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INSERTION OF A CONTRA-CONTINUOUS FUNCTION
BETWEEN TWO COMPARABLE CONTRA-α−CONTINUOUS

(CONTRA-C−CONTINUOUS) FUNCTIONS ∗

Majid Mirmiran and Binesh Naderi

Abstract. Necessary and sufficient conditions in terms of lower cut sets are given
for the insertion of a contra-continuous function between two comparable real-valued
functions on topological spaces on which the kernel of sets is open.
Keywords: Insertion, Strong binary relation, C−open set, Semi-preopen set, α−open
set, Contra-continuous function, Lower cut set.

1. Introduction

The concept of a C−open set in a topological space was introduced by E. Hatir,
T. Noiri and S. Yksel in [12]. The authors define a set S to be a C−open set if
S = U ∩A, where U is open and A is semi-preclosed. A set S is a C−closed set if its
complement (denoted by Sc) is a C−open set or equivalently if S = U ∪ A, where
U is closed and A is semi-preopen. The authors show that a subset of a topological
space is open if and only if it is an α−open set and a C−open set or equivalently
a subset of a topological space is closed if and only if it is an α−closed set and a
C−closed set. This enables them to provide the following decomposition of continu-
ity: a function is continuous if and only if it is α−continuous and C−continuous or
equivalently a function is contra-continuous if and only if it is contra-α−continuous
and contra-C−continuous.
Recall that a subset A of a topological space (X, τ) is called α−open if A is the
difference of an open and a nowhere dense subset of X . A set A is called α−closed

if its complement is α−open or equivalently if A is the union of a closed and a
nowhere dense set. Sets which are dense in some regular closed subspace are called
semi-preopen or β−open. A set is semi-preclosed or β−closed if its complement is
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semi-preopen or β−open.
In [7] it was shown that a set A is β−open if and only if A ⊆ Cl(Int(Cl(A))). A
generalized class of closed sets was considered by Maki in [19]. He investigated the
sets that can be represented as union of closed sets and called them V−sets. Com-
plements of V−sets, i.e., sets that are intersection of open sets are called Λ−sets
[19].
Recall that a real-valued function f defined on a topological space X is called
A−continuous [23] if the preimage of every open subset of R belongs to A, where
A is a collection of subsets of X . Most of the definitions of function used through-
out this paper are consequences of the definition of A−continuity. However, for
unknown concepts the reader may refer to [4, 11]. In the recent literature many
topologists have focused their research in the direction of investigating different
types of generalized continuity.
J. Dontchev in [5] introduced a new class of mappings called contra-continuity.S.
Jafari and T. Noiri in [13, 14] exhibited and studied among others a new weaker
form of this class of mappings called contra-α−continuous. A good number of re-
searchers have also initiated different types of contra-continuous like mappings in
the papers [1, 3, 8, 9, 10, 22].
Hence, a real-valued function f defined on a topological space X is called contra-

continuous (resp. contra-C−continuous , contra-α−continuous) if the preimage of
every open subset of R is closed (resp. C−closed , α−closed) in X [5].
Results of Katětov [15, 16] concerning binary relations and the concept of an in-
definite lower cut set for a real-valued function, which is due to Brooks [2], are
used in order to give a necessary and sufficient conditions for the insertion of a
contra-continuous function between two comparable real-valued functions on such
topological spaces that Λ−sets or kernel of sets are open [19].
If g and f are real-valued functions defined on a space X , we write g ≤ f (resp.
g < f) in case g(x) ≤ f(x) (resp. g(x) < f(x)) for all x in X .
The following definitions are modifications of conditions considered in [17].
A property P , defined relative to a real-valued function on a topological space, is a
cc−property provided that any constant function has property P and provided that
the sum of a function with property P and any contra-continuous function also has
property P . If P1 and P2 are cc−properties, the following terminology is used:(i)
A space X has the weak cc−insertion property for (P1, P2) if and only if for any
functions g and f on X such that g ≤ f, g has property P1 and f has property
P2, then there exists a contra-continuous function h such that g ≤ h ≤ f .(ii) A
space X has the cc−insertion property for (P1, P2) if and only if for any functions g
and f on X such that g < f, g has property P1 and f has property P2, then there
exists a contra-continuous function h such that g < h < f .(iii) A space X has the
strong cc−insertion property for (P1, P2) if and only if for any functions g and f on
X such that g ≤ f, g has property P1 and f has property P2, then there exists a
contra-continuous function h such that g ≤ h ≤ f and if g(x) < f(x) for any x in
X, then g(x) < h(x) < f(x).(iv) A space X has the weakly cc−insertion property

for (P1, P2) if and only if for any functions g and f on X such that g < f, g has
property P1 , f has property P2 and f − g has property P2, then there exists a
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contra-continuous function h such that g < h < f .
In this paper, for a topological space whose Λ−sets or kernel of sets are open, is
given a sufficient condition for the weak cc−insertion property. Also for a space with
the weak cc−insertion property, we give a necessary and sufficient condition for the
space to have the cc−insertion property. Several insertion theorems are obtained
as corollaries of these results.

2. The Main Result

Before giving a sufficient condition for the insertability of a contra-continuous
function, the necessary definitions and terminology are stated.
Definition 2.1. Let A be a subset of a topological space (X, τ). We define the
subsets AΛ and AV as follows:
AΛ = ∩{O : O ⊇ A,O ∈ (X, τ)} and AV = ∪{F : F ⊆ A,F c ∈ (X, τ)}.
In [6, 18, 21], AΛ is called the kernel of A.
The family of all α−open, α−closed, C−open and C−closed will be denoted by
αO(X, τ), αC(X, τ), CO(X, τ) and CC(X, τ), respectively.
We define the subsets α(AΛ), α(AV ), C(AΛ) and C(AV ) as follows:
α(AΛ) = ∩{O : O ⊇ A,O ∈ αO(X, τ)},
α(AV ) = ∪{F : F ⊆ A,F ∈ αC(X, τ)},
C(AΛ) = ∩{O : O ⊇ A,O ∈ CO(X, τ)} and
C(AV ) = ∪{F : F ⊆ A,F ∈ CC(X, τ)}.
α(AΛ) (resp. C(AΛ)) is called the α− kernel (resp. C − kernel) of A.
The following first two definitions are modifications of conditions considered in [15,
16].
Definition 2.2. If ρ is a binary relation in a set S then ρ̄ is defined as follows:
x ρ̄ y if and only if y ρ v implies x ρ v and u ρ x implies u ρ y for any u and v in S.
Definition 2.3. A binary relation ρ in the power set P (X) of a topological space
X is called a strong binary relation in P (X) in case ρ satisfies each of the following
conditions:
1) If Ai ρ Bj for any i ∈ {1, . . . ,m} and for any j ∈ {1, . . . , n}, then there exists
a set C in P (X) such that Ai ρ C and C ρ Bj for any i ∈ {1, . . . ,m} and any
j ∈ {1, . . . , n}.
2) If A ⊆ B, then A ρ̄ B.
3) If A ρ B, then AΛ ⊆ B and A ⊆ BV .
The concept of a lower indefinite cut set for a real-valued function was defined by
Brooks [2] as follows:
Definition 2.4. If f is a real-valued function defined on a space X and if {x ∈ X :
f(x) < ℓ} ⊆ A(f, ℓ) ⊆ {x ∈ X : f(x) ≤ ℓ} for a real number ℓ, then A(f, ℓ) is called
a lower indefinite cut set in the domain of f at the level ℓ.
We now give the following main result:
Theorem 2.1. Let g and f be real-valued functions on the topological space X , in
which kernel sets are open, with g ≤ f . If there exists a strong binary relation ρ on
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the power set of X and if there exist lower indefinite cut sets A(f, t) and A(g, t) in
the domain of f and g at the level t for each rational number t such that if t1 < t2
then A(f, t1) ρ A(g, t2), then there exists a contra-continuous function h defined on
X such that g ≤ h ≤ f .
Proof. Let g and f be real-valued functions defined on the X such that g ≤ f . By
hypothesis there exists a strong binary relation ρ on the power set of X and there
exist lower indefinite cut sets A(f, t) and A(g, t) in the domain of f and g at the
level t for each rational number t such that if t1 < t2 then A(f, t1) ρ A(g, t2).
Define functions F and G mapping the rational numbers Q into the power set of X
by F (t) = A(f, t) and G(t) = A(g, t). If t1 and t2 are any elements of Q with t1 < t2,
then F (t1) ρ̄ F (t2), G(t1) ρ̄ G(t2), and F (t1) ρ G(t2). By Lemmas 1 and 2 of [16] it
follows that there exists a function H mapping Q into the power set of X such that
if t1 and t2 are any rational numbers with t1 < t2, then F (t1) ρ H(t2), H(t1) ρ H(t2)
and H(t1) ρ G(t2).
For any x in X , let h(x) = inf{t ∈ Q : x ∈ H(t)}.
We first verify that g ≤ h ≤ f : If x is in H(t) then x is in G(t′) for any t′ > t;
since x is in G(t′) = A(g, t′) implies that g(x) ≤ t′, it follows that g(x) ≤ t. Hence
g ≤ h. If x is not in H(t), then x is not in F (t′) for any t′ < t; since x is not in
F (t′) = A(f, t′) implies that f(x) > t′, it follows that f(x) ≥ t. Hence h ≤ f .
Also, for any rational numbers t1 and t2 with t1 < t2, we have h−1(t1, t2) =
H(t2)

V \ H(t1)
Λ. Hence h−1(t1, t2) is closed in X , i.e., h is a contra-continuous

function on X . �
The above proof used the technique of theorem 1 in [15].
Theorem 2.2. Let P1 and P2 be cc−property and X be a space that satisfies
the weak cc−insertion property for (P1, P2). Also assume that g and f are func-
tions on X such that g < f, g has property P1 and f has property P2.The space
X has the cc−insertion property for (P1, P2) if and only if there exist lower cut
sets A(f − g, 3−n+1) and there exists a decreasing sequence {Dn} of subsets of X
with empty intersection and such that for each n,X \Dn and A(f − g, 3−n+1) are
completely separated by contra-continuous functions.
Proof. Theorem 2.1 of [20].�

3. Applications

The abbreviations cαc and cCc are used for contra-α−continuous and contra-
C−continuous, respectively.
Before stating the consequences of theorems 2.1, 2.2, we suppose that X is a topo-
logical space whose kernel sets are open.
Corollary 3.1. If for each pair of disjoint α−open (resp. C−open) sets G1, G2 of X
, there exist closed sets F1 and F2 of X such that G1 ⊆ F1, G2 ⊆ F2 and F1∩F2 = ∅

then X has the weak cc−insertion property for (cαc, cαc) (resp. (cCc, cCc)).
Proof. Let g and f be real-valued functions defined on X , such that f and g
are cαc (resp. cCc), and g ≤ f .If a binary relation ρ is defined by A ρ B in case
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α(AΛ) ⊆ α(BV ) (resp. C(AΛ) ⊆ C(BV )), then by hypothesis ρ is a strong binary
relation in the power set of X . If t1 and t2 are any elements of Q with t1 < t2, then

A(f, t1) ⊆ {x ∈ X : f(x) ≤ t1} ⊆ {x ∈ X : g(x) < t2} ⊆ A(g, t2);

since {x ∈ X : f(x) ≤ t1} is an α−open (resp. C−open) set and since {x ∈ X :
g(x) < t2} is an α−closed (resp. C−closed) set, it follows that α(A(f, t1)

Λ) ⊆
α(A(g, t2)

V ) (resp. C(A(f, t1)
Λ) ⊆ C(A(g, t2)

V )). Hence t1 < t2 implies that
A(f, t1) ρ A(g, t2). The proof follows from Theorem 2.1. �
Corollary 3.2. If for each pair of disjoint α−open (resp. C−open) sets G1, G2,
there exist closed sets F1 and F2 such that G1 ⊆ F1, G2 ⊆ F2 and F1 ∩ F2 = ∅

then every contra-α−continuous (resp. contra-C−continuous) function is contra-
continuous.
Proof. Let f be a real-valued contra-α−continuous (resp. contra-C−continuous)
function defined on X . Set g = f , then by Corollary 3.1, there exists a contra-
continuous function h such that g = h = f .�
Corollary 3.3. If for each pair of disjoint α−open (resp. C−open) sets G1, G2

of X , there exist closed sets F1 and F2 of X such that G1 ⊆ F1, G2 ⊆ F2 and
F1 ∩ F2 = ∅ then X has the strong cc−insertion property for (cαc, cαc) (resp.
(cCc, cCc)).
Proof. Let g and f be real-valued functions defined on the X , such that f and
g are cαc (resp. cCc), and g ≤ f . Set h = (f + g)/2, thus g ≤ h ≤ f and if
g(x) < f(x) for any x in X, then g(x) < h(x) < f(x). Also, by Corollary 3.2, since
g and f are contra-continuous functions hence h is a contra-continuous function.�
Corollary 3.4. If for each pair of disjoint subsets G1, G2 of X , such that G1 is
α−open and G2 is C−open, there exist closed subsets F1 and F2 of X such that
G1 ⊆ F1, G2 ⊆ F2 and F1 ∩ F2 = ∅ then X have the weak cc−insertion property
for (cαc, cCc) and (cCc, cαc).
Proof. Let g and f be real-valued functions defined on X , such that g is cαc (resp.
cCc) and f is cCc (resp. cαc), with g ≤ f .If a binary relation ρ is defined by A ρ B
in case C(AΛ) ⊆ α(BV ) (resp. α(AΛ) ⊆ C(BV )), then by hypothesis ρ is a strong
binary relation in the power set of X . If t1 and t2 are any elements of Q with
t1 < t2, then

A(f, t1) ⊆ {x ∈ X : f(x) ≤ t1} ⊆ {x ∈ X : g(x) < t2} ⊆ A(g, t2);

since {x ∈ X : f(x) ≤ t1} is a C−open (resp. α−open) set and since {x ∈ X :
g(x) < t2} is an α−closed (resp. C−closed) set, it follows that C(A(f, t1)

Λ) ⊆
α(A(g, t2)

V ) (resp. α(A(f, t1)
Λ) ⊆ C(A(g, t2)

V )). Hence t1 < t2 implies that
A(f, t1) ρ A(g, t2). The proof follows from Theorem 2.1. �
Before stating consequences of Theorem 2.2, we state and prove the necessary lem-
mas.
Lemma 3.1. The following conditions on the space X are equivalent:
(i) For each pair of disjoint subsets G1, G2 of X , such that G1 is α−open and G2

is C−open, there exist closed subsets F1, F2 of X such that G1 ⊆ F1, G2 ⊆ F2 and
F1 ∩ F2 = ∅.
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(ii) If G is a C−open (resp. α−open) subset of X which is contained in an α−closed
(resp. C−closed) subset F of X , then there exists a closed subset H of X such that
G ⊆ H ⊆ HΛ ⊆ F .
Proof. (i) ⇒ (ii) Suppose that G ⊆ F , where G and F are C−open (resp. α−open)
and α−closed (resp. C−closed) subsets of X , respectively. Hence, F c is an α−open
(resp. C−open) and G ∩ F c = ∅.
By (i) there exists two disjoint closed subsets F1, F2 such that G ⊆ F1 and F c ⊆ F2.
But

F c ⊆ F2 ⇒ F c
2 ⊆ F,

and
F1 ∩ F2 = ∅ ⇒ F1 ⊆ F c

2

hence
G ⊆ F1 ⊆ F c

2 ⊆ F

and since F c
2 is an open subset containing F1, we conclude that FΛ

1 ⊆ F c
2 , i.e.,

G ⊆ F1 ⊆ FΛ
1 ⊆ F.

By setting H = F1, condition (ii) holds.
(ii) ⇒ (i) Suppose that G1, G2 are two disjoint subsets of X , such that G1 is α−open
and G2 is C−open.
This implies that G2 ⊆ Gc

1 and Gc
1 is an α−closed subset of X . Hence by (ii) there

exists a closed set H such that G2 ⊆ H ⊆ HΛ ⊆ Gc
1.

But
H ⊆ HΛ ⇒ H ∩ (HΛ)c = ∅

and
HΛ ⊆ Gc

1 ⇒ G1 ⊆ (HΛ)c.

Furthermore, (HΛ)c is a closed subset of X . Hence G2 ⊆ H,G1 ⊆ (HΛ)c and
H ∩ (HΛ)c = ∅. This means that condition (i) holds.�
Lemma 3.2. Suppose that X is a topological space. If each pair of disjoint subsets
G1, G2 of X , where G1 is α−open and G2 is C−open, can be separated by closed
subsets of X then there exists a contra-continuous function h : X → [0, 1] such that
h(G2) = {0} and h(G1) = {1}.
Proof. Suppose G1 and G2 are two disjoint subsets of X , where G1 is α−open and
G2 is C−open. Since G1 ∩ G2 = ∅, hence G2 ⊆ Gc

1. In particular, since Gc
1 is an

α−closed subset of X containing the C−open subset G2 of X ,by Lemma 3.1, there
exists a closed subset H1/2 such that

G2 ⊆ H1/2 ⊆ HΛ
1/2 ⊆ Gc

1.

Note that H1/2 is also an α−closed subset of X and contains G2, and Gc
1 is an

α−closed subset of X and contains the C−open subset HΛ
1/2 of X . Hence, by

Lemma 3.1, there exists closed subsets H1/4 and H3/4 such that

G2 ⊆ H1/4 ⊆ HΛ
1/4 ⊆ H1/2 ⊆ HΛ

1/2 ⊆ H3/4 ⊆ HΛ
3/4 ⊆ Gc

1.
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By continuing this method for every t ∈ D, where D ⊆ [0, 1] is the set of rational
numbers that their denominators are exponents of 2, we obtain closed subsets Ht

with the property that if t1, t2 ∈ D and t1 < t2, then Ht1 ⊆ Ht2 . We define the
function h on X by h(x) = inf{t : x ∈ Ht} for x 6∈ G1 and h(x) = 1 for x ∈ G1.
Note that for every x ∈ X, 0 ≤ h(x) ≤ 1, i.e., h maps X into [0,1]. Also, we note
that for any t ∈ D,G2 ⊆ Ht; hence h(G2) = {0}. Furthermore, by definition,
h(G1) = {1}. It remains only to prove that h is a contra-continuous function on
X . For every α ∈ R, we have if α ≤ 0 then {x ∈ X : h(x) < α} = ∅ and if
0 < α then {x ∈ X : h(x) < α} = ∪{Ht : t < α}, hence, they are closed sub-
sets of X . Similarly, if α < 0 then {x ∈ X : h(x) > α} = X and if 0 ≤ α then
{x ∈ X : h(x) > α} = ∪{(HΛ

t )
c : t > α} hence, every of them is a closed subset.

Consequently h is a contra-continuous function. �
Lemma 3.3. Suppose that X is a topological space such that every two disjoint
C−open and α−open subsets of X can be separated by closed subsets of X . The
following conditions are equivalent:
(i) Every countable convering of C−closed (resp. α−closed) subsets of X has a re-
finement consisting of α−closed (resp. C−closed) subsets of X such that for every
x ∈ X , there exists a closed subset of X containing x such that it intersects only
finitely many members of the refinement.
(ii) Corresponding to every decreasing sequence {Gn} of C−open (resp. α−open)
subsets of X with empty intersection there exists a decreasing sequence {Fn} of
α−closed (resp. C−closed) subsets of X such that

⋂
∞

n=1
Fn = ∅ and for every

n ∈ N, Gn ⊆ Fn.
Proof. (i) ⇒ (ii) Suppose that {Gn} is a decreasing sequence of C−open (resp.
α−open) subsets of X with empty intersection. Then {Gc

n : n ∈ N} is a countable
covering of C−closed (resp. α−closed) subsets of X . By hypothesis (i) and Lemma
3.1, this covering has a refinement {Vn : n ∈ N} such that every Vn is a closed subset
of X and V Λ

n ⊆ Gc
n. By setting Fn = (V Λ

n )c, we obtain a decreasing sequence of
closed subsets of X with the required properties.
(ii) ⇒ (i) Now if {Hn : n ∈ N} is a countable covering of C−closed (resp. α−closed)
subsets of X , we set for n ∈ N, Gn = (

⋃n
i=1

Hi)
c. Then {Gn} is a decreasing se-

quence of C−open (resp. α−open) subsets of X with empty intersection. By (ii)
there exists a decreasing sequence {Fn} consisting of α−closed (resp. C−closed)
subsets of X such that

⋂
∞

n=1
Fn = ∅ and for every n ∈ N, Gn ⊆ Fn.Now we define

the subsets Wn of X in the following manner:
W1 is a closed subset of X such that F c

1 ⊆ W1 and WΛ
1 ∩G1 = ∅.

W2 is a closed subset of X such that WΛ
1 ∪F c

2 ⊆ W2 and WΛ
2 ∩G2 = ∅, and so on.

(By Lemma 3.1, Wn exists).
Then since {F c

n : n ∈ N} is a covering for X , hence {Wn : n ∈ N} is a covering for
X consisting of closed sets. Moreover, we have
(i) WΛ

n ⊆ Wn+1

(ii) F c
n ⊆ Wn

(iii) Wn ⊆
⋃n

i=1
Hi.

Now setting S1 = W1 and for n ≥ 2, we set Sn = Wn+1 \W
Λ
n−1.

Then since WΛ
n−1 ⊆ Wn and Sn ⊇ Wn+1 \Wn, it follows that {Sn : n ∈ N} consists
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of closed sets and covers X . Furthermore, Si ∩ Sj 6= ∅ if and only if |i − j| ≤ 1.
Finally, consider the following sets:

S1 ∩H1, S1 ∩H2

S2 ∩H1, S2 ∩H2, S2 ∩H3

S3 ∩H1, S3 ∩H2, S3 ∩H3, S3 ∩H4

...

Si ∩H1, Si ∩H2, Si ∩H3, Si ∩H4, · · · , Si ∩Hi+1

...

These sets are closed sets, cover X and refine {Hn : n ∈ N}. In addition, Si ∩ Hj

can intersect at most the sets in its row, immediately above, or immediately below
row.
Hence if x ∈ X and x ∈ Sn ∩Hm, then Sn ∩Hm is a closed set containing x that
intersects at most finitely many of sets Si ∩Hj . Consequently, {Si∩Hj : i ∈ N, j =
1, . . . , i + 1} refines {Hn : n ∈ N} such that its elements are closed sets, and for
every point in X we can find a closed set containing the point that intersects only
finitely many elements of that refinement.�
Corollary 3.5. If every two disjoint C−open and α−open subsets ofX can be sepa-
rated by closed subsets of X and, in addition, every countable covering of C−closed
(resp. α−closed) subsets of X has a refinement that consists of α−closed (resp.
C−closed) subsets of X such that for every point of X we can find a closed subset
containing that point such that it intersects only a finite number of refining mem-
bers then X has the weakly cc−insertion property for (cαc, cCc) (resp. (cCc, cαc)).
Proof. Since every two disjoint C−open and α−open sets can be separated by
closed subsets of X , therefore by Corollary 3.4, X has the weak cc−insertion prop-
erty for (cαc, cCc) and (cCc, cαc). Now suppose that f and g are real-valued func-
tions on X with g < f , such that g is cαc (resp. cCc), f is cCc (resp. cαc) and
f − g is cCc (resp. cαc). For every n ∈ N, set

A(f − g, 3−n+1) = {x ∈ X : (f − g)(x) ≤ 3−n+1}.

Since f − g is cCc (resp. cαc), hence A(f − g, 3−n+1) is a C−open (resp. α−open)
subset of X . Consequently, {A(f − g, 3−n+1)} is a decreasing sequence of C−open
(resp. α−open) subsets of X and furthermore since 0 < f − g, it follows that⋂

∞

n=1
A(f − g, 3−n+1) = ∅. Now by Lemma 3.3, there exists a decreasing sequence

{Dn} of α−closed (resp. C−closed) subsets of X such that A(f − g, 3−n+1) ⊆ Dn

and
⋂

∞

n=1
Dn = ∅. But by Lemma 3.2, the pair A(f − g, 3−n+1) and X \ Dn

of C−open (resp. α−open) and α−open (resp. C−open) subsets of X can be
completely separated by contra-continuous functions. Hence by Theorem 2.2, there
exists a contra-continuous function h defined on X such that g < h < f , i.e., X has
the weakly cc−insertion property for (cαc, cCc) (resp. (cCc, cαc)).�.
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