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EXISTENCE AND UNIQUENESS OF SOLUTIONS TO A

FIRST-ORDER DIFFERENTIAL EQUATION VIA FIXED POINT

THEOREM IN ORTHOGONAL METRIC SPACE

Madjid Eshaghi Gordji and Hasti Habibi

Abstract. In this paper we provide new and simple proofs for the classical existence
and uniqueness theorems of solutions to the first-order differential equation using the
fixed point theorem in an orthogonal metric space.
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1. Introduction

Let us consider the differential equation

ẋ(t) = v(t, x), x(t0) = x0,(1.1)

where t ∈ R, x ∈ Rn and v(t, x) is defined and differentiable (of class Cr, r ≥ 1) in
a domain U of R× Rn.
The solution to this equation will be a function φ : R → Rn where

φ̇(t) = v(t, φ(t)), φ(t0) = x0.(1.2)

The existence and uniqueness of solutions to first-order differential equations with
given initial conditions are some of the most fundamental results of ordinary differ-
ential equations. This is stated in the two following theorems.

Theorem 1.1. [8] (The Existence Theorem) Suppose the right-hand side v of the
differential equation ẋ(t) = v(t, x) is continuously differentiable in a neighborhood
of the point (t0, x0) ∈ R×Rn. Then there exists a neighborhood of the point t0 such
that a solution of the differential equation is defined in this neighborhood with the
initial condition φ(t0) = x0, where x is any point sufficiently close to x0. Moreover,
this solution depends continuously on the initial point x.
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Theorem 1.2. [8](The Uniqueness Theorem) Given the above conditions, there is
only one possible solution for any given initial point, in the sense that all possible
solutions are equal in the neighborhood under consideration.

Previous studies have provided proofs of Theorems 1.1 and 1.2 using the concepts
of Banach contraction principle [1, 7, 8], [12] and [16, 15].
Recently, M. Eshaghi et.al. [13] introduced the concept of orthogonal sets. A
real extension of Banach contraction principle in orthogonal metric space has been
considered in [13] (see also [9, 10, 19]). In this paper, we are interested in obtaining
new and simple proofs for Theorems 1.1 and 1.2 which guarantee existence and
uniqueness of the solution for any equation of the form (1.1).
This paper is organized as follows: In section 2, we state some definitions and
theorems which are needed to prove the main results. Also, we recall under what
conditions will any mapping on an orthogonal metric space have a unique fixed
point. In section 3, we consider new concepts of tangent space to an orthogonal
metric space and derivative of mapping at a point in an orthogonal metric space.
This section provides a priori bound for the solution. In this section, we make use
of the standard tools of the fixed point theory in orthogonal metric spaces to obtain
new and simple proofs for existence and uniqueness theorems of solutions for the
differential equation (1.1).

2. Preliminary definitions

First, we begin with the following definition which can be considered as the main
definition of [13].

Definition 2.1. [13] Let M 6= φ and ⊥ ⊆ M × M be a binary relation. If ⊥
satisfies the following condition

∃x0; ((∀y; y⊥x0) or (∀y;x0⊥y)),

it is called an orthogonal set (briefly O-set). We denote this O-set by (M,⊥) (see
also [9, 10, 19]).

We now give some examples of orthogonal sets.

Example 2.1. Let M = [2,∞), we define x⊥y if x ≤ y, then by putting x0 = 2, (M,⊥)
is an O-set.

In the following example, we can see that x0 is not necessarily unique.

Example 2.2. Suppose M(n) is the set of all n×n matrices and Q is a positive definite
matrix. Define the relation ⊥ on M(n) by

A⊥B ⇐⇒ ∃X ∈ M(n) ; AX = B.

It is easy to see that I⊥B, B⊥0 and Q
1

2⊥B for all B ∈ M(n).
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Now, we turn our consideration to the definition of orthogonal sequence.

Definition 2.2. [13] Let (M,⊥) be an O-set. A sequence {xn}n∈N is called or-
thogonal sequence (briefly O-sequence) if

(∀n;xn⊥xn+1) or (∀n;xn+1⊥xn).

(see also [9, 10, 19]).

Let (M,ρ,⊥) be an orthogonal metric space ((M,⊥) is an O-set and (M,ρ) is a
metric space). We consider the notion of O-complete orthogonal metric space.

Definition 2.3. [13] M is orthogonally complete (briefly O-complete) if every
Cauchy O-sequence is convergent (see also [9, 10, 19]).

Definition 2.4. Let (M,ρ,⊥) be an orthogonal metric space and 0 < λ < 1 (see
[13]).

1. A mapping f : M → M is said to be orthogonal contraction (⊥−contraction)
with Lipchitz constant λ if

ρ(fx, fy) ≤ λρ(x, y) ifx⊥y.(2.1)

2. A mapping f : M → M is called orthogonality-preserving (⊥−preserving) if
f(x)⊥f(y) if x⊥y.

3. A mapping f : M → M is continuous orthogonal (⊥−continuous) in a ∈ M

if for each O-sequence {an}n∈N in M if an → a, then f(an) → f(a). Also f

is ⊥−continuous on M if f is ⊥−continuous in each a ∈ M .

(see also [9, 10, 19]).

Example 2.3. Let M = [0, 1) and let the metric on M be the Euclidian metric. Define
x⊥y if xy ∈ {x, y}. M is not complete but it is O-complete. Let x⊥y and xy = x. If {xk}
is an arbitrary Cauchy O-sequence in M , then there exists a subsequence {xkn

} of {xk}
for which xkn

= 0 for all n. It follows that {xkn
} converges to a x ∈ M . On the other

hand, we know that every Cauchy sequence with a convergent subsequence is convergent.
It follows that {xk} is convergent.
Let f : M → M be a mapping defined by f(x) = x

2
if x ∈ Q ∩ M and f(x) = 0 if

x ∈ Qc ∩M .

We have the following cases:

case 1) x = 0 and y ∈ Q ∩M . Then f(x) = 0 and f(y) = y

2
.

case 2) x = 0 and y ∈ Qc ∩M . Then f(x) = f(y) = 0.

This implies that f(x)f(y) = f(x). Hence f is ⊥-preserving.
Also, this implies that |f(x) − f(y)| ≤ 1

2
|x − y|. Hence f is ⊥−contraction. But f is not

a contraction. To see this, for each λ < 1, |f( 1
2
)− f(

√
3

4
)| > λ| 1

2
−

√
3

4
|.
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If {xn} is an arbitrary O-sequence in M such that {xn} converges to x ∈ M . Since f is
⊥−contraction, for each n ∈ N we have

|f(xn)− f(x)| ≤
1

2
|xn − x|.

As n goes to infinity, f is ⊥-continuous. But it can be easily seen that f is not continuous.

We can now state the main theoretical result of [13]. Sufficient conditions under
which any mapping on an orthogonal metric space will have a unique fixed point
are given in the theorem.

Theorem 2.1. Let (M,ρ,⊥) be an O-complete metric space (not necessarily com-
plete metric space) and 0 < λ < 1. Let f : M → M be ⊥−continuous, ⊥−contraction
(with Lipschitz constant λ) and ⊥−preserving, then f has a unique fixed point x∗

in M . Also, f is a Picard operator, that is, lim fn(x) = x∗ for all x ∈ M .

(see also [9, 10, 19]).

Theorem 2.2. [8](chap.4,31.1) Given a point (t0, x0) ∈ R×Rn consider a differ-
ential equation (1.1). Let P be a Picard mapping that takes a function φ : t → x to
the function Pφ : t → x defined by

(Pφ)(t) = x0 +

∫ t

t0

v(τ, φ(τ))dτ τ ∈ R(2.2)

Note that (Pφ)(t0) = x0 for any φ. The mapping φ : I → Rn is a solution to
ẋ = v(t, x) with the initial condition φ(t0) = x0 if and only if φ = Pφ.

Simply, the theorem states that the solution to a first-order differential equation
is the ”fixed point” of a Picard mapping. Theorem 2.1 gives us some conditions un-
der which a mapping has one and only one fixed point. Thus, if we could construct
a mapping that includes both types of functions in just the right way, we could
take advantage of the existence and uniqueness of the fixed point of this mapping
to prove the existence and uniqueness of the solution to our differential equation.

3. Main results

In this section, we are ready to state new and simple proofs of Theorems 1.1 and
1.2. To this end, we need some definitions.
Let (M,ρ,⊥) be an orthogonal metric space ((M,⊥) is an O-set and (M,ρ) is a
metric space).

Definition 3.1. Let φ be a mapping of an open interval I in R to (M,ρ,⊥). The
derivative of φ is defined by

φ̇(t) := lim
s→0

ρ(φ(t + s), φ(t))

s
,

where t ∈ R is a limit point of I and φ(t)⊥φ(t+ s) if the limit exists.
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We now consider the tangent space to (M,ρ,⊥) at a point.

Definition 3.2. Let φ be a differentiable mapping of an open interval I in R to
(M,ρ,⊥). φ is said to leave the point x for some x ∈ M if φ(0) = x. The derivative
of φ at the point t = 0 is a vector v as:

v = φ̇(0) =
dφ

dt
|t=0.(3.1)

The tangent space to (M,⊥) at a point x is the set of all vectors v of all such curves
leaving x and denoted TxM .

We turn our attention to the concept of the derivative of a mapping f at a point.

Definition 3.3. Let f : U → V be a differentiable mapping from the subset U of
the orthogonal metric space (M1, ρ1,⊥1) into the subset V of the orthogonal metric
space (M2, ρ2,⊥2) and let φ : I → U be a differentiable mapping which leaves the
point x ∈ U at t = 0. The derivative of the mapping f at the point x is the mapping

f∗x : TxU → Tf(x)V,

which carries the vector v leaving the point x of the curve φ into the vector f∗x(v)
leaving the point f(x) of the curve f(φ) i.e.

f∗x(v) = f∗x(
dφ

dt
|t=0) =

df(φ)

dt
|t=0.(3.2)

Then we have the following result.

Proposition 3.1. Let f : U → Rn be a smooth mapping (f ∈ Cr, r ≥ 1) from
U ⊆ (Rm,⊥1) to (Rn,⊥2) and x ∈ U . Then f satisfies the Lipchitz condition
on each convex compact subset V of U with the Lipchitz constant L equal to the
supremum of the derivative of f on V :

L = sup
x∈V

|f∗x|.(3.3)

Proof. Take any two points x, y ∈ V , x⊥1y and join them together with a line
segment

z(t) = x+ t(y − x) ; 0 ≤ t ≤ 1.

Since V is convex, z(t) ∈ V ; ∀t ∈ [0, 1]. Now, we have

∫ 1

0

d

dt
(f(z(t))dt = f(z(1))− f(z(0)) = f(y)− f(x),

and
∫ 1

0

d

dt
(f(z(t))dt =

∫ 1

0

df

dz
|z(t)

dz

dt
(t)dt =

∫ 1

0

f∗z(t)(y − x)dt.
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Examining the absolute magnitude of this integral, we find

∣

∣

∫ 1

0

f∗z(t)(y − x)dt
∣

∣ ≤

∫ 1

0

|f∗z(t)(y − x)|dt

≤

∫ 1

0

|f∗z(t)||y − x|dt

≤ (

∫ 1

0

|f∗z(t)|dt) |y − x|

≤ (

∫ 1

0

Ldt) |y − x|

= |L.1− L.0| |y − x| = L|y − x|.

We have thus determined that for any two points x, y ∈ V ,

|f(y)− f(x)| =
∣

∣

∫ 1

0

f∗z(τ)(y − x)dτ
∣

∣ ≤ L|y − x|,

and hence f satisfies the Lipchitz condition on V with the constant L.

Remark 3.1. In the previous proposition, since f ∈ C1 the mapping f∗ = df

dx
which

takes a given x and returns the mapping f∗x is continuous. Since V is compact |f∗x|
actually attains its maximum value L.

Now, we are interested in obtaining a mapping that satisfies the properties of
Theorem 2.1 and the fixed point of this mapping is the solution to (1.1). In this
way, we prove the existence and uniqueness (Theorems 1.1 and 1.2) of the solution
to (1.1).
Because v is differentiable at the point (t0, x0) ∈ U , there exists some neighborhood
C around (t0, x0) such that C ⊂ U . Then there exist small enough numbers a and
b such that

C = {(t, x); |t− t0| ≤ a, |x− x0| ≤ b} ⊂ U.(3.4)

Clearly, C is compact and |v| attains its supremum over C. Similarly, |v∗| = | dv
dx
|

attains its supremum over C. Let

c = sup
C

|v|, L = sup
C

|v∗|.(3.5)

We are interested in obtaining a function based on v, satisfying Lipchitz condition
on each convex compact subset of U , including C with the Lipchitz constant L. Let
us separate C into some subregions. There exists

á = min{a,
b

2c
,
1

2L
},(3.6)

such that
K0 = {(t, x); |t− t0| ≤ á, |x− x0| ≤ c|t− t0|},
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lies in C.
For b́ = b

2 and x́ with |x́− x0| ≤ b́ another point (t0, x́) can be considered such that

Kx́ = {(t, x); |t− t0| ≤ á, |x− x́| ≤ c|t− t0|}.(3.7)

The following argument shows that á exists and is equal to min{a, b
2c ,

1
2L}. Since

|x − x0| ≤ c|t − t0| ≤ cá then á = min{a, b
c
} exists. On the other hand, by using

triangle inequality, we find

|x− x0| ≤ |x− x́|+ |x́− x0| ≤ cá+ b́ = b.

So, let á = min{a, b
2c}. á will need one more bound later on, namely, the condition

á < 1
L

(we are ignoring the trivial case L = 0). So, let us go ahead and put

á = min{a, b
2c ,

1
2L}.

We are trying to obtain the solution φx́ : R → Rn of (1.1) with the initial condition
φx́(t0) = x́ expressed in the form φx́(t) = x́ + h(t, x́), though we can now remove
the prime on x:

φx(t) = x+ h(t, x).(3.8)

Then the mapping

φ : {(t, x); |t− t0| ≤ á, |x− x0| ≤ b́} → Rn,(3.9)

defined by

φ(t, x) = φx(t),(3.10)

is the ”general” solution of (1.1).
One may easily verify the following lemma:

Lemma 3.1. For any solution φx, the point (t, φx(t)) lies within Kx for all t such
that |t− t0| ≤ á.

Recall that we are interested in obtaining a mapping that satisfies the properties
of Theorem 2.1 and the fixed point of this mapping is the solution to (1.1). Let us
first define the orthogonal metric space we will use. This space should include all the
mappings which could possibly be solutions. Given some central initial condition
(t0, x0), the mapping φ should take the point (t, x) from the region |t − t0| ≤

á, |x− x0| ≤ b́ to Rn.

Since φx must be a differentiable function in order to be a solution, it must
be continuous on the set over which it is a solution. The space of all continuous
functions h(t, x) which added to x could give us a solution φx with the initial
condition φx(t0) = x will be considered. Denote this space by M . Since φ takes the

point (t, x) from the region |t− t0| ≤ á, |x− x0| ≤ b́ to Rn, the map h must be over
this region.

h : {(t, x); |t− t0| ≤ á, |x− x0| ≤ b́} → Rn.(3.11)
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Note that h(t0, x) = 0 for any h ∈ M , x ∈ C, where 0 is the zero vector in Rn.
In the space M , we can define a relation ⊥ by

h1⊥h2 ⇐⇒ ‖h1‖‖h2‖ ≤ c|t− t0|(‖h1‖ ∨ ‖h2‖),(3.12)

which is an orthogonality relation on M . It shows that the spaceM is an orthogonal
space.
Let ρ : M ×M → R+ be given by

ρ(h1, h2) = ‖h1 − h2‖ = sup |h1(t, x) − h2(t, x)|,(3.13)

for all h1, h2 ∈ M . Then ρ is a metric on M and the orthogonal metric space M will
be denoted by (M,ρ,⊥). Since every h is a continuous function over a closed and
bounded subset of the Euclidean space, this supremum is actually attained. Hence,
the orthogonal metric space (M,ρ,⊥) is complete.
In the orthogonal metric space (M,ρ,⊥), a mapping A : (M,ρ,⊥) → (M,ρ,⊥) can
be defined by

(Ah)(t, x) =

∫ t

t0

v(τ, x + h(τ, x))dτ,(3.14)

for |t− t0| ≤ á, |x− x0| ≤ b́. Clearly, (τ, x + h(τ, x)) is in the domain of v for any
(τ, x) in the appropriate region but we should be careful to check that Ah is in fact
an element of (M,ρ,⊥).

Lemma 3.2. For all h ∈ M , Ah ∈ M .

Proof. Take any h ∈ M . By construction Ah is a function that satisfies (3.11). The
function h is continuous for any (τ, x) in its domain, so the point (τ, x + h(τ, x))
varies continuously with (τ, x) and since v is also continuous on its domain v varies
continuously with (τ, x) as well. Taking the integral will then result in a continuous
function of the boundary terms taken at (t, x) and (t0, x). Thus, Ah is a continuous
function of (t, x) meaning Ah ∈ M .

We now discuss some properties of mapping A.

1. A is ⊥-preserving mapping.

2. A is ⊥-contraction mapping.

3. A is ⊥-continuous mapping.

Proof. 1. We recall that A is ⊥-preserving, if for h1, h2 ∈ M , h1⊥h2, we have
Ah1⊥Ah2.

|(Ah1)(t, x)| =
∣

∣

∫ t

t0

v(τ, x + h1(τ, x))dτ
∣

∣
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≤

∫ t

t0

|v(τ, x+ h1(τ, x))|dτ

≤

∫ t

t0

cdτ

= |c.t− c.t0| = c|t− t0|.

So,

‖Ah1‖‖Ah2‖ ≤ c|t− t0|‖Ah2‖.

Meaning that Ah1⊥Ah2.

2. We need to prove that for any h1, h2 ∈ M , h1⊥h2, ‖Ah1−Ah2‖ ≤ λ‖h1−h2‖
for some constant 0 < λ < 1. Let us then construct the mapping Ah1 −Ah2.

|(Ah1)(t, x)| =
∣

∣

∫ t

t0

v(τ, x + h1(τ, x))dτ
∣

∣ (abbreviated

∫ t

t0

v1dτ),

(Ah1 −Ah2)(t, x) =

∫ t

t0

v1dτ −

∫ t

t0

v2dτ =

∫ t

t0

(v1 − v2)dτ.

For a fixed (τ, x), v will act as a mapping that takes hi(τ, x) to v(τ, x+hi(τ, x)).
As v was assumed to be continuously differentiable over its domain, we invoke
Proposition 3.1 to find that v satisfies the Lipchitz condition on each convex
compact subset of its domain and therefore on each subset C of U . Proposition
3.1 also gives us the Lipchitz constant L(τ) = sup|x−x0|≤b |v∗| where we have
emphasized the fact that this L depends on the choice of the constant τ . Thus,
for all points (τ, x),

|v1(τ, x) − v2(τ, x)| ≤ L(τ)‖h1 − h2‖.

As seen earlier, the magnitude of any mapping in M attains its supremum at
some point in its domain, so we have

‖Ah1 −Ah2‖ = sup |Ah1(t, x) −Ah2(t, x)| = |Ah1(tm, xm)−Ah2(tm, xm)|,

for some (tm, xm) ∈ C. Therefore,

‖Ah1 −Ah2‖ =
∣

∣

∫ tm

t0

(v1(τ, xm)− v2(τ, xm))dτ
∣

∣

≤

∫ tm

t0

|(v1(τ, xm)− v2(τ, xm))|dτ

≤

∫ tm

t0

L(τ)‖h1 − h2‖dτ

=

∫ tm

t0

L(τ)dτ‖h1 − h2‖.
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In (3.5), L (without the parenthetical τ) was designated the supremum of |v∗|
over all of C i.e. over both the t and x domains meaning that

‖Ah1 −Ah2‖ ≤

∫ tm

t0

L(τ)dτ‖h1 − h2‖

≤

∫ tm

t0

Ldτ‖h1 − h2‖

= L|tm − t0|‖h1 − h2‖

≤ Lá‖h1 − h2‖.

Lastly, we take advantage of the extra bound we placed on á to find that
Lá ≤ L 1

2L = 1
2 < 1. Thus, for all h1, h2 ∈ M , h1⊥h2,

‖Ah1 −Ah2‖ ≤ Lá‖h1 − h2‖ , 0 < Lá < 1,

making A a ⊥-contraction mapping.

3. Suppose {hn} is an O-sequence in M such that {hn} converging to h ∈ M .
Because A is ⊥-preserving, {Ahn} is an O-sequence. For each n ∈ N, since A

is ⊥-contraction, we have

‖Ahn(t, x)−Ah(t, x)‖ ≤ Lá‖hn − h‖.

As n goes to infinity, it follows that A is ⊥-continuous.

The mapping A defined above is ⊥-preserving, ⊥-contraction and ⊥-continuous
mapping over an orthogonal metric space (M,ρ,⊥). The mapping A satisfies the
hypotheses of Theorem 2.1. Thus, the existence and uniqueness of its fixed point
h0 ∈ M is guaranteed by Theorem 2.1. The purpose of the present paper is to
incorporate this in a Picard mapping of potential solutions to (1.1). Using the
existence and uniqueness of h0 to confirm the existence and uniqueness of the fixed
point of the Picard mapping, which will in turn prove our main theorems.
First, recall that we are looking for solutions expressed in the form φx(t) = x +
h(t, x). If h is a fixed point of A, then φx(t) = x +Ah(t, x) and when the solution
φx is the fixed point, our Picard mapping φx(t) will equal (Pφx)(t). Hence,

(Pφx)(t) = x+ (Ah)(t, x)

= x+

∫ t

t0

v(τ, x+ h(τ, x))dτ

= x+

∫ t

t0

v(τ, φx(τ))dτ

By Theorem (2.2), φx is a solution to ẋ = v(t, x) with φx(t0) = x if and only if
φx = Pφx. We can now conclude this section with a new proof of the forthcoming
results concerning the existence and uniqueness of the solution to (1.1) satisfying
any initial condition in the domain of v.
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Theorem 3.1. (The Existence Theorem) Suppose the right-hand side v of the dif-
ferential equation ẋ(t) = v(t, x) is continuously differentiable in a neighborhood of
the point (t0, x0) ∈ R × Rn. Then there exists a neighborhood of the point t0 such
that the solution to the differential equation is defined in this neighborhood with the
initial condition φ(t0) = x0 where x is any point sufficiently close to x0. Moreover,
this solution depends continuously on the initial point x.

Proof. Given v(t, x) as well as (t0, x0), demarcate a neighborhood C around the

central point and use it to define the constants á, b́; also, construct the orthogonal
metric space (M,⊥, ρ), ⊥-preserving, ⊥- continuous, ⊥-contraction mapping A and
a Picard mapping P as determined by v,C and the central point (t0, x0). Since
M is an orthogonal complete metric space, the fixed point h0 of A must exist by
Theorem 2.1. The function g : R× Rn → Rn given by

g(t, x) = x+ h0(t, x),

is therefore always well-defined in a neighborhood of (t0, x0). Applying the Picard
mapping

(Pg)(t, x) = x+ (Ah0)(t, x) = x+ h0(t, x) = g(t, x),

which proves that, by Theorem 2.2, g is the solution to the differential equation
which satisfies the initial condition g(t0, x) = x. The function which returns the
value x is continuous on R × Rn, h0 is continuous by construction and the sum of
any two continuous function is continuous over the same domain. So g, the function
of t and x, is continuous over its domain. Thus, the solution depends continuously
on the initial point x.

Uniqueness immediately follows:

Theorem 3.2. (The Uniqueness Theorem) Given the above conditions, there is
only one possible solution for any given initial point, in the sense that all possible
solutions are equal in the neighborhood under consideration.

Proof. Construct a neighborhood and mapping as above but now set b́ = 0, which
restricts the initial x under our consideration to the specific point x0. Find the
solution g(t, x0) = x0 + h0(t, x0). The uniqueness of the fixed point h0 guarantees
that this is the only solution with the initial condition x0 that can be expressed in
the form x+ h(t, x).
Now, consider any solution φx0

with φx0
(t0) = x0. By Lemma 3.1, φx0

(t) ∈ K0 for
all t in our neighborhood. Label φx0

(t) − x0 by hφ(t, x0). This new function also
clearly satisfies (3.11) and, furthermore, since any solution φ must be continuous,
hφ is also continuous. So, hφ ∈ M and φx0

(t) = x0 + hφ(t, x0). The uniqueness of
h0 shows that all possible solutions to the differential equation with a given initial
condition are expressed in the form φx0

= x0 + h(t, x0) for h ∈ M . As there is only
one such function possible, the solution g is thus unique.



134 M. Eshaghi Gordji and H. Habibi

REFERENCES

1. R. P. Agarwal, M. Benchohra and S. Hamani: Boundary value problems for

fractional differential equations. Georgian Math. J. 16 3 (2009) 401–411.

2. R. P. Agarwal, D. O’Regan and S. Stanek: Positive solutions for Dirichlet

problems of singular nonlinear fractional differential equations. J. Math. Anal.
Appl. 371 (2010) 57–68.

3. R. P. Agarwal, M. Benchohra and S. Hamani: A survey on existence results

for boundary value problems of nonlinear fractional differential equations and in-

clusions. Acta Appl. Math. 109 (2010) 973–1033.

4. R. P. Agarwal, D. Franco and D. O’Regan: Singular boundary value prob-

lems for first and second order impulsive differential equations. Aequat. Math. 69
(2005) 83–96.

5. B. Ahmad and J. J. Nieto: Boundary Value Problems for a Class of Sequential

Integro differential Equations of Fractional Order. J. Func. Space. Appl. (2013)
Article ID 149659.

6. A. Amini-Harandi and H. Emami: A fixed point theorem for contraction type

maps in partially ordered metric spaces and application to ordinary differential

equations. Nonlinear Anal. 72 (2010) 2238–2242.

7. V. I. Arnold: Ordinary Differential Equations. Translated and Edited by
Richard A. Silverman, The M. I. T. Press, 1998.

8. V. I. Arnold: Ordinary Differential Equations, Translated from the Russian by
Roger Cooke, Springer-verlog, 1992.

9. H. Baghani and M. Ramezani: Contractive gauge functions in strongly orthog-

onal metric spaces. Int. J. Nonlinear Anal. Appl. Article in press ISSN: 2008-6822
(electronic).

10. H. Baghani, M. Eshaghi Gordji and M. Ramezani: Orthogonal sets: their

relation to the axiom of choice and a generalized fixed point theorem. J. Fixed
Point Theory Appl. 18 3 (2016) 465–477.

11. S. Banach: Sur les operations dans les ensembles abstraits et leur application

aux equations integrales. Fund. Math. 3 (1922) 133–181.

12. M. Belmekki, J. J. Nieto and R. Rodriguez-Lopez: Existence of solution to

a periodic boundary value problem for a nonlinear impulsive fractional differential

equation. E. J. Qual. Theory Diff. Equ. 16 (2014) 1–27.

13. M. Eshaghi Gordji, M. Ramezani, M. De La Sen and Y. J. Cho: On or-

thogonal sets and Banach fixed point theorem. Fixed Point Theory. 18 2 (2017)
569–578.

14. A. A. Ivanov: Fixed point theory. J. Sovi. Math. 12 (1979) 1–64.

15. E. Karapinar and R. P. Agarwal: A note on ’Coupled fixed point theorems for

α − ψ-contractive-type mappings in partially ordered metric spaces. Fixed Point
Theory Appl. 16 (2013) 2013:216.

16. J. J. Nieto, R. L. Pouso and R. Rodrguez-Lopez: Fixed point theorems in

ordered abstract sets. Proc. Amer. Math. Soc. 135 (2007) 2505–2517.

17. J. J. Nieto, R. L. Pouso and R. Rodrguez-Lopez: Contractive mapping the-

orems in partially ordere sets and applications to ordinary differential equations.
Order 22 (2005) 223–239.



Existence and Uniqueness of Solutions to a First-order Differential Equation 135

18. J. J. Nieto, R. L. Pouso and R. Rodrguez-Lopez: Existence and uniqueness

of fixed point in partially ordered sets and applications to ordinary differential

equations. Acta Math. Sin. 23 (2007) 2205–2212.

19. M. Ramezani: Orthogonal metric space and convex contractions. Int. J. Nonlinear
Anal. Appl. 6 2 (2015) 127–132.

Madjid Eshaghi Gordji

Department of Mathematics, Semnan University

P. O. Box 35195-363

Semnan, Iran

meshaghi@semnan.ac.ir

Hasti Habibi

Department of Mathematics, Semnan University

Semnan, Iran

hastihabibi1363@gmail.com


