
FACTA UNIVERSITATIS (NIŠ)

Ser. Math. Inform. Vol. 33, No 2 (2018), 337–360

https://doi.org/10.22190/FUMI1802337M

A BRANCH-AND-BOUND ALGORITHM FOR A

PSEUDO-BOOLEAN OPTIMIZATION PROBLEM WITH

BLACK-BOX FUNCTIONS ∗

Igor S. Masich and Lev A. Kazakovtsev

Abstract. We consider a conditional pseudo-Boolean optimization problem with both
the objective function and all constraint functions given algorithmically (black-box
functions) and defined on {0, 1}n only. We suppose that these functions have certain
properties, for example, unimodality and monotonicity. To solve problems of this type,
we propose an optimization algorithm based on finding boundary points of the feasible
region and the branch-and-bound method. The developed algorithm is aimed at the
reception of an exact solution of an optimization problem. In addition, this algorithm
can be used as an improvement of approximate algorithms such as the greedy heuristic
and the random search algorithms for finding boundary points. Even after a small num-
ber of iterations (branchings), a significant improvement of the found feasible solution
is achieved.
Keywords: Pseudo-Boolean optimization problem, branch-and-bound method, Con-
strained pseudo-Boolean optimization problem.

1. Introduction

In the optimization model construction, many problems are naturally formal-
ized as pseudo-Boolean optimization problems. A typical formulation of a pseudo-
Boolean optimization problem is as follows. Let X = (x1, . . . , xn) be a set of n
independent binary variables and f(X) be a real-valued function to be optimized:
f : S → R, where S ⊂ {0, 1}n is a subregion of Boolean variables space defined by
a given system of constraints imposed on the values of variables X .

If S = {0, 1}n, that is, no constraints are imposed on the choice of variables
x1, . . . , xn then such a problem is called an unconstrained pseudo-Boolean opti-
mization problem. For its solution, in [2], exact algorithms based on the detection
of the optimized function behavioural features in binary variables space are worked

Received March 06, 2018; accepted June 11, 2018
2010 Mathematics Subject Classification. Primary 90C57; Secondary 90C27, 90C09

∗Results were obtained in the framework of the state task 2.5527.2017/8.9 of the Ministry of
Education and Science of the Russian Federation

337

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/228555524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

338 I.S. Masich and L.A. Kazakovtsev

out. These features were used to construct and justify effective exact algorithms.
In particular, an exact optimization algorithm demanding n + 1 calculations of a
function was developed for a strictly monotone pseudo-Boolean function.

A special feature of these algorithms is that they do not require algebraic defi-
nition of an objective function. It may be so called a black-box function. We can
calculate the value of the function in points {0, 1}n only. The issue of construct-
ing algorithms for solving pseudo-Boolean optimization problems with black-box
functions are considered in this paper.

The most ”primitive“ way to find the exact solution of a pseudo-Boolean opti-
mization problem is to search all possible combinations of values of binary variables.
The number of such combinations is equal to 2n. For a lot of real problems it is
unacceptable. To decrease the number of calculations, unpromising combinations
of values of variables (such combinations form the subregions of the original space
of binary variables) should not be considered. But to reveal them it is necessary to
know the properties of the function, that is, the behaviour of the function on the
points (combinations of variables). Such approaches as the dynamic programming
method [6] and the branch-and-bound method [17] are based on the exclusion of
sets of unpromising alternatives.

Many practical problems of choice are formalized as pseudo-Boolean optimiza-
tion problems with constraints on choosing a combination of the variables; in this
case in the behaviour of the objective function and constraints there are peculiarities
which allow one to construct acceptable algorithms to find the exact solution. It is
the problem of construction of such algorithms for a widespread class of problems
that is considered in this paper.

In this paper, we propose an algorithm for solving problems of conditional
pseudo-Boolean optimization based on the branch-and-bound scheme and using
properties of functions of the optimization model for estimating upper bounds
and eliminating unpromising solutions. The branch-and-bound method was origi-
nally developed to solve integer linear programming problems [17]. Then, based on
this scheme, algorithms were developed to solve special classes of problems, such
as nonlinear programming problems [1, 15, 25, 26], the traveling salesman prob-
lem [11, 21, 22], facility location [10, 20, 24], network design [8, 14, 16].

In addition, various modifications of the original branch-and-bound algorithm
have been developed, combining the branch-and-bound principles with other tech-
niques, such as cutting planes [11, 19, 21, 26], column generation [5, 9, 12], genetic
and evolutionary algorithms [7, 13, 23].

2. Problem statement and basic notions

2.1. Constrained pseudo-Boolean optimization problem

Let us consider the problem of the following form:

A Branch-and-Bound Algorithm for a Pseudo-Boolean Optimization Problem 339

C(X) → max
X∈Bn

2

,(2.1)

Aj(X) 6 Hj , j = 1, . . . ,m,(2.2)

where Bn
2 = {0, 1}n is a space of binary variables, C(X) and Aj(X) are pseudo-

Boolean functions (real-valued functions of binary variables) which are generally
defined implicitly (algorithmically).

To describe the proximity of the vectors (points in space Bn
2), we shall apply

the notion of neighborhood [2]. Two points X1, X2 ∈ Bn
2 are k-neighboring if they

differ in values of k coordinates. Let the set of all points k-neighbouring to point
X be called the level of some point X and denoted as Ok(X). The level O1(X) can
be presented as the neighborhood of point X .

Point X∗ ∈ Bn
2 is called the local minimum of the pseudo-Boolean function f , if

f(X∗) < f(X) for all X ∈ O1(X
∗). The notion of a local maximum is introduced

similarly. If a function has the only point of a local minimum (maximum), it is
often called unimodal.

In many works devoted to pseudo-Boolean functions special classes of functions
with definite properties are considered. In this paper we shall consider a class of
monotone functions which are rather often met in practical problems.

The unimodal function f is called monotone on Bn
2 if for each Xk ∈ Ok(X

∗)
(k = 1, . . . , n) the following condition is met: f(Xk−1) 6 f(Xk) for all Xk−1 ∈
Ok−1(X

∗) ∩ O1(X
k), where X∗ is a local minimum of the function. That is, a

function is a monotone one if it does not decrease while moving away from the
point of minimum. If a sign of inequality is strict, then the function is strictly
monotone.

It is easy to show that if the function is strictly monotone then the only points
of local minimum and maximum differ in the value of n coordinates.

Let us take two points Y, Z ∈ Bn
2 the values of some coordinates in which

coincide: yi = zi, i ∈ A ⊂ {1, . . . , n}; yj 6= zj, j /∈ A. Let a set of all points X the
values of whose variables with i ∈ A index are fixed and equal to xi = yi = zi and
the values of all the rest variables can take any values, be called a subcube K(Y, Z)
(Figure 2.1). In [2] subcube K(Y, Z) is introduced as the union of the shortest paths
from Y to Z.

2.2. Properties of a set of feasible solutions

Let us introduce some notions for points placed in a binary space in a particular
way [4].

• Point Y ∈ A is a boundary point of set A if ∃X ∈ O1(Y), such that X /∈ A.

• Point Y ∈ Oi(X
0) ∩A is called a limiting point of set A with reference point

X0 ∈ A if X /∈ A for any X ∈ O1(Y) ∩Oi+1(X
0) (Figure 2.2).

340 I.S. Masich and L.A. Kazakovtsev

1111

1110 1101

1001 01101100 1010 0101 0011

1011 0111

1000 0100 0010 0001

0000

Fig. 2.1: An example of a subcube in the binary space

• Let the constraint which determines the subregion of Boolean variables space
be called active if the optimal solution of the constrained optimization problem
does not coincide with the optimal solution of a corresponding optimization
problem without regard to the constraint. In other words, a constraint is
active if the optimal solution of an unconstrained problem is unfeasible for a
problem with the constraint.

1111

1110 1101

1001 01101100 1010 0101 0011

1011 0111

1000 0100 0010 0001

0000

Fig. 2.2: An example of limiting points

One of the properties of a feasible set of solutions looks like this:

Let us consider the problem (2.1)-(2.2). If the objective function is a monotone
unimodal function and the constraint is active, then the optimal solution of the

A Branch-and-Bound Algorithm for a Pseudo-Boolean Optimization Problem 341

problem will be the point belonging to the subset of limiting points of the set S of
feasible solutions with reference point X0 in which the objective function possesses
the minimum value:

C(X0) = min
X∈Bn

2

C(X).

Also it is not difficult to show that if the constraint function (2.2) is an unimodal
pseudo-Boolean function then the set of feasible solutions S of the problem is a
connected set.

3. Class of monotone pseudo-Boolean functions

Let us consider a class of problems of the following form

C(X) → max
X∈Bn

2

,

A(X) 6 H,

where the objective function C(X) and the function A(X) determining the system
of constraints belong to the class of monotone pseudo-Boolean functions.

Let us note some properties of classes of unimodal and monotone pseudo-Boolean
functions which form the considered class of problems. In optimization algorithms
construction it is necessary to take these properties into account.

First of all, let us consider a following property that will be used later on. On the
basis of the definitions of a subcube and monotonicity of a pseudo-Boolean function
it can be argued that if a function f increases steadily from X0 ∈ Bn

2 then for any
point Y ∈ Bn

2 is fulfilled:

a) f(X) 6 f(Y) for all X ∈ K(X0, Y);

b) f(X) > f(Y) for all X ∈ K(Y,X1), where X1 = (1 − x0
1, . . . , 1 − x0

n) ∈
On(X

0).

3.1. Properties of constraint functions

Unimodal constraint function

Let us consider a constraint function A(X) which has the unique minimum in
the point X0 ∈ Bn

2 . Let us denote X1 ≡ X ∈ On(X
0).

As it was noted above, a set of feasible points in this case is a connected set.

The main property which follows from the definitions introduced above is:

If the function A(X) is a unimodal one (it has the unique local minimum in the
point X0) and on a level Ok(X

0) all points are unfeasible or limiting, then on a
level Ol(X

0) where l > k there are no feasible points. It can be illustrated with the
following picture (Figure 3.1).

342 I.S. Masich and L.A. Kazakovtsev

unfeasible or
limiting points

no feasible points

X
0

a limiting point

no limiting points

X
0

no limiting points

X
1

Y

Fig. 3.1: Case of an unimodal constraint function (left) and case of a monotone
constraint function (right)

2. Monotone constraint function

Let us consider a constraint function which increases steadily from the point
X0 ∈ Bn

2 . On the basis of notions of a subcube and monotonicity we can deduce
the following properties:

a) If the function A(X) is monotone and a point Y ∈ Bn
2 is feasible (satisfies

the constraint A(Y) 6 H) then any point X ∈ K(X0, Y) is also feasible.

b) If the function A(X) is monotone and a point Y ∈ Bn
2 is unfeasible (doesn’t

satisfy the constraint A(Y) 6 H) then any point X ∈ K(Y,X1) is also unfeasible.

Generalizing these properties and the notion of a limiting point one can conclude
that if the function A(X) is monotone and a point Y ∈ Bn

2 is limiting then any
point X ∈ K(X0, Y) \ Y is not limiting, and any point X ∈ K(Y,X1) \ Y is not
limiting either (that is, while looking for all the other limiting points the subcubes
K(X0, Y) and K(Y,X1) can be excluded from consideration.

3.2. Properties of objective functions

1. Unimodal objective function

If f is an unimodal function on Bn
2 with the local minimum point X0 then

min
Xk

j ∈Ok(X0)
f(Xk

j) 6 min
X

k+1
j ∈Ok+1(X0)

f(Xk+1
j).

This implies that if the function C(X) is unimodal (it has the unique local
maximum in the point X1) and the solution giving the maximum value of the
function C(X) on a level Ok(X

1) is feasible then on a level Ol(X
1) where l > k

there is no the optimal solution (Figure 3.2).

2. Monotone objective function

A Branch-and-Bound Algorithm for a Pseudo-Boolean Optimization Problem 343

the best feasible
point on the level

no the optimal
point

X
1

a feasible point

X
0

no the optimal
point

X
1

Y

Fig. 3.2: Case of an unimodal objective function (left) and case of a monotone
objective function (right)

If the objective function C(X) increases steadily from the point X0 ∈ Bn
2 then

the optimal solution belongs to the subset of limiting points. From the property
considered at the beginning of this unit we have the following.

If the function C(X) is monotone and the solution Y ∈ Bn
2 is feasible (satisfies

the constraint A(Y) 6 H) then in the subcube K(X0, Y) there is no the optimal
solution.

4. A scheme of the branch-and-bounds method for a problem with

black-box functions

The basis of the branch-and-bounds method is the idea of sequential partition
of a set of feasible solutions into subsets. At each step of the method the elements
of partition are checked to find out whether the given subset contains an optimal
solution. The check is carried out by means of calculating the upper bound for an
objective function on a given subset. If the upper bound is not better than the
record – the best of the found solutions – then the subset can be discarded. A
checked subset can be also discarded if the best solution was found in it. If the
value of the objective function on a found solution is better than the record then
the record is changed. On finishing the algorithm work the record is the result of
its work.

If one manages to discard all elements of partition then the record is the optimal
solution of the problem. Otherwise the most promising subset (for example, with
the greatest value of the upper bound) is chosen from those which were discarded,
and it is partitioned. New subsets are checked again, and so on.

It is obvious that the use of specific structural peculiarities of the problem allows
one to construct a workable branch and bound algorithm.

344 I.S. Masich and L.A. Kazakovtsev

Let us consider the application of the scheme for the solution of optimization
problem in which all variables are binary, and the objective function and the con-
straint are unimodal and monotone.

The most widely used variant of application of the branch-and-bounds scheme
for the solution of pseudo-Boolean optimization problems is the following. The
problem of continuous optimization which is relaxation of the original problem is
being solved (for example, with a simplex algorithm). As a result we have solution
X∗, which will not be binary in general. Then the problem is divided into two
subproblems and two mutually exclusive constraints exhausting all possibilities are
added. For example, let component x′

i in X∗ be not binary. Then constraints
x′

i = 0 and x′

i = 1 appear in corresponding subproblems. Further branching occurs
similarly.

Such an approach is suitable for problems in which the objective function and
the constraints are defined explicitly (in the form of algebraic expressions). But the
problem under consideration consists of functions defined algorithmically (black-
box functions), that is, it is impossible to calculate the value of the function in the
point which is not binary. Therefore there appeared the necessity to investigate
other variants of application of the scheme.

Here we shall consider the question of application of the branch-and-bounds
scheme for optimization problems in which the objective function and the con-
straints are defined algorithmically. Namely, for the problem (2.1)-(2.2), in which
the functions C(X) andA(X) increase monotonically from the pointX0 = (x0

1, . . . , x
0
n).

The simplest algorithm of the branch-and-bounds method based on the proper-
ties of the considered class of problems will look like this. In the first stage of branch-
ing set Bn

2 is partitioned into two equicardinal subsets: S0
1 = {X ∈ Bn

2 : x1 = 0}
and S1

1 = {X ∈ Bn
2 : x1 = 1} (let’s call it branching of the first order). Each of these

subsets is a subcube of dimension n−1, the cardinality of the subsets is 2n−1. Parti-
tion of elements of the space Bn

2 for n = 4 into two subcubes is shown on Figure 4.1.
In the next stages of branching each of subcubes is partitioned into two subcubes
and so on. For example, S0

1 is partitioned into S00
2 = {X ∈ Bn

2 : x1 = 0, x2 = 0}
and S01

2 = {X ∈ Bn
2 : x1 = 0, x2 = 1} (Figure 4.2). So, after branching of the k-th

order there appear subcubes consisting of 2n−k elements (vectors).

In the subset got after branching of the k-th order k coordinates are fixed for
any binary vector from this subset. Let the vector in which variable coordinates
are equal to corresponding coordinates of initial vector X0 be called “lower” point

X and the vector in which all variable coordinates are opposite to corresponding
coordinates of X0 be called “upper” point X:

X = (x1, . . . , xk, 1− x0
k+1, 1− x0

k+2, . . . , 1− x0
n),

X = (x1, . . . , xk, x
0
k+1, x

0
k+2, . . . , x

0
n).

The objective function and the constraint function increase monotonically on
Bn

2 with chosen initial point X0 = (x0
1, . . . , x

0
n) from where it follows that in the

A Branch-and-Bound Algorithm for a Pseudo-Boolean Optimization Problem 345

1111

1110 1101

1001 01101100 1010 0101 0011

1011 0111

1000 0100 0010 0001

0000

Fig. 4.1: Partition B4
2 into two subcubes

n
B2

}0:{ 12

0

1 =Î= xBXS
n

}1:{ 12

1

1 =Î= xBXS
n

}1,0:{ 212

01

2 ==Î= xxBXS
n

}0,0:{ 212

00

2 ==Î= xxBXS
n

}01:{ 212

10

2 ==Î= ,xxBXS
n

}1,1:{ 212

11

2 ==Î= xxBXS
n

Fig. 4.2: The scheme of branching

“upper” point of the subcube they take the greatest value, and in the “lower” point
the smallest one.

The subset (subcube) is excluded from consideration in three cases:

1. In point X the constraint is not performed; in this case all solutions in the
subset are unfeasible.

2. In point X the constraint is performed; then this solution is the best one in
the subset, and it is compared with the record.

3. In point X the constraint is not performed, but the objective function in it
takes the value which is smaller than the record.

Otherwise further branching of this subset takes place.

At the first stage the value of the objective function in any feasible point of the
space Bn

2 can be taken as the record. If in the considering subset K(X,X) the
point X is feasible and the value of the criterial function in it is greater than the
record then the record is changed.

It is easy to show that the received solution will be exact. The constraint
A(X) 6 H partitions the setBn

2 into two subsets one of which satisfies the constraint

346 I.S. Masich and L.A. Kazakovtsev

and the other does not. From the condition of monotonicity of functions C (X) and
A (X) it follows that the solution of the problem will be the point belonging to the
subset of limiting points.

In case 1 in subcube K(X,X) there are no limiting points. In case 2 only point
X in the subcube can be limiting. In case 3 there are limiting points in the subcube,
but they are worse than those found before. So the scheme provides exact solution
of the problem.

The considered approach allows one to easily calculate the lower bound which
is equal to the value of the objective function in the upper point of the subcube.

Though the approach described above offers considerable reduction of the num-
ber of points to be searched in the process of finding the optimal solution neverthe-
less this process is labour intensive as it may require a great deal of branching.

The next part of the paper describes the optimization algorithm combining the
schemes of the branch-and-bounds method and the rule of subcubes truncation
considered in the previous part.

5. The optimization algorithm

Let us consider the problem (2.1)-(2.2) in which functions C(X) and A(X)
monotonically increase from point X0 = (x0

1, . . . , x
0
n). Let’s denote X1 = On(X

0),
X1 = (x1

1, . . . , x
1
n). All set of points of the space B

n
2 can be presented as the subcube

K(X0, X1).

5.1. Branching

Let us suppose that some limiting point X ′ ∈ Bn
2 is found. Then subcubes

K(X ′, X0) and K(X ′, X1) can be excluded from further consideration.

Let us introduce an auxiliary variable

zi =

{

xi, if x0
i = 0,

x̄i, if x0
i = 1.

Then subcube K(X ′, X0) can be represented as a set of points for which the
following boolean expression is true:

T 0 =
∧

i:x′

i=x0
i

z̄i.

And subcube K(X ′, X1) can be described as follows

T 1 =
∧

i:x′

i=x1
i

zi.

A Branch-and-Bound Algorithm for a Pseudo-Boolean Optimization Problem 347

For the sake of convenience let’s denote a set of indexes for which x′

i = x1
i is

fulfilled as A(X ′) = {i1, . . . , ik} and a set of indexes for which x′

i = x0
i is fulfilled as

B(X ′) = {i1, . . . , in−k}. It is obvious that |A(X
′)| = k and |A(X ′)| = n− k where

k is the number of the level on which point K(X ′) ∈ Ok(X
0) is located. Then we

may write:

T 0 =
∧

i∈B(X′)

z̄i, T 1 =
∧

i∈A(X′)

zi.

Let us partition subcube K(X0, X1) into two parts:

K(X0, X1)

vv❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

((
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘

(T 0 = 1) ∨ (T 1 = 1) (T 0 = 0) ∧ (T 1 = 0)

The left part, as it was stated above, is excluded from further consideration.
The right part (T 0 = 0) ∧ (T 1 = 0) can be represented as a set of subcubes.

Let us consider the condition (T 1 = 0). It is fulfilled if zi = 0 for at least one
i ∈ A(X ′). If |A(X ′)| > 1 then a set of points fulfilling the condition (T 1 = 0)
can be represented only as a number of subcubes, but not as one subcube. The
most evident way to partition this set of points into k subcubes is to fix alternately
the value of variable zi = 0 for i ∈ A(X ′). In this case we receive k subcubes of
dimension n − 1. The disadvantage of this method is that the received subcubes
substantially intersect each other.

To avoid this we shall use the following approach. We shall get the first subcube
K1

1 having fixed one variable zi1 = 0. For the second K1
2 we shall fix two variables

: zi1 = 1 and zi2 = 0. For the third K1
3 - three variables: zi1 = 1, zi2 = 1 and

zi3 = 0. And so on. For the k-th subcube K1
k : zis = 1, s = 1, . . . , k − 1, zik = 0.

As a result we get k subcubes of different dimensions. Such an approach guar-
antees that the received subcubes don’t intersect.

The same procedure is offered for condition (T 0 = 0). The corresponding set of
points should be partitioned into (n − k) subcubes by fixing variables j ∈ B(X ′).
For the first subcube K0

1 we shall fix one variable zj1 = 1. For the second subcube
K0

2 we shall fix two variables: zj1 = 0 and zj2 = 1. For the third K0
3 - three

variables: zj1 = 0, zj2 = 0 and zj3 = 1. For (n− k)-th subcube K0
n−k: zjs = 0, s =

1, . . . , n− k − 1, zjn−k
= 0.

As a result we get two sets of subcubes: K1
1 , . . . ,K

1
k and K0

1 , . . . ,K
0
n−k. A set

of points fulfilling the condition (T 0 = 0)∧ (T 1 = 0) corresponds to the union of all
possible intersections of pairs of subcubes taken from these two sets:

⋃

i∈A(X′)

j∈B(X′)

(K1
i ∩K0

j).

So, having found in subcube K(X0, X1) some limiting point X ′ ∈ Ok(X
0) we

partition this subcube into two parts one of which is discarded (subcubesK(X ′, X0)

348 I.S. Masich and L.A. Kazakovtsev

and K(X ′, X1)), and from the other part k · (n−k) new branches are formed. Each
of these branches is a subcube which can be subjected to the same procedure of
branching as described above.

5.2. Upper bound

Let us denote the upper and the lower points of some subcube as X and X
respectively. z

X
i = 0 is fulfilled in point X for all free (unfixed) variables, and

zXi = 1 is fulfilled in point X for all free variables. For fixed variables naturally

z
X
i = zXi .

Subcube K(X,X) can contain an optimal solution only if the following condi-
tions are fulfilled:

1. There are feasible solutions in the subcube.

2. The upper bound of the corresponding branch is above the best found solution.

As the constraint function A(X) increases monotonically from point X0, then
within subcube K(X,X) function A(X) increases monotonically from point X pos-
sessing its minimum value in this point. Therefore if point X is unfeasible then
all points of this subcube are unfeasible. The objective function C(X) within the
subcube also increases monotonically from point X possessing its maximum value
in point X . Point X itself can be unfeasible, but value C(X) can be used as the
upper bound of the branch corresponding to the subcube.

Also, if point X is feasible then all other points of this subcube are a fortiori
not better; besides, in this case there are no limiting points in the subcube with the
possible exception of X.

So, subcube K(X,X) is excluded from further search if at least one of the
following conditions is fulfilled:

• Point X is unfeasible.

• Point X is feasible.

• The value of upper bound C(X) does not exceed the already found best fea-
sible value of the objective function.

Such a check including calculation of the upper bound requires the scanning of
only two points of the subcube.

5.3. Search for limiting points

To carry out branching in a way described above it is necessary to find some
limiting point belonging to the considered subcube K(X,X). This solution should

A Branch-and-Bound Algorithm for a Pseudo-Boolean Optimization Problem 349

not necessarily be the best one in the given subcube. However, a good solution can
exceed the record (the best already found feasible solution) and it also can increase
the chances to discard new branches got in the process of further branching (if
their upper bound will turn out to be lower).

The simplest stochastic algorithm for search of limiting points is as follows. The
search begins from X . At each step the algorithm chooses a feasible neighbouring
point on the following level moving along the way of increasing of the objective
function to the bound of a feasible area. In case of necessity the procedure is
repeated several times and the best point is chosen from the found limiting points.

Algorithm ”Random search“

1. Suppose l = 1.

2. Suppose X1 = X, i = 1.

3. Randomly choose a point Xi+1 ∈ O1(Xi)∩Oi(X)∩ {X ∈ K(X,X) : A(X) 6
H}, i = i+ 1. If there are no such points go to step 4, otherwise the cycle is
repeated.

4. Yl = Xi. If l < L then l = l + 1 and go to step 2.

5. Define X∗ from the condition

C(X∗) = max
l=1,...,L

C(Yl).

Defined number L is a number of limiting points which is planned to find. As
card{O1(Xk) ∩ Ok+1(X)} = nK − k, where Xk ∈ Ok(X), nK is the dimension of
subcube K(X,X) (the number of free variables) then from current search point
Xk the algorithm looks through not more than nK − k following points. So the
computational complexity of the algorithm can be calculated as follows

T 6 L ·

n−1
∑

i=0

(nK − i) = L ·
nK(nK + 1)

2
.

A regular algorithm using greedy heuristics is an alternative to random search
of limiting points.

Greedy algorithms are natural heuristics in which at each step the most effective
at the given moment decision is made without considering what happens at the
following steps of search.

For the problem being considered a greedy algorithm can have the following
form.

Algorithm ”Greedy“

1. Suppose X1 = X, i = 1.

2. Calculate C(Xj) and A(Xj) for Xj ∈ O1(X) ∩Oi(X), j = 1, . . . , nK − i+ 1.

350 I.S. Masich and L.A. Kazakovtsev

3. If there is no Xj for which A(Xj) 6 H , then X∗ = X is the solution of the
problem.

4. From those Xj for which A(Xj) 6 H find X = argmaxXj
λ(Xj).

5. i = i+ 1, go to step 2.

Here λ(Xj) = C(Xj)/A(Xj) or λ(Xj) = C(Xj).

In more detail these and other algorithms of search of limiting points have been
considered in [3].

5.4. The algorithmic scheme

The procedures described above are the main elements of which an algorithm of
search of an optimal solution consists. Now we shall consider the algorithm itself.

The first step is the choice of a branch for branching. In the first cycle there is
only one branch which corresponds to the binary space of n dimension. In the fol-
lowing cycles, when there are several open branches, the branch with the maximum
upper-bound estimate is chosen. If there are no open branches then the algorithm
finishes its work.

At the second step the search for an approximate solution representing some
limiting point in the corresponding subcube in a chosen branch is carried out. If
the value of the objective function in this point is better than the record (the best
found solution) then the change of the record occurs. The search of an limiting
point can be carried out with the help of, for example, a random-search algorithm
or a greedy algorithm described above.

At the third step the procedure of branching of a chosen branch according to
the found limiting point is performed. The check of received branches is carried
out. If there are feasible solutions in a branch and the upper bound is greater than
the record then this branch is added to the list of open branches.

After completing some number of such cycles one should interrupt in order to
sort the branches by the value of the upper bound and close the branches the upper
bound of which is less than the record.

The search is stopped if there are no open branches left. In this case it can
be argued that the exact solution of the problem (global constrained maximum) is
found.

While solving the problems of great dimensions it can be inaccessible due to
excessively large amount of search time. The achievement of a number of formed
branches or a number of branching of some defined value can serve as a stopping
criterion.

The algorithm is shown schematically in Figure 5.1.

A Branch-and-Bound Algorithm for a Pseudo-Boolean Optimization Problem 351

Initial cube (binary
space or subcube)

Branch
selection for
branching

Maximum upper
bound

Search for a
limiting point a(

feasible solution)

Algorithms for
finding limiting

points

Comparison with
the record

Branching

Checking the branches
and adding to the list of open

branches

Interruption after scanning
L branches

If R branches are scaned or
there is no an open branch

Ranking the branches

Stop

yes

no

Fig. 5.1: The algorithmic scheme

352 I.S. Masich and L.A. Kazakovtsev

6. Experimental investigation

This paper gives the results of the experimental investigation of the described
algorithm work on the constrained pseudo-Boolean optimization problems generated
randomly. Objective functions and constraints have the following form:

C(X) =

n
∑

i=1

ci1xi +

n−1
∑

i=1

ci2xixi+1 +

n−2
∑

i=1

ci3xixi+1xi+2 → max,

A(X) =

n
∑

i=1

ai1xi +

n−1
∑

i=1

ai2xixi+1 +

n−2
∑

i=1

ai3xixi+1xi+2 6 b,

X ∈ {0, 1}n,

where coefficients ci1, c
i
2, c

i
3, a

i
1, a

i
2, a

i
3 are random numbers taken from the range

[0, 20]; b = A(Xr), where Xr = (xr
1, . . . , x

r
n) is a randomly chosen point: xr

i = 1
with probability 1/4 and xr

i = 0 with probability 3/4 (this bias is made due to
some real-world problems, in this case the set of feasible points is less than the set
of infeasible points). As all coefficients are non-negative numbers then functions
C(X) and A(X) are monotone ones with the minimum in point (0, . . . , 0) and
unconstrained maximum in point (1, . . . , 1).

Efficiency of the algorithm will be characterized by the search time and achieved
value of the objective function (if the maximum of the objective function is defined
inexact or there is not proof that the solution is exact). By the search time (or
the time complexity) we will mean the number of computing values of the objective
function (and/or the constraint function) that the algorithm has made (the number
of points that the algorithm has scanned).

At first let us investigate how fast the optimization algorithm finds an exact
solution. For this purpose series of tests were conducted on the problems of small
dimension: n = 10, 15, 20. 500 tasks were solved for each dimension value. A
simple algorithm “random search” with repetition number L = 1 was used to find
boundary points.

The distribution of values of time complexity and the number of branches that
occur as a result of complete solution of the problem are shown in the graphs
(Figure 6.1 and Figure 6.2). In the experiments it is guaranteed that the exact
solution of the problem has been found (i.e. there are not open branches remained).
For comparison, time complexity of the exhaustive search for the dimension n = 10
is 210 = 1024, for n = 15 complexity is 215 = 32768, for n = 20 complexity is
220 = 1048576.

Further the graphs (Figure 6.3 and Figure 6.4) present the distribution of the
time complexity and the number of branches when the exact solution has been
found, but absence of a better solution has not been guaranteed yet (i.e.there are
open branches remained).

A Branch-and-Bound Algorithm for a Pseudo-Boolean Optimization Problem 353

0

10

20

30

40

50

60

70

80

Complexity

N
u

m
b

e
r

o
f

p
ro

b
le

m
s

0

20

40

60

80

100

120

140

Number of branches

N
u

m
b

e
r

o
f

p
ro

b
le

m
s

Fig. 6.1: Time complexity and number of branches for n = 10 (the exact solution
is justified)

0

50

100

150

200

Complexity

0

50

100

150

200

Number of branches

N
u

m
b

e
r

o
f

p
ro

b
le

m
s

N
u

m
b

e
r

o
f

p
ro

b
le

m
s

Fig. 6.2: Time complexity and number of branches for n = 20 (the exact solution
is justified)

As can be seen from the graphs, the exact solution is found usually well before
completion of the full search.

It should be noted that the results of the solutions of problems generated in
such a way differ greatly from problem to problem therefore it doesn’t make sense
to give the mean values of efficiency indexes. Instead the results of solution of
separate problems are given here what in this case is more demonstrative.

During the search the number of open branches is being changed significantly.
The first few cycles it is increased rapidly and towards the end of the search it is
gradually reduced, approaching zero. Absence of open branches upon completion
of the search means that the solution is exact, that is there is no a better feasible
solution under the given conditions.

The pictures (Figure 6.5, Figure 6.6 and Figure 6.7) show examples for the
dynamics of change in the number of open branches and the value of the record in
the process of search. The number of branching is shown on X-axis, the amount of
open branches on the left of Y-axis, the value of the record on the right of Y-axis.

Also here was examined the question of how the proposed optimization algo-

354 I.S. Masich and L.A. Kazakovtsev

0

50

100

150

200

250

300

Complexity

0

50

100

150

200

250

300

350

400

Number of branches

N
u

m
b

e
r

o
f

p
ro

b
le

m
s

N
u

m
b

e
r

o
f

p
ro

b
le

m
s

Fig. 6.3: Time complexity and number of branches for n = 10 (the exact solution
is not justified)

0

50

100

150

200

250

300

350

400

Complexity

0

50

100

150

200

250

300

350

400

Number of branches

N
u

m
b

e
r

o
f

p
ro

b
le

m
s

N
u

m
b

e
r

o
f

p
ro

b
le

m
s

Fig. 6.4: Time complexity and number of branches for n = 20 (the exact solution
is not justified)

rithm can improve the solution obtained individually by the algorithm of search for
boundary points (the greedy heuristic or random search of boundary points).

To find the first approximate solution the greedy optimization algorithm de-
scribed above was used. The obtained solution was used as a branching point
in accordance with the procedure described above for branching the optimization
space. To find solutions in the formed branches also the greedy algorithm was
used. Values of the best solutions found during the search by the branch and bound
algorithm presented in the tables.

A Branch-and-Bound Algorithm for a Pseudo-Boolean Optimization Problem 355

Number of branching Found solution Time complexity
Greedy algorithm 47 34

1 47 82
2 56 141
4 58 202
7 73 281

Table 6.1: The greedy algorithm and the branch and bound algorithm, n = 10

Number of branching Found solution Time complexity
Greedy algorithm 31 90

1 52 216
2 53 341
4 66 492
8 67 862
19 68 1703
32 74 2645
88 78 5403
153 79 8840

Table 6.2: The greedy algorithm and the branch and bound algorithm, n = 20

Number of branching Found solution Time complexity
Greedy algorithm 74 165

1 74 407
2 76 707
5 89 1529
12 106 2850
34 108 6161
139 109 19937
183 111 24662
541 118 54243
589 119 58145
1515 123 126962

Table 6.3: The greedy algorithm and the branch and bound algorithm, n = 30

356 I.S. Masich and L.A. Kazakovtsev

Fig. 6.5: Amount of open branches and value of the record for n = 20

Fig. 6.6: Amount of open branches and value of the record for n = 50

Fig. 6.7: Amount of open branches and value of the record for n = 100

A Branch-and-Bound Algorithm for a Pseudo-Boolean Optimization Problem 357

Number of branching Found solution Time complexity
Greedy algorithm 342 1810

1 342 4874
3 371 12318
8 374 26684
35 388 88616
67 401 158873
70 406 163781

Table 6.4: The greedy algorithm and the branch and bound algorithm, n = 100

Number of branching Found solution Time complexity
Greedy algorithm 708 7380

1 743 20153
2 784 22181
4 798 35944
7 800 70062
11 803 112484
12 840 114011

Table 6.5: The greedy algorithm and the branch and bound algorithm, n = 200

358 I.S. Masich and L.A. Kazakovtsev

7. Conclusions

The main peculiarity of the considered class of problems is that an objective
function and constraint functions are supposed to be defined implicitly, that is,
calculations of the functions in points are possible, but their algebraic notation is
not known. On the one hand, such problems are often met in practice, for example,
when it is necessary to turn to a data array to calculate a function. On the other
hand, even for problems for which algebraic notation of functions is possible, these
functions can be considered as algorithmically defined, which significantly simplifies
the work with an available optimization model.

Such a class of models restricts the number of optimization algorithms available
for application. Of course it is always possible to apply the local search algorithm
or the algorithms of genetic type, but they do not guarantee finding of the exact
solution, and one cannot say how close the found solution is to the optimal one.

At the same time in many practical problems objective functions and constraints
have the same properties, such as unimodality and monotonicity. And these prop-
erties are not taken into account in application of universal algorithms.

The approach presented in this paper is aimed at the reception of an exact
solution of an optimization problem. The realized way of branching divides a branch
which represents a subcube of binary variables space into a great number of branches
a significant part of which is at once subjected to exclusion. It offers quick reduction
of the area in which an optimal solution can be found.

The developed algorithm can be also applied for the problems of high dimen-
sionality. For all that, of course, it will not be proved that the found solution is an
optimal one, if there are still unconsidered open branches. In this case such an al-
gorithm can be considered as improvement of approximate algorithms of boundary
points search, such as a greedy algorithm and random search of boundary points.
Such improvement even on a small number of iterations (branchings) offers signifi-
cant improvement of the found feasible solution.

From now on it is planned to investigate the work of the algorithm on practi-
cal problems: for example, on the problem of capacity planning, the problem of
searching for rules in data in logical algorithms of classification. It is interesting to
compare this algorithm with popular search algorithms such as local search with
multi-start and algorithms of genetic type.

REFERENCES

1. S. Ahmed, M. Tawarmalani, N. V. Sahinidis: A finite branch-and-bound al-

gorithm for two-stage stochastic integer programs. Mathematical Programming.
100(2) (2004), 355–377.

2. A. N. Antamoshkin: Regular Opimization of Pseudo-Boolean Functions. Kras-
noyarsk University Press, Krasnoyarsk, 1989 (in Russian).

A Branch-and-Bound Algorithm for a Pseudo-Boolean Optimization Problem 359

3. A. N. Antamoshkin, I. S. Masich: Heuristic search algorithms for monotone

pseudo-boolean function conditional optimization. Engineering and automation
problems. 5(1) (2006), 55–61.

4. A. Antamoshkin, I. Masich: (2007) Pseudo-Boolean Optimization in Case of

an Unconnected Feasible Set. In: Models and Algorithms for Global Optimization
(A. Törn, J. Žilinskas, eds.), Optimization and Its Applications, vol. 4. Springer,
Boston, MA, 2007.

5. C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh,
P. H. Vance: Branch-and-Price: Column Generation for Solving Huge Integer

Programs. Operations Research. 46(3) (1998), 316–329.

6. R. E. Bellman: Dynamic Programming. Princeton University Press, Princeton,
NJ, 1957.

7. C. Cotta, J. Troya: Embedding Branch and Bound within Evolutionary Algo-

rithms. Applied Intelligence. 18 (2003), 137–153.

8. F. B. Cruz, G. R. Mateus, J. M. Smith: A Branch-and-Bound Algorithm

to Solve a Multi-level Network Optimization Problem. Journal of Mathematical
Modelling and Algorithms. 2(1) (2003), 37–56.

9. J. Desrosiers, M. E. Lubbecke: Branch-Price-and-Cut Algorithms. Wiley En-
cyclopedia of Operations Research and Management Science, 2010.

10. M. A. Efroymson, T. L. Ray: A branch and bound algorithm for plant location.
Operations Research. 14 (1996), 361–368.

11. M. Fischetti, A. Lodi, P. Toth: Solving Real-World ATSP Instances by

Branch-and-Cut. Lecture Notes In Computer Science (2003), 64–77.

12. D. Feillet: A tutorial on column generation and branch-and-price for vehicle

routing problems. 4OR. 8(4), 407–424.

13. J. E. Gallardo, C. Cotta and A. J. Fernandez: A hybrid model of evolution-

ary algorithms and branch-and-bound for combinatorial optimization problems.
2005 IEEE Congress on Evolutionary Computation, 2005, vol. 3, pp. 2248–2254.

14. O. Günlük: A branch-and-cut algorithm for capacitated network design problems.
Mathematical Programming. 86(1) (1999), 17–39.

15. E. R. Hansen: Global optimization using interval analysis. Marcel Dekker New
York, 2004.

16. K. Holmberg, D. Yuan: A Lagrangean Heuristic Based Branch-and-bound Ap-

proach for the Capacitated Network Design Problem. Operations Research. 48(3)
(2000), 461–481.

17. A. H. Land, A. G. Doig: An automatic method of solving discrete programming

problems. Econometrica 28 (1960), 397–520.

18. E. L. Lawler and D. E. Wood: Branch and bounds methods: A survey. Oper-
ations Research. 4(4) (1966), 669–719.

19. J. E. Mitchell: Branch and Cut. Wiley Encyclopedia of Operations Research
and Management Science, 2011.

20. R. M. Nauss: An Improved Algorithm for the Capacitated Facility Location Prob-

lem. The Journal of the Operational Research Society. 29(12) (1978), 1195–1201.

21. M. Padberg, G. Rinaldi: A Branch-and-Cut Algorithm for the Resolution

of Large-Scale Symmetric Traveling Salesman Problems. SIAM Review. 33(1)
(1991), 60–100.

360 I.S. Masich and L.A. Kazakovtsev

22. N. Pascheuer, M. Jünger, G. Reinelt. A Branch and Cut Algorithm for the

Asymmetric Traveling Salesman Problem with Precedence Constraints. Computa-
tional Optimization and Applications. 17(1) (2000), 61–84.

23. C. Pessan, J.-L. Bouquard, E. Néron: Genetic Branch-and-Bound or Exact

Genetic Algorithm? In: Artificial Evolution (N. Monmarché, EG. Talbi, P. Collet,
M. Schoenauer, E. Lutton, eds.), EA 2007. Lecture Notes in Computer Science,
vol. 4926. Springer, Berlin, Heidelberg, 2008.

24. E. L. F. Senne, L. A. N. Lorena, M. A. Pereira: A branch-and-price ap-

proach to p-median location problems. Computers and Operations Research. 32(6)
(2005), 1655–1664.

25. M. Tawarmalani, N. V. Sahinidis: Global optimization of mixed-integer non-

linear programs: A theoretical and computational study. Mathematical Program-
ming. 99(3) (2004), 563–591.

26. D. Vandenbussche, G. L. Nemhauser: A branch-and-cut algorithm for noncon-

vex quadratic programs with box constraints. Mathematical Programming. 102(3)
(2005), 559–575.

Igor S. Masich

Siberian State University of Science and Technology

Department of Systems Analysis and Operations Research

prosp. Krasnoyarskiy Rabochiy, 31

660014 Krasnoyarsk, Russia

is.masich@gmail.com

Lev A. Kazakovtsev

Siberian State University of Science and Technology

Department of Systems Analysis and Operations Research

prosp. Krasnoyarskiy Rabochiy, 31

660014 Krasnoyarsk, Russia

levk@bk.ru

