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ENERGY DECAY OF SOLUTION TO PLATE EQUATION WITH

MEMORY IN R
n

Khaled Zennir and Mohamed Karek

Abstract. The viscoelastic equation with fading memory in bounded spaces has been
extensively studied by several authors. Here, the energy decay results are established
for weak-viscoelastic plate equation in R

n, which depends on the behavior of both α

and g. The key to the proof is to construct an appropriate Lyapunov function of the
system obtained after taking the Fourier transform.

1. Introduction

The models considered here are well known and refer to materials with memory
as they are termed in the wide array of literature concerned with their physical
and mechanical behavior, as well as many interesting analytical problems. The
characteristic physical property of such materials is that their behavior depends
on time not only through the present but also through their past history. Let us
consider the weak-viscoelastic case in the following problem:

{
u′′ +∆2u+ α(t)

∫ t

0
g(t− s)∆u(s, x)ds−∆u′ = 0, x ∈ R

n, t ∈ R
+
∗

u(0, x) = u0(x) ∈ H1(Rn), u′(0, x) = u1(x) ∈ L2(Rn), x ∈ R
n,

(1.1)

where n ≥ 2. It is well known that the presence of a viscoelastic term with and
without the weighted function α does not preclude the question of existence, but
its effects are only on the stability of the existing solution. For the existence, we
refer the reader to the studies in [4], [5], [6], [10], [13], [14], [16]. This type of
problem is usually encountered in viscoelasticity in various areas of mathematical
physics. It was first considered by Dafermos in [3], where the general decay was
discussed. The problems related to (1.1) have attracted a great deal of attention in
the last decades and numerous results have appeared on the existence and long-time
behavior of solutions. The results are by now rather developed, especially in any
space dimension when it comes to nonlinear problems.
As for literature data, in R

n we quote [1], [7], [8], [9], [11], [12], [15]. In [8], the
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authors showed that for compactly supported initial data and for an exponentially
decaying relaxation function, the decay of the energy of solution to a linear Cauchy
problem related to (1.1) is polynomial. The finite-speed propagation is used to
compensate for the lack of Poincare inequality. In [7], the author looked into a linear
Cauchy viscoelastic equation with density. His study included the exponential and
polynomial rates, where he used the spaces weighted by density to compensate for
the lack of Poincare’s inequality. The problem treated in [7] was dealt with in [9],
where they consider a Cauchy problem for a viscoelastic wave equation. Under
suitable conditions on the initial data and the relaxation function, they prove a
polynomial decay result of solutions. The conditions used on the relaxation function
g and its derivative g′ are different from the usual ones.
Ikehata in [4] considered in one-dimensional half space the mixed problem of the
equation

vtt − vxx + vt = 0(1.2)

with weighted initial data and presented new decay estimates of solutions which can
also be derived for the Cauchy problem in R

n. Let us mention a pioneer question
of the long time asymptotic of strongly damped wave equations in [6], where the
authors studied the Cauchy the problem for abstract dissipative equations in Hilbert
spaces generalizing wave equations with strong damping terms in R

n or exterior
domains

utt(t) +Au(t) +Au′(t) = 0, t ∈ (0,∞).(1.3)

u(0) = u0, ut(0) = u1,(1.4)

where A : D(A) ⊂ H → H is a nonnegative self-adjoint operator in (H, ‖.‖) with a
dense domain D(A). Using the energy method in the Fourier space and its gener-
alization based on the spectral theorem for self-adjoint operators, their main result
was a combination of solutions of diffusion and wave equations.

2. Statement

We omit the space variable x of u(x, t), u′(x, t) and for simplicity reason denote
u(x, t) = u and u′(x, t) = u′, when there is no confusion. The constants c used
throughout this paper are positive generic constants which may be different in
various settings, here u′ = du(t)/dt and u′′ = d2u(t)/dt2.
The following notation will be used throughout this paper

(g ◦Ψ) =

∫ t

0

g(t− τ) |Ψ(t)−Ψ(τ)|2 dτ, for any Ψ ∈ L∞(0, T ;L2(Rn))(2.1)

In order to investigate the decay structure based on the weak- memory and the
damping terms, we also consider the following assumptions:
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g, α : R+ −→ R
+ are non-increasing differentiable functions of class C1 satisfy-

ing:

|ξ|2 − α(t)

∫ t

0

g(t)dt ≥ k > 0, g(0) = g0 > 0(2.2)

∞ >

∞∫

0

g(t)dt, α(t) > 0,(2.3)

Here ξ is the variable associated with the Fourier transform.
In addition, there exists a non-increasing differentiable function β : R+ −→ R

+

satisfying

β(t) > 0, g′(t) + β(t)g(t) ≤ 0, ∀t ≥ 0, lim
t→∞

=
α′(t)

β(t)α(t)
= 0.(2.4)

We give some notations to be used below. Let F denote the Fourier transform in
L2(Rn) defined as follows:

F [f ](ξ) = f̂(ξ) = (2π)−n/2

∫

Rn

exp(−ix.ξ)f(x)dx.(2.5)

where i =
√
−1, x.ξ =

∑n
i=1 xiξi and denote its inverse transform by F−1. The

operator −∆ is defined by

−∆v(x) = F−1
(
|ξ|2F (v)(ξ)

)
(x), v ∈ H2(Rn), x ∈ R

n.

For 1 ≤ p ≤ ∞, we denote by Lp(Rn) the usual Lebesgue space on R
n with the

norm ‖.‖Lp . For a nonnegative integer m,Hm(Rn) denotes the Sobolev space of
L2(Rn) functions on R

n, equipped with the norm ‖.‖Hm . By direct calculations, we
have the following technical Lemma which will play an important role in the sequel.

Lemma 2.1. ([16], Lemma 2.1) For any two functions g ∈ C1(R), v ∈ W 1,2(0, T ),
it holds that

Re



α(t)

t∫

0

g(t− s)v(s)dsv′(t)



 = −1

2
α(t)g(t)|v(t)|2 + 1

2
α(t)(g′ ◦ v)(t)

− 1

2

d

dt
α(t)(g ◦ v)(t) + 1

2

d

dt
α(t)

∫ t

0

g(s)ds|v(t)|2(2.6)

+
1

2
α′(t)(g ◦ v)(t) − 1

2
α′(t)

t∫

0

g(s)ds|v|2

and

|
t∫

0

g(t− s)(v(t) − v(s))ds|2 ≤
∫ t

0

|g(s)|ds
∫ t

0

|g|(t− s)|v(t) − v(s)|2ds
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We can now state and prove the asymptotic behavior of the solution of (1.1).
Throughout this paper, let us set û(t, ξ) = F (u(t, .))(ξ).

3. Main result

We show that our solution decays time asymptotically to zero and the rate of
decay for the solution is similar to both α and g.

Theorem 3.1. Assume u is the solution of (1.1), then the next general exponential
estimate satisfies in the Fourier space

E(t) ≤ W exp


−ω

t∫

0

α(s)β(s)ds


 , ∀t ≥ 0.(3.1)

for some positive constants W,ω.

Proof. We take the Fourier transform of both sides of (1.1). Then one has the
reduced equation for ξ ∈ R

n, t ∈ R
+
∗
:

{
û′′(t, ξ) + |ξ|4û(t, ξ)− |ξ|2α(t)

∫ t

0
g(t− s)û(s, ξ)ds+ |ξ|2û′(t, ξ) = 0

û(0, ξ) = û0(ξ) ∈ H1(Rn), û′(0, ξ) = û1(ξ) ∈ L2(Rn).
(3.2)

We apply the multiplier techniques in Fourier space in order to obtain useful esti-
mates and prepare some functionals associated with the nature of our problem to
introduce appropriate Lyapunov functions.
First, to derive the equality for the physical energy, we multiply both sides of (3.2)
by û′. We denote

E1(t) =
1

2
|û′|2 + 1

2
|ξ|2(|ξ|2 − α(t)

∫ t

0

g(s)ds)|û|2 + 1

2
|ξ|2α(t)(g ◦ û)(t)

and

e1(t) =
1

2
|ξ|2

(
α(t)g(t)|û|2 − α(t)(g′ ◦ û)(t) + 2|û′|2

)

+
1

2
|ξ|2


α′(t)(g ◦ û)(t)− α′(t)

t∫

0

g(s)ds|û|2

 .

Then, taking the real part of the resulting identities and by Lemma 2.1, we obtain

d

dt
E1(t) + e1(t) = 0.(3.3)

Second, the existence of the memory term forces us to make the first modification

of the energy by multiplying (3.2) by
(
− d

dt

(
α(t)

∫ t

0
g(t − s)û(s)ds

))
and taking
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the real part, we have that

0 = −Re

{
û′′

d

dt

(
α(t)

∫ t

0

g(t− s)û(s)ds
)}

(3.4)

−Re

{
|ξ|4û d

dt

(
α(t)

∫ t

0

g(t− s)û(s)ds
)}

+
1

2
|ξ|2 d

dt

(∣∣∣α(t)
∫ t

0

g(t− s)û(s)ds
∣∣∣
2
)

−Re

{
|ξ|2û′

d

dt

(
α(t)

∫ t

0

g(t− s)û(s)ds
)}

Since

d

dt

(
α(t)

∫ t

0

g(t− s)û(s)ds

)

= α′(t)

∫ t

0

g(t− s)û(s)ds+ α(t)
d

dt

(∫ t

0

g(t− s)û(s)ds

)

= α′(t)

∫ t

0

g(t− s)û(s)ds+ α(t)g0û+ α(t)

∫ t

0

g′(t− s)û(s)ds.

The first term in Eq.(3.4) takes the form

− Re

{
û′′

d

dt

(
α(t)

∫ t

0

g(t− s)û(s)ds
)}

= −Re

{
û′

d

dt

(
α(t)

∫ t

0

g(t− s)û(s)ds
)}′

+ Re

{
û′

d2

dt2

(
α(t)

∫ t

0

g(t− s)û(s)ds
)}

= −Re

{
û′

d

dt

(
α(t)

∫ t

0

g(t− s)û(s)ds
)}′

+ α(t)g0|û′|2

+ Re

{
û′

(
α(t)

d

dt

(∫ t

0

g′(t− s)û(s)ds
)
+ α′(t)

∫ t

0

g(t− s)û(s)ds
)}

.

Denote by

E2(t) =
1

2

(
|ξ|2

∣∣∣α(t)
∫ t

0

g(t− s)û(s)ds
∣∣∣
2

−Re

{
û′

d

dt

(
α(t)

∫ t

0

g(t− s)û(s)ds
)})

,

and

e2(t) = α(t)g0|û′|2 −Re

{
|ξ|2û′

d

dt

(
α(t)

∫ t

0

g(t− s)û(s)ds
)}

+ Re

{
α′(t)û′

∫ t

0

g(t− s)û(s)ds

}
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R2(t) = −Re

{
|ξ|4û d

dt

(
α(t)

∫ t

0

g(t− s)û(s)ds
)}

+ Re

{
û′

d

dt

(
α(t)

∫ t

0

g′(t− s)û(s)ds
)}

.

Then,

d

dt
E2(t) + e2(t) +R2(t) = 0.(3.5)

Next, to make the second modification of the energy which corresponds to the strong
damping, we multiply (3.2) by û and taking the real part, we have

0 = (Re{û′û})′ − |û′|2 + |ξ|4|û|2

− |ξ|2Re

{
α(t)

∫ t

0

g(t− s)û(s)û(t)ds

}
+

1

2
|ξ|2(|û|2)′,

using results in Lemma 2.1, we get

0 = (Re{û′û})′ − |û′|2 + |ξ|4|û|2 + 1

2
|ξ|2(|û|2)′

− |ξ|2
(
α(t)

∫ t

0

g(s)ds|û|2 −Re

{
α(t)

∫ t

0

g(t− s)(û(s)− û(t))û(s)ds

})
.

Denote

E3(t) = Re{û′û}+ 1

2
|ξ|2|û|2,

and

e3(t) = |ξ|2
(
|ξ|2 − α(t)

∫ t

0

g(s)ds
)
|û|2.

R3(t) = −|û′|2 −Re

{
α(t)

∫ t

0

g(t− s)(û(s)− û(t))û(s)ds

}

Then,

d

dt
E3(t) + e3(t) +R3(t) = 0.(3.6)

Let us define for some constants ε1, ε2 > 0 to be chosen later

E4(t) = E1(t) + ε1α(t)E2(t) + ε2α(t)E3(t)

=
1

2

{
2(1)

2
|û′|2 + |ξ|2

(
|ξ|2 − α(t)

∫ t

0

g(s)ds
)
|û|2 + |ξ|2α(t)(g ◦ û)(t)

}

+
ε1α(t)

2

(
|ξ|2

∣∣∣α(t)
∫ t

0

g(t− s)û(s)ds
∣∣∣
2

−Re

{
û′

d

dt

(
α(t)

∫ t

0

g(t− s)û(s)ds
)})

+ ε2α(t)

(
Re

{
û′û

}
+

1

2
|ξ|2|û|2

)
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and

e4(t) = e1(t) + ε1α(t)e2(t) + ε2α(t)e3(t)

=
|ξ|2
2

α(t)
(
g(t)|û|2 − (g′ ◦ û)(t) + 2α−1(t)|û′|2

)

+
|ξ|2
2

α′(t)


(g ◦ û)(t) − û′

t∫

0

g(s)ds|û|2



+ ε1α(t)

(
α(t)g0|û′|2 −Re

{
|ξ|2û′

d

dt

(
α(t)

∫ t

0

g(t− s)û(s)ds
)})

+ ε1α(t)

(
Re

{
α′(t)

∫ t

0

g(t− s)û(s)ds

})

+ ε2|ξ|2α(t)
(
|ξ|2 − α(t)

∫ t

0

g(s)ds

)
|û|2

and

R4(t) = ε1α(t)R2(t) + ε2α(t)R3(t)

= ε1α(t)

(
−Re

{
|ξ|4û d

dt

(
α(t)

∫ t

0

g(t− s)û(s)ds
)})

+ ε1α(t)

(
Re

{
û′

d

dt

(
α(t)

∫ t

0

g′(t− s)û(s)ds
)})

+ ε2α(t)

(
−|û′|2 −Re

{
α(t)

∫ t

0

g(t− s)(û(s)− û(t))û(s)ds

})

At this point, we introduce as in [12], the Lyapunov functions as

L1(t) =
{
|û′|2 + k|ξ|2|û|2 + |ξ|2α(t)(g ◦ û)(t)

}
(3.7)

and

L2(t) = α(t)g(t)|û|2 + α(t)β(t)(g ◦ û)(t).(3.8)

It is easy to verify that there exists positive constants c1(g0), c2(g0) such that

c1L1(t) ≤ E1(t) ≤ c2L1(t), ∀t > 0.(3.9)

Thanks to Holder, Young’s inequalities, one gets for some constant c3 > 0

|ε1E2(t) + ε2E3(t)| ≤ c3L1(t),

which means that L1(t) ∼ E(t). Using again (2.4), Holder and Young’s inequalities
and assumptions on g to obtain

|R4(t)| = ε1R2(t) + ε2R3(t)
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≤ ε1Re

{
|ξ|4ûα(t) d

dt

(∫ t

0

g(t− s)û(s)ds
)}

+ ε1Re

{
û′α(t)

d

dt

( ∫ t

0

g′(t− s)û(s)ds
)}

+ ε2

(
|û′|2 +Re

{
α(t)

∫ t

0

g(t− s)(û(s)− û(t))û(s)ds

})

≤ ε1|û′|2 + c4ε1|ξ|4|û|2 + c5ε1|ξ|2L2(t)

+ ε2
[
|û′|2 + c6|ξ|2

(
λ|û|2 + cλα(t)(g ◦ û)(t)

)]

≤ (ε1 + ε2)|û′|2 + (c4ε1|ξ|2 + ε2c6λ)|ξ|2|û|2 + (c5ε1 + cλε2)|ξ|2L2(t).

Since L2(t) ≤ c3 e1(t), one can easily check that there exists positive constants
ε1, ε2, λ, c4, c5, c6 such that

|R4(t)| ≤ ce4(t), c > 0.(3.10)

By (3.3), (3.5) and (3.6), we get

d

dt
E4(t) =

d

dt
E1(t) + ε1α(t)

d

dt
E2(t) + ε2α(t)

d

dt
E3(t) + ε1α

′(t)E2(t) + ε2α
′(t)E3(t).

We use lim
t→∞

α′(t)
α(t) = 0 by (2.2)-(2.4) to choose t1 > t0 and since e4(t) ≥ cE4(t), then

(3.10) gives for some positive constant N

d

dt
E4(t) ≤ −Nα(t)E4(t) + cα(t)(g ◦ û)(t).(3.11)

Multiplying (3.11) by β(t) and using (2.4), (3.8), we obtain

β(t)
d

dt
E4(t) ≤ −Nβ(t)α(t)E4(t) + cβ(t)α(t)(g ◦ û)(t)

≤ −Nβ(t)α(t)E4(t)− cα(t)(g′ ◦ û)(t)

≤ −Nβ(t)α(t)E4(t)− c|ξ|2α′(t)

∫ t

0

g(s)ds|û|2 − 2c
d

dt
E4(t), ∀t > t1.(3.12)

Since β′(t) ≤ 0, we set L(s) = (β(s) + 2c)E4(s) which is equivalent to E4(t), then

d

dt
L(t) ≤ −Nβ(t)α(t)E4(t)− c|ξ|2α′(t)

∫ t

0

g(s)ds|û|2

≤ −β(t)α(t)

[
N − 2α′(t)

kβ(t)α(t)

∫ t

0

g(s)ds

]
E4(t), ∀t > t1.(3.13)

By (2.4), we can choose t2 > t1 such that

d

dt
L(t) ≤ −cβ(t)α(t)E4(t)

≤ −cβ(t)α(t)L(t), ∀t > t2.(3.14)
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Integrating (3.14) over [t2, t] using equivalence between Lyapunov function and the
energy function, it yields that

E(t) ≤ W exp(−ω

∫ t

0

α(s)β(s)ds),W, ω > 0.
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