, W \in \mathfrak{X}(M)$. Making use of (1.1), we get

$$
P(X, Y)P(U, V)W
$$

= $R(X, Y)R(U, V)W - \frac{1}{2n}S(V, W)R(X, Y)U + \frac{1}{2n}S(U, W)R(X, Y)V$
(5.3)
$$
-\frac{1}{2n}\{S(Y, R(U, V)W)X - \frac{1}{2n}S(V, W)S(Y, U)X + \frac{1}{2n}S(U, W)S(Y, V)X\}
$$

$$
+\frac{1}{2n}\{S(X, R(U, V)W)Y - \frac{1}{2n}S(V, W)S(X, U)Y + \frac{1}{2n}S(U, W)S(X, V)Y\},
$$

$$
P(P(X, Y)U, V)W
$$

= $R(R(X, Y)U, V)W - \frac{1}{2n}S(Y, U)R(X, V)W + \frac{1}{2n}S(X, U)R(Y, V)W$
(5.4)

$$
-\frac{1}{2n}\{S(V, W)R(X, Y)U - \frac{1}{2n}S(V, W)S(Y, U)X + \frac{1}{2n}S(V, W)S(X, U)Y\}
$$

$$
+\frac{1}{2n}\{S(R(X, Y)U, W)V - \frac{1}{2n}S(Y, U)S(X, W)V + \frac{1}{2n}S(X, U)S(Y, W)V\},
$$

$$
P(U, P(X, Y)V)W = R(U, R(X, Y)V)W - \frac{1}{2n}S(Y, V)R(U, X)W + \frac{1}{2n}S(X, V)R(U, Y)W
$$

(5.5)
$$
- \frac{1}{2n}\{S(R(X, Y)V, W)U - \frac{1}{2n}S(Y, V)S(X, W)U + \frac{1}{2n}S(X, V)S(Y, W)U\}
$$

$$
+ \frac{1}{2n}\{S(U, W)R(X, Y)V - \frac{1}{2n}S(U, W)S(Y, V)X + \frac{1}{2n}S(U, W)S(X, V)Y\},
$$

$$
P(U, V)P(X, Y)W
$$

= $R(U, V)R(X, Y)W - \frac{1}{2n}S(Y, W)R(U, V)X + \frac{1}{2n}S(X, W)R(U, V)Y$
(5.6)

$$
-\frac{1}{2n}\{S(V, R(X, Y)W)U - \frac{1}{2n}S(Y, W)S(V, X)U + \frac{1}{2n}S(X, W)S(V, Y)U\}
$$

+
$$
\frac{1}{2n}\{S(U, R(X, Y)W)V - \frac{1}{2n}S(Y, W)S(U, X)V + \frac{1}{2n}S(X, W)S(U, Y)V\}.
$$

Substituting $(5.3)-(5.6)$ into (5.2) , we have

$$
(R(X, Y) \cdot R)(U, V)W - \frac{1}{2n} \{ S(Y, R(U, V)W)X - S(X, R(U, V)W)Y \}
$$

+
$$
\frac{1}{2n} \{ S(Y, U)R(X, V)W - S(X, U)R(Y, V)W - S(R(X, Y)U, W)V \}
$$

+
$$
\frac{1}{2n} \{ S(Y, V)R(U, X)W - S(X, V)R(U, Y)W + S(R(X, Y)V, W)U \}
$$

+
$$
\frac{1}{2n} \{ S(Y, W)R(U, V)X - S(X, W)R(U, V)Y + S(V, R(X, Y)W)U - S(U, R(X, Y)W)V \} = 0
$$

for any vector fields $X, Y, U, V, W \in \mathfrak{X}(M)$. If (5.1) holds, putting $Y = U = \xi$ into (5.7), we obtain

$$
(R(X,\xi) \cdot R)(\xi, V)W - \frac{1}{2n} \{ S(\xi, R(\xi, V)W)X - S(X, R(\xi, V)W)\xi \}
$$

+
$$
\frac{1}{2n} \{ S(\xi, \xi)R(X, V)W - S(X, \xi)R(\xi, V)W - S(R(X, \xi)\xi, W)V \}
$$

(5.8)
+
$$
\frac{1}{2n} \{ S(\xi, V)R(\xi, X)W - S(X, V)R(\xi, \xi)W + S(R(X, \xi)V, W)\xi \}
$$

+
$$
\frac{1}{2n} \{ S(\xi, W)R(\xi, V)X - S(X, W)R(\xi, V)\xi + S(V, R(X, \xi)W)\xi
$$

-
$$
S(\xi, R(X, \xi)W)V \} = 0
$$

for any vector fields $X, V, W \in \mathfrak{X}(M)$. In Section 4, we know that $S(\xi, V) =$ $2nk\eta(V)$, using the equation and (3.1), we have

(5.9)
\n
$$
S(R(\xi, X)Y, Z)
$$
\n
$$
= 2n\{\eta(Z)[k^{2}g(X, Y) - 2kg(h'X, Y)] + \eta(Y)[kg(X, Z) - k(k+1)\eta(Z)\eta(X) + kg(X, h'Z) - 2g(h'X, Z) - 2g(h'X, h'Z)]\}
$$

for any vector fields $X, Y, Z \in \mathfrak{X}(M)$. Combining (5.9) with (5.8) and assuming that $X \in [\lambda]$ and $V = W \in [-\lambda]$ in (5.8) are eigenvector fields of h' corresponding two eigenvalues λ and $-\lambda$, respectively. Thus, by applying Lemma 3.1, we obtian

(5.10)
$$
(R(X,\xi)\cdot R)(\xi,V)W = [k^2 + 2k\lambda + k(k+2)]g(V,W)X.
$$

On the other hand, by a straightforward computation and applying Lemma 3.1, Wang and Liu [15, Theorem 1.1] obtained the following relation (one can check it by a direct calculation).

(5.11)
\n
$$
(R(X, \xi) \cdot R)(\xi, V)W
$$
\n
$$
= R(X, \xi)R(\xi, V)W - R(R(X, \xi)\xi, V)W
$$
\n
$$
- R(\xi, R(X, \xi)V)W - R(\xi, V)R(X, \xi)W
$$
\n
$$
= [(k - 2\lambda)(k + 2) - k^2 + 4\lambda^2]g(V, W)X.
$$

From (5.10) and (5.11), we get $\lambda^2(\lambda - 1) = 0$. In view of the fact $\lambda > 0$, we obtain $\lambda = 1$ and hence $k = -2$. From [6, Corollary 4.2] and [5, Theorem 6] we can know that M^{2n+1} is locally isometric to the Riemannian product $\mathbb{H}^{n+1}(-4) \times \mathbb{R}^n$.

Consequently, we have the following theorem:

Theorem 5.1. If a non-Kenmotsu $(k, \mu)'$ -almost Kenmotsu manifold M^{2n+1} satisfies $P \cdot P = 0$, then it is locally isometric to the Riemannian product $\mathbb{H}^{n+1}(-4) \times$ \mathbb{R}^n .

Acknowledgment. The authors would like to thank the referee for his or her valuable suggestions and comments that led to the improvement of this paper.

REFERENCES

- 1. A. Yıldız, U. C. De and B. E. Acet: On Kenmotsu manifolds satisfying certain curvature conditions, SUT Journal of Mathematics 45(2) (2009), 89-101.
- 2. A. Yıldız and U. C. De: A classification of (k, μ) -contact metric manifolds, Commun. Korean Math. Soc. 27(2) (2012), 327-339.
- 3. D. E. Blair: Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203, Birkhäuser, 2010.
- 4. D. Janssens and L. Vanhecke: Almost contact structures and curvature tensors, Kodai Math. J. 4(1) (1981), 1-27.
- 5. G. Dileo and A.M. Pastore: Almost Kenmotsu manifolds and local symmetry, Bull. Belg. Math. Soc. Simon Stevin 14(2) (2007), 343-354.
- 6. G. Dileo and A.M. Pastore: Almost Kenmotsu manifolds and nullity distributions, J. Geom. 93(1-2) (2009), 46-61.
- 7. G. Pitiş: Geometry of Kenmotsu manifolds, Publishing House of Transilvania University of Bra¸sov, Bra¸sov, Romania, 2007.
- 8. K. Kenmotsu: A class of almost contact Riemannian manifolds, Tôhoku Math. J. $24(1)$ (1972), 93-103.
- 9. K. K. Baishya and P. R. Chowdhury: Kenmotsu manifold with some curvature coditionds, Annales Univ. Sci. Budapest. 59 (2016), 55-65.
- 10. P. Majhi and U. C. De: *Classifications of* $N(k)$ -contact manifolds satisfying certain curvature conditions, Acta Math. Univ. Comenianae 84(1) (2015), 167-178.
- 11. T.W. Kim and H.K. Pak: Canonical foliations of certain classes of almost contact metric structures, Acta Math. Sin. Engl. Ser. 21(4) (2005), 841-846.
- 12. U. C. De and K. Mandal: on locally ϕ -Conformally symmetric almost Kenmotsu manifolds with nullity distribytions, Commun. Korean Math. Soc. 32(2) (2017), 401-416.
- 13. U. C. De and K. Mandal: On a type of almost Kenmotsu manifolds with nullity distributions, Arab J Math Sci 23(2) (2017), 109-123.
- 14. U. C. De, J. B. Jun and K. Mandal: On almost Kenmotsu manifolds with nullity distributions, Tamkang Journal of Mathematics $48(3)$ (2017), 251-263.

Some Results on $(k, \mu)'$ -Almost Kenmotsu Manifolds 597

- 15. Y. Wang and X. Liu: Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions, Ann. Polon. Math. 112(1) (2014), 37-46.
- 16. Y. Wang: Three-dimensional locally symmetric almost Kenmotsu manifolds, Ann. Polon. Math.(2016), 79-86.
- 17. Y. Wang: Conformally flat CR-integrable almost Kenmotsu manifolds, Bull. Math. Soc. Sci. Math. Roumanie 59(4) (2016), 375-387.
- 18. Y. Wang: Conformally flat almost Kenmotsu 3-manifolds, Mediterr. J. Math. 14(5) (2017), No. 186.
- 19. Y. Wang and W. Wang: Some results on $(k, \mu)'$ -almost Kenmotsu manifolds, Quaestiones Math. DOI: 10.2989/16073606.2017.1391347.
- 20. K. Yano and M. Kon: Structures on Manifolds, Vol. 40, World Scientifc Press, 1989.
- 21. K. Yano and S. Sawaki: Riemannian manifolds admitting a conformal transformation group, J. Differential Geom. 2 (1968), 161-184.

Wenfeng Ning School of Mathematical Sciences Dalian University of Technology Dalian 116024, Liaoning, P. R. China winniening@mail.dlut.edu.cn

Ximin Liu

School of Mathematical Sciences

Dalian University of Technology

Dalian 116024, Liaoning, P. R. China

ximinliu@dlut.edu.cn

Jin Li

School of Mathematical Sciences Dalian University of Technology Dalian 116024, Liaoning, P. R. China

lijin0907@mail.dlut.edu.cn