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ON FREQUENTLY HYPERCYCLIC ABSTRACT HIGHER-ORDER

DIFFERENTIAL EQUATIONS ∗

Belkacem Chaouchi and Marko Kostić

Abstract. In this note, we analyze frequently hypercyclic solutions of abstract higher-
order differential equations in separable infinite-dimensional complex Banach spaces.
We essentially apply results from the theory of C-regularized semigroups, providing
several illustrative examples and possible applications.
Keywords: Higher-order differential equations; regularized semigroups; complex Ba-
nach space.

1. Introduction and Preliminaries

As it is well-known, the class of frequently hypercyclic linear continuous oper-
ators on separable Fréchet spaces was introduced by F. Bayart and S. Grivaux in
2006 ([1]). Frequent hypercyclicity and various generalizations of this concept are
very active fields of research of a great number of mathematicians working in the
field of linear topological dynamics (for more details, we may refer e.g. to [2]-[4],
[13] and references cited therein).

Frequently hypercyclic properties of abstract first order differential equations
have been studied by E. M. Mangino, A. Peris [21] and E. M. Mangino, M. Murillo-
Arcila [22], within the framework of theory of strongly continuous semigroups, and
the second named author [19], within the theory of integrated and C-regularized
semigroups. Frequently hypercyclic abstract second order differential equations
have been recently investigated in [20] by using the general notion of C-distribution
cosine functions and integrated C-cosine functions. Up to now, we do not have any
relevant reference treating the operator theoretical aspects of frequently hypercyclic
abstract higher-order differential equations. This fact has strongly influenced us to
write this paper.
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The organization, main ideas and novelties of paper are briefly described as
follows. Let (E, ‖ · ‖) be a separable infinite-dimensional complex Banach space.
We analyze frequently hypercyclic properties of solutions of the abstract Cauchy
problem

(ACPn) :

{

u(n)(t) +An−1u
(n−1)(t) + · · ·+A1u

′(t) +A0u(t) = 0, t ≥ 0,

u(k)(0) = uk, k = 0, · · ·, n− 1,

where A0, · · ·, An−1 are closed linear operators on E and u0, · · ·, un−1 ∈ E; by a
strong solution of (ACPn), we mean any n-times continuously differentiable func-
tion t 7→ u(t), t ≥ 0 such that the mappings t 7→ Aiu

(i)(t), t ≥ 0 are continuous for
0 ≤ i ≤ n−1 and the initial conditions are satisfied (for more details about the well-
posedness of (ACPn), the reader may consult the monographs [24] by T.-J. Xiao, J.
Liang and [16] by the author). In order to investigate frequently hypercyclic prop-
erties of solutions to (ACPn), we convert this problem into corresponding abstract
first order differential equation with appropriately chosen operator matrix acting
on product space En. The proofs of our structural results lean heavily on the use of
Lemma 1.1 from [19], where we have recently considered frequent hypercyclicity for
C-regularized semigroups following the approach of S. El Mourchid [10, Theorem
2.1] and E. M. Mangino, A. Peris [21, Corollary 2.3]. In contrast to the recent
research studies of J. A. Conejero, C. Lizama et al. [5]-[7], where the authors have
studied the hypercyclic and chaotic solutions of certain kinds of abstract second and
third order differential equations in the spaces of Herzog analytic functions by em-
ploying, primarily, the Desch-Schappacher-Webb criterion [9], the operator matrix
under our consideration is not bounded and as such does not generate a strongly
continuous semigrop on En a priori. This is the main reason why we use the theory
of C-regularized semigroups in this paper. We construct solutions of (ACPn) for
initial values (u0, · · ·, un−1) belonging to a certain proper subspace Ẽ ⊆ En and
after that analyze their frequently hypercyclic properties by applying essentially
Lemma 1.1, as mentioned above. Motivated by our recent researches [18] and [20],
in Definition 1.1 we introduce the notion of a (W, Ẽ, E)-frequent hypercyclicity. The
main goal of Theorem 2.1 is to analyze (W, Ẽ, E)-frequently hypercyclic solutions of
some special classes of problems (ACPn) in the case that the operator matrix p(A)
obtained after the usual convertion generates an entire C-regularized group. After
that, we revisit once more the fundamental result [23, Theorem 5] of F. Neubrander.
We introduce the notion of (W, Ẽ, E , (D(An−1))

n)-frequent hypercyclicity (Defini-
tion 2.1) and consider (W, Ẽ, E , (D(An−1))

n)–frequently hypercyclic solutions of
(ACPn) (Theorem 2.2), provided that the operator −An−1 is the generator of a
strongly continuous semigroup on E as well as D(An−1) ⊆ D(Aj) for 0 ≤ j ≤ n− 2
(cf. also [16, Theorem 2.10.45] for a generalization of the above-mentioned theorem
to abstract time-fractional differential equations). In our approach, we almost al-
ways face the situation Ẽ 6= En, which indicates a certain type of subspace frequent
hypercyclicity of constructed solutions to (ACPn) (in [5]-[7], the situation in which
Ẽ = En can really occur). At the end of paper, we provide several examples and
applications of our results.
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Before explaining the notation used, we would like to note that we will not
discuss here frequently hypercyclic properties of systems of evolution equations by
using the theory of operator matrices developed by K.-J. Engel and his collaborators
(for more details about this subject, we refer the reader to the monograph [12]).
By L(E) we denote the space consisting of all continuous linear mappings from E
into E. We always assume henceforth that C ∈ L(E) and C is injective. Let A be
a closed linear operator with domain D(A) and range R(A) contained in E, and let
CA ⊆ AC. Set D∞(A) :=

⋂

k∈N
D(Ak). The part of A in a linear subspace Ẽ of E,

A|Ẽ shortly, is defined through A|Ẽ := {(x, y) ∈ A : x, y ∈ Ẽ} (we will identify an

operator and its graph henceforth). Recall that the C-resolvent set of A, denoted
by ρC(A), is defined by

ρC(A) :=
{

λ ∈ C : λ−A is injective and (λ−A)−1C ∈ L(E)
}

.

In our framework, the C-resolvent set of A consists of those complex numbers λ for
which the operator λ−A is injective and R(C) ⊆ R(λ−A). The resolvent set of A,
denoted by ρ(A), is obtained by plugging C = I. For every λ ∈ ρ(A) and n ∈ N, we
have that (D(An), ‖·‖n) is a Banach space, where ‖x‖n :=

∑n
i=0 ‖A

ix‖ (x ∈ D(An)).
We denote this space simply by [D(An)]. All operator families considered in this
paper will be non-degenerate. Set Nn := {1, · · ·, n} and N

0
n := Nn ∪ {0} (n ∈ N).

Suppose that T ⊆ N. The lower density of T, denoted by d(T ), is defined through:

d(T ) := lim inf
n→∞

|T ∩ [1, n]|

n
.

If T ⊆ [0,∞), then the lower density of T, denoted by d(T ), is defined through:

dc(T ) := lim inf
t→∞

m(T ∩ [0, t])

t
,

where m(·) denotes the Lebesgue measure on [0,∞). A linear operator A on E is
said to be frequently hypercyclic iff there exists an element x ∈ D∞(A) (frequently
hypercyclic vector of A) such that for each open non-empty subset V of E the set
{n ∈ N : Anx ∈ V } has positive lower density.

Motivated by our recent research study of D-hypercyclic and D-topologically
mixing properties of abstract degenerate Cauchy problems with Caputo fractional
derivatives [18], we introduce the following definition (since we are primarily con-
cerned with applications of C-regularized semigroups, we will consider only non-
degenerate differential equations henceforth; the analysis of frequently hypercyclic
abstract time-fractional differential equations is far from being trivial and nothing
has been said about this theme so far):

Definition 1.1. (cf. also [18, Definition 2]) Suppose that Ø 6= W ⊆ N0
n−1, Ẽ is

a linear subspace of En and E := (Ei : i ∈ W ) is a tuple of linear subspaces of
E. Then we say that the abstract Cauchy problem (ACPn) is (W, Ẽ, E)-frequently
hypercyclic iff there exists a strong solution t 7→ u(t), t ≥ 0 of (ACPn) with the
initial values (u0, · · ·, un−1) ∈ Ẽ satisfying additionally that, for every tuple of open
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non-empty subsets V := (Vi : i ∈ W ) of E, the set
⋂

i∈W {t ≥ 0 : u(i)(t) ∈ Vi ∩ Ei}
has positive lower density.

Introduction of Definition 1.1 is also motivated by some recent results about fre-
quently hypercyclic properties of abstract second order differential equations ([20]).
Speaking-matter-of-factly, if the assumptions of [20, Theorem 1] are satisfied, then
there exists a closed linear subspace Ẽ of E2 such that the abstract Cauchy problem
(ACP2) with A1 ≡ 0 and A0 ≡ −A is ({0, 1}, Ẽ, E)-frequently hypercyclic, where
E = (π1(Ẽ), π2(Ẽ)) and π1(·), π2(·) denote the first and second projection, respec-
tively. It is also worth noting that the spectral conditions of [20, Theorem 1] are
particularly satisfied for a substantially large class of abstract incomplete second
order differential equations.

We will use the following definition:

Definition 1.2. Let A be a closed linear operator. If there exists a strongly
continuous operator family (T (t))t≥0 ⊆ L(E) such that:

(i) T (t)A ⊆ AT (t), t ≥ 0,

(ii) T (t)C = CT (t), t ≥ 0,

(iii) for all x ∈ E and t ≥ 0:
∫ t

0 T (s)x ds ∈ D(A) and

A

t
∫

0

T (s)x ds = T (t)x− Cx,

then it is said that A is a subgenerator of a (global) C-regularized semigroup
(T (t))t≥0.

It is well-known that T (t)T (s) = T (t+s)C for all t, s ≥ 0. The integral generator
of (T (t))t≥0 is defined by

Â :=

{

(x, y) ∈ E × E : T (t)x− Cx =

t
∫

0

T (s)y ds, t ≥ 0

}

.

We know that the integral generator of (T (t))t≥0 is a closed linear operator which

is an extension of any subgenerator of (T (t))t≥0 and satisfies Â = C−1AC for
any subgenerator A of (T (t))t≥0. If for each fixed element x ∈ E the mapping
t 7→ T (t)x, t ≥ 0 can be extended to an entire function, then we say that (T (t))t≥0

is an entire C-regularized group with subgenerator A and integral generator Â ([8]).
Furthermore, it is said that (T (t))t≥0 is frequently hypercyclic iff there exists an
element x ∈ E (frequently hypercyclic vector of (T (t))t≥0) such that the mapping
t 7→ C−1T (t)x, t ≥ 0 is well-defined, continuous and that for each open non-empty
subset V of E the set {t ≥ 0 : C−1T (t)x ∈ V } has positive lower density ([19]).
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Throughout the whole paper, we will essentially employ the following result,
proved recently in [19]:

Lemma 1.1. Let t0 > 0 and let A be a subgenerator of a global C-regularized semi-

group (S0(t))t≥0 on E. Suppose that R(C) is dense in E. Set T (t)x := C−1S0(t)x,
t ≥ 0, x ∈ Z1(A). Suppose, further, that there exists a family (fj)j∈Γ of twice

continuously differentiable mappings fj : Ij → E such that Ij is an interval in R

and Afj(t) = itfj(t) for every t ∈ Ij , j ∈ Γ. Set Ẽ := span{fj(t) : j ∈ Γ, t ∈ Ij}.
Then A|Ẽ is a subgenerator of a global C|Ẽ-regularized semigroup (S0(t)|Ẽ)t≥0 on

Ẽ, (S0(t)|Ẽ)t≥0 is frequently hypercyclic in Ẽ and the operator T (t0)|Ẽ is frequently

hypercyclic in Ẽ.

For more details about C-regularized semigroups and their applications, we refer
the reader to the monographs [8] by R. deLaubenfels and [15]-[16] by the author.

2. Formulation and Proof of Main Results

In the formulation of our first structural result, we assume that N, n ∈ N and
iAj , 1 ≤ j ≤ N are commuting generators of bounded C0-groups on E. Define
A := (A1, · · ·, AN ) and Aη := Aη1

1 · · · AηN

N for any η = (η1, · · ·, ηN ) ∈ NN
0 . If

P (ξ) = [pij(ξ)]n×n is an arbitrary matrix of complex polynomials in variable ξ ∈
RN , then we can write P (ξ) =

∑

|η|≤m Pηξ
η for a certain integer m ∈ N and for

certain complex matrices Pη of format n× n. We know that the operator P (A) :=
∑

|η|≤m PηA
η acting with its maximal domain is closable on En; moreover, the

following holds:

Lemma 2.1. ([8], [16]) There exists an injective operator C ∈ L(En) with dense

range in En such that the operator P (A) generates an entire C-regularized group

(T (t))t≥0 on En such that T (t)~x ∈ D∞(P (A)) for all ~x ∈ En.

Let πj : En → E be the j-th projection (1 ≤ j ≤ n), let p0(ξ), · · ·, pn−1(ξ) be
complex polynomials in variable ξ ∈ RN , and let

p(A) :=













0 I 0 · · · 0
0 0 I · · · 0
· · · · · · ·
0 0 0 · · · I

−A0 −A1 −A2 · · · −An−1













,

where Ai := pi(A) for 0 ≤ i ≤ n− 1. Then we have the following:

Theorem 2.1. Suppose that there exists a family (Fj)j∈Γ of twice continuously dif-

ferentiable mappings Fj : Ij → En such that Ij is an interval in R and p(A)Fj(t) =

itFj(t) for every t ∈ Ij , j ∈ Γ. Set Ẽ := span{Fj(t) : j ∈ Γ, t ∈ Ij}. Then

the abstract Cauchy problem (ACPn) is (N0
n−1, Ẽ, E)-frequently hypercyclic with

E := (π1(Ẽ), · · ·, πn(Ẽ)).
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Proof. By Lemma 2.1, we know that there exists an injective operator C ∈
L(En) with dense range in En such that the operator P (A) generates an entire
C-regularized group (T (t))t≥0 on En such that T (t)~x ∈ D∞(P (A)) for all ~x ∈ En.
Furthermore, the injective operator C can be chosen such that C(span{Fj(t) : j ∈

Γ, t ∈ Ij}) = span{Fj(t) : j ∈ Γ, t ∈ Ij} and that C(Ẽ) is a dense linear subspace

of Ẽ; see [17, Remark 14(ii)]. Due to Lemma 1.1, we know that (S0(t)|Ẽ)t≥0 is

frequently hypercyclic in Ẽ, which implies that there exists a vector ~x ∈ Ẽ such
that for each open non-empty subset V in En the set {t ≥ 0 : C−1T (t)~x ∈ Ẽ∩V } has
positive lower density. Since C(Ẽ) is a dense linear subspace of Ẽ, it readily follows
that for each open non-empty subset V in En the set {t ≥ 0 : T (t)~x ∈ Ẽ ∩ V }
has positive lower density, as well. On the other hand, the function t 7→ T (t)~x,

t ≥ 0 is a unique solution of the abstract Cauchy problem ~U ′(t) = p(A)~U(t), t ≥ 0;
~U(0) = C~x. Furthermore, T (t)~x ∈ D∞(P (A)) so that the function t 7→ T (t)~x,

t ≥ 0 is a unique solution of the abstract Cauchy problem ~U ′(t) = p(A)~U(t), t ≥ 0;
~U(0) = C~x, actually. It is clear that the first, second,..., the n-th component of
T (·)~x is a unique solution of (ACPn), its first derivative,..., its (n − 1)-derivative,
respectively, with the initial conditions uj = πj+1(C~x), 0 ≤ j ≤ n− 1. This simply
implies the required conclusion.

Remark 2.1. The most important case for applications is N = 1. In this case,
let us assume that fj : Ij → E is a twice continuously differentiable mapping,
gj : {it ; t ∈ Ij} → C \ {0} is a scalar-valued mapping and Afj(t) = gj(it)fj(t),
t ∈ Ij (j ∈ Γ). If

(it)n +

n−1
∑

l=0

(it)lPl

(

gj(it)
)

= 0, t ∈ Ij , j ∈ Γ,(2.1)

then the assumptions of Theorem 2.1 are satisfied with

Fj(t) :=
[

fj(t) itfj(t) · · · (it)n−1fj(t)
]T

, t ∈ Ij , j ∈ Γ;

see e.g. [18, Example 1(ii)].

We continue by observing that Definition 1.1 does not enable one to thoroughly
investigate frequently hypercyclic solutions of some important classes of abstract
higher-order differential equations already examined in the existing literature. For
example, F. Neubrander has analyzed in [23] the well-posedness results for (ACPn)
by reduction this problem into a first order matricial system, employing the matrix

∆ :=













−An−1 I 0 · · · 0
−An−2 0 I · · · 0

· · · · · · ·
−A1 0 0 · · · I
−A0 0 0 · · · 0













.
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The operator matrix

Ψ :=













I 0 0 · · · 0 0
−An−1 I 0 · · · 0 0
−An−2 −An−1 I · · · ·

· · · · · · I 0
−A1 −A2 −A3 · · · −An−1 I













plays an important role in his analysis, as well.

We will use the following notion:

Definition 2.1. Suppose that λ ∈ ρ(∆), Ø 6= W ⊆ N
0
n−1, Ẽ is a linear sub-

space of (D(An−1))
n and E := (Ei : i ∈ W ) is a tuple of linear subspaces of E.

Then we say that the abstract Cauchy problem (ACPn) is (W, Ẽ, E , (D(An−1))
n)-

frequently hypercyclic iff there exists a strong solution t 7→ u(t), t ≥ 0 of (ACPn)
with the initial values (u0, · · ·, un−1) ∈ Ẽ satisfying additionally that, for every open

non-empty subset V of En, the set
⋂

i∈W {t ≥ 0 : u(i)(t) +
∑i

j=1 An−iu
(i−j)(t) ∈

πi+1((λ−∆)−n(V)) ∩Ei} has positive lower density.

This definition is a good one and does not depend on the choice of number
λ ∈ ρ(∆). This follows from the fact that for each λ ∈ ρ(∆) the mapping Π : En →
[D(∆n)] given by Π~x := (λ−∆)−n~x, ~x ∈ En is a linear topological isomorphism so
that {(λ −∆)−n(V) : V is an open non-empty subset of En} is equal to the set of
all open non-empty subsets of [D(∆n)] and therefore independent of λ ∈ ρ(∆).

Our second structural result reads as follows:

Theorem 2.2. Suppose that the operator −An−1 is the generator of a strongly

continuous semigroup on E as well as D(An−1) ⊆ D(Aj) for 0 ≤ j ≤ n − 2. Sup-
pose, further, that there exists a family (Fj)j∈Γ of twice continuously differentiable

mappings Fj : Ij → En such that Ij is an interval in R and ∆Fj(t) = itFj(t) for

every t ∈ Ij , j ∈ Γ. Set

Ẽ := span
{

Fj(t) : j ∈ Γ, t ∈ Ij
}[D(∆n)]

.(2.2)

Then the abstract Cauchy problem (ACPn) is (N0
n−1,Ψ

−1(Ẽ), E)-frequently hyper-

cyclic with E := (π1(Ẽ), · · ·, πn(Ẽ)).

Proof. By the proof of [23, Theorem 5], we know the following:

(i) The operator ∆ generates a strongly continuous semigroup (T (t))t≥0 on En

and therefore there exists λ ∈ ρ(∆).

(ii) The mapping Ψ is a bijection between the spaces (D(An−1))
n and D(∆n).

(iii) For every ~x ∈ D(∆n), the mapping t 7→ π1(T (t)~x), t ≥ 0 is a strong solution
of problem (ACPn) with the initial value ~y = Ψ−1~x ∈ (D(An−1))

n.
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From (i), we may deduce that the operator ∆|D(∆n) generates a strongly continuous
semigroup on the space [D(∆n)]; see e.g. [11, Chapter II.5]. By Lemma 1.1, it
follows that there exists a vector ~x ∈ D(∆n)∩Ẽ such that for every open non-empty
subset V′ in [D(∆n)], the set {t ≥ 0 : T (t)~x ∈ V′ ∩ Ẽ} has positive lower density.
Since {t ≥ 0 : T (t)~x ∈ V′ ∩ Ẽ} ⊆

⋂n
i=1{t ≥ 0 : πi(T (t)~x) ∈ πi(V

′) ∩ πi(Ẽ)}, the
required assertion follows from a simple analysis involving (i)-(iii) and the fact that

the (i+1)-projection of T (·)~x equals u(i)(·)+
∑i

j=1 An−iu
(i−j)(·) for 0 ≤ i ≤ n− 1,

where u(·) := π1(T (·)~x) is a unique strong solution of problem (ACPn) with initial
value y = Ψ−1~x (see the equation [23, (1), p. 267]).

Remark 2.2. Let us assume that P0, · · ·, Pn−1 are complex polynomials in one
variable, fj : Ij → E is a twice continuously differentiable mapping, gj : {it ; t ∈
Ij} → C \ {0} is a scalar-valued mapping and Afj(t) = gj(it)fj(t), t ∈ Ij (j ∈ Γ).
If (2.1) holds, then the assumptions of Theorem 2.2 are satisfied with As := Ps(A)
(0 ≤ s ≤ n− 1) and

Fj(t) :=
[

Fj1(t) Fj2(t) · · · Fjn(t)
]T

, t ∈ Ij , j ∈ Γ,(2.3)

where, for 2 ≤ s ≤ n,

Fjs(t) :=
s−2
∑

l=0

(it)lAn−s+1+lfj(t) + (it)s−1fj(t), t ∈ I1, j ∈ Γ.(2.4)

It is worth noting that Theorem 2.1 and Theorem 2.2 provide also sufficient
spectral conditions for certain types of (subspace) topologically mixing properties
and (subspace) Devaney chaoticity of solutions to (ACPn); see [18] for more details.

We close the paper by providing some illustrative examples and applications.

Example 2.1. Suppose that E := L2(R), c1 > c > b
2 > 0, the operator Ac is

defined by D(Ac) := {u ∈ L2(R) ∩ W 2,2
loc (R) : Acu ∈ L2(R)}, Acu := u′′ + bxu′ +

cu, u ∈ D(Ac), Ω := {λ ∈ C : λ 6= 0, λ 6= c − c1, Reλ < c − b
2}, f1(λ) :=

F−1(e−
ξ2

2b ξ|ξ|−(2+λ−c
b

))(·), λ ∈ Ω and f2(λ) := F−1(e−
ξ2

2b |ξ|−(1+ λ−c
b

))(·), λ ∈ Ω
(here, F−1 denotes the inverse Fourier transform on the real line). Consider the
equation

u′′′(t) +
(

c2 −Ac

)

u′(t) + c1u(t) = 0, t ≥ 0,(2.5)

where c1 ∈ C\{0} and c2 ∈ C. As already observed in [18, Example 1(i)], there exist
t > 0 and ǫ > 0 such that the equation (2.1) holds with the interval (i(t−ǫ), i(t+ǫ))
and the obvious choice of polynomials P0(·), P1(·) and P2(·). Since the operator
A1 := A − c2 generates a strongly continuous semigroup and D(A1) ⊆ D(A0),
Theorem 2.2 is applicable so that the abstract Cauchy problem (2.5), equipped
with initial conditions u(j)(0) = uj for 0 ≤ j ≤ 2, is (N0

2,Ψ
−1(Ẽ), E)-frequently

hypercyclic, where Fj(·) is given by (2.3)-(2.4) for j = 1, 2, Ẽ is defined by (2.2)

and E := (π1(Ẽ), π2(Ẽ), π3(Ẽ)).

Example 2.2. Suppose that 0 < γ ≤ 1, a > 0, p > 2 and X is a symmetric
space of non-compact type and rank one. Then the Laplace-Beltrami operator
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−∆♮
X,p generates a strongly continuous semigroup onX and we know that int(Pp) ⊆

σp(∆
♮
X,p), where Pp denotes the parabolic domain defined in [14]. Suppose that (2.1)

holds with Γ = {1}, the function g1(it) = it, t ∈ I1 (I1 a suitable chosen subinterval
of R) and certain complex polynomials P0(·), · · ·, Pn−1(·). Then Theorem 2.2 is
applicable with operators Al := Pl(A) (l ∈ N0

n−1).

Example 2.3. Let us recall that a measurable function ρ : R → (0,∞) is called
an admissible weight function iff there exist constants M ≥ 1 and ω ∈ R such that
ρ(t) ≤ Meω|t′|ρ(t + t′) for all t, t′ ∈ R. For such a function ρ(·), we consider the
following Banach spaces:

Lp
ρ(R) :=

{

u : R → C ;u(·) is measurable and ||u||p < ∞
}

,

where p ∈ [1,∞) and ||u||p := (
∫

R
|u(t)|pρ(t) dt)1/p, as well as

C0,ρ(R) :=
{

u : R → C ;u(·) is continuous and lim
t→∞

u(t)ρ(t) = 0
}

,

with ||u|| := supt∈R |u(t)ρ(t)|. It is well-known that the operatorA := d/dt equipped
with domain D(A) := {u ∈ E : u′ ∈ E, u(·) is absolutely continuous} generates a
strongly continuous translation group on E (see [9, Lemma 4.6]). If we assume
that, for every λ ∈ iR, the function t 7→ eλt, t ∈ R belongs to the space E and
the equation (2.1) holds with Γ = {1}, the function g1(it) = it, t ∈ I1 = R and
certain complex polynomials P0(·), · · ·, Pn−1(·), then Theorem 2.1 is applicable with
operators Al := Pl(A) (l ∈ N

0
n−1).
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2. F. Bayart and É. Matheron: (Non)-weakly mixing operators and hypercyclicity
sets. Ann. Inst. Fourier, Grenoble 59 (2009), 1–35.
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