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ON AN INVARIANT SUBMANIFOLD

OF HYPERBOLIC SASAKIAN MANIFOLDS

Shravan Kumar Pandey and Ram Nawal Singh

Abstract. The objective of the present paper is to study an invariant submanifold of hy-
perbolic Sasakian manifolds. In this paper, we consider semiparallel and 2-semiparallel
invariant submanifolds of hyperbolic Sasakian manifolds and shown that these subman-
ifolds are totally geodesic. It is also proved that on an invariant submanifold of hyper-
bolic Sasakian manifolds the condition I(X,Y ).α = 0, I(X,Y ).∇̃α = 0, C(X,Y ).α = 0
and C(X,Y ).∇̃α = 0 holds if and only if it is totally geodesic.
Keywords: hyperbolic Sasakian manifold, invariant submanifold, semiparallel sub-
manifold, 2-semiparallel submanifold, totally geodesic submanifold

1. Introduction

In 1969, Blair and Ludden [3] studied the hypersurfaces in an almost contact man-
ifolds. Goldberg and Yano [11] studied the non-trivial hypersurfaces of almost
contact manifolds. Sinha and Sharma [23] studied the hypersurfaces of almost
paracontact metric manifold with para (f, g, u, v, λ) structure.

Mishra studied the submanifold of a locally product Riemannian manifold and
an almost complex manifold and almost contact submanifolds in 1968 [15] and 1972
[16], respectively. In 1971, Goldberg [12] studied the invariant submanifolds of
codimension 2 of almost contact manifolds. The globally framed f-manifolds and
their metric submanifolds have been studied by Mishra and Rathore [17].

Nowadays, the geometry of submanifolds have become a subject of growing in-
terest for its significant application in applied mathematics and theoretical physics.
For instance, the method of invariant submanifolds is used in the study of non-linear
autonomous systems [13]. Also, the notion of geodesics plays an important role in
the theory of relativity [14]. For totally geodesic submanifolds, the geodesics of
ambient manifolds remain geodesics in the submanifolds. Hence, totally geodesic
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submanifolds have also importance in physical sciences. The study of geometry of
invariant submanifolds was initiated by A. Bejancu and N. Papaghuic [2]. Again,
N. Papaghuic [19] has worked on semi-invariant submanifolds. On the other hand, a
number of works on the geometry of submanifolds have been carried out by U.C. De
and collaborators ([6],[7],[8],[9]). A. Sarkar [20], A.Sarakar and M.Sen [21], S.Sular
and C. Özgur [24] and many others have worked on geometry of submanifolds.

The present paper is organized as follows. In Section 2, we recall the notion of hy-
perbolic Sasakian manifolds and the results related to submanifold theory. Section
3 is devoted to the study of semiparallel and 2-semiparallel invariant submanifolds
of hyperbolic Sasakian manifolds. Section 4 contains the invariant submanifold of
hyperbolic Sasakian manifold satisfying I(X,Y ).α = 0 and I(X,Y ).∇̃α = 0, where
I is the concircular curvature tensor and α is the second fundamental form of the im-
mersion. The last section admits the invariant submanifold of hyperbolic Sasakian
manifold satisfying C(X,Y ).α = 0 and C(X,Y ).∇̃α = 0, where C is the conformal
curvature tensor.

2. Preliminaries

Let M be a complete real differentiable manifold of dimension (2n+1). Let there
exist a tensor field φ of type (1, 1), a vector field ξ and a 1-form η satisfying

(2.1) φ2X = X + η(X)ξ,

(2.2) η(φX) = 0,

for arbitrary vector fields X, Y ∈ TM . Then M is called a hyperbolic contact
manifold ([23],[25]). From the above equation we can easily prove that

(2.3) φξ = 0,

(2.4) η(ξ) = −1.

Let the hyperbolic contact manifold M be endowed with a pseudo-Riemannian met-
ric g such that

(2.5) Φ(X,Y ) = g(φX, Y ),

(2.6) g(φX, φY ) = −g(X,Y )− η(X)η(Y ),

(2.7) g(X, ξ) = η(X).

A hyperbolic contact structure satisfying the equations (2.1) to (2.6) is said to be
a hyperbolic contact metric manifold [25].
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A hyperbolic contact metric manifold is said to be a hyperbolic cosymplectic metric
manifold if the structure tensor φ and the 1-form η are parallel with respect to a
symmetric affine connection ∇ on M. Since φ2 = I + η⊗ ξ, the vector field ξ is also
parallel with respect to ξ, i.e.

(2.8) (∇Xφ)(Y ) = 0,

(2.9) (∇Xη)(Y ) = 0,

(2.10) ∇Xξ = 0.

A hyperbolic contact metric manifold M in which

(2.11) −2Φ = dη

is satisfied is called an almost hyperbolic Sasakian manifold.
An almost hyperbolic Sasakian manifold M, for which ξ is Killing vector, i.e.

(2.12) (∇Xη)(Y ) + (∇Y η)(X) = 0,

where∇ is the Riemannian connection, is called a hyperbolic K-contact Riemannian
manifold.
In a hyperbolic K-contact Riemannian manifold, the following relations hold

(2.13) Φ(X,Y ) = −(∇Xη)(Y ) = (∇Y η)(X),

(2.14) ∇Xξ = −φX.

A hyperbolic K-contact Riemannian manifold M is called a hyperbolic Sasakian
manifold [23] if

(2.15) (∇Xφ)(Y ) = g(X,Y )ξ − η(Y )X.

In a hyperbolic Sasakian manifold M the following relations hold

(2.16) ′R(X,Y, Z, ξ) = η(R(X,Y )Z) = g(Y, Z)η(X)− g(X,Z)η(Y ),

(2.17) (∇ZΦ)(X,Y ) = g(X,Z)η(Y )− g(Y, Z)η(X),

(2.18) (∇ZΦ)(X,Y ) + Φ(X,Y, Z, ξ) = 0,

(2.19) (∇XΦ)(Y, Z) + (∇Y Φ)(Z,X) + (∇ZΦ)(X,Y ) = 0.

Also, from equation (2.16), we have

(2.20) R(X,Y )ξ = η(Y )X − η(X)Y,
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(2.21) R(ξ, Y )ξ = η(Y )ξ + Y,

(2.22) S(Y, ξ) = (n− 1)η(Y ),

(2.23) Qξ = (n− 1)ξ.

Let M̃ be a submanifold immersed in a (2n+1)-dimensional Riemannian manifold
M. Using the same symbol g, we denote the induced metric on M̃ . Let TM̃ be a
set of all vector fields tangent to M̃ , and T⊥M̃ is a set of all vector fields normal
to M̃ . Then the Gauss and Weingarten formulas are given by [5]

(2.24) ∇XY = ∇̃XY + α(X,Y ),

(2.25) ∇XN = −ANX + ∇̃⊥

XN,

for all vector fields X, Y ∈ TM̃ and N ∈ T⊥M̃ , where ∇̃ is the Riemannian con-
nection on M̃ defined by the induced metric g, and ∇̃⊥ is the normal connection
on T⊥M̃ of M̃ ; α is the second fundamental form of the immersion and AN is the
shape operator with respect to a normal section N. The second fundamental form
α and AN are related by

(2.26) g(α(X,Y ), N) = g(ANX,Y ),

for each X,Y ∈ TM̃ and N ∈ T⊥M̃ . It is also noted that α(X,Y ) is bilinear in X
and Y [5] and since ∇̃fXY = f∇̃XY , for a C∞-function f on a manifold we have

(2.27) α(fX, Y ) = fα(X,Y ).

For the second fundamental form α, the covariant derivative of α is defined by

(2.28) (∇̄Xα)(Y, Z) = ∇̃⊥

X(α(Y, Z))− α(∇̃XY, Z)− α(Y, ∇̃XZ)

for any vector fields X, Y, Z tangent to M̃ . Then ∇̄α is a normal bundle valued
tensor of type (0, 3) and is called the third fundamental form of M̃ . ∇̄ is called
the van der Waerden-Bortolotti connection of M̃ , i.e. ∇̄ is a connection in TM̃ ⊕

T⊥M̃ built with ∇̃ and ∇̃⊥. If ∇̄α = 0, then M̃ is said to have a parallel second
fundamental form [5]. From the Gauss and Weingarten formulas, we obtain

(2.29) R(X,Y )Z = R̃(X,Y )Z +Aα(X,Z)Y −Aα(Y,Z)X.

An immersion is said to be semiparallel [10], if

(2.30) R̄(X,Y ).α = (∇̄X∇̄Y − ∇̄Y ∇̄X − ∇̄[X,Y ]).α = 0

holds for all vector fields X, Y tangent to M̃ , where R̄ denotes the curvature tensor
of the connection ∇̄.
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In [1], the authors have defined and studied submanifolds satisfying the condition

(2.31) R̄(X,Y ).∇̄α = 0

for all vector fields X, Y ∈ TM̃ . Submanifolds satisfying the equation (2.31) are
called 2-semiparallel. Now, from the equation (2.30) we have
(2.32)

(R̄(X,Y ).α)(U, V ) = R̃⊥(X,Y )α(U, V )− α(R̃(X,Y )U, V )− α(U, R̃(X,Y )V ),

for all vector fields X, Y, U and V tangent to M̃ , where

R̃⊥(X,Y ) = [∇̃⊥

X , ∇̃⊥

Y ]− ∇̃⊥

[X,Y ]

and R̄ denotes the curvature tensor of ∇̄.
Similarly, we have

(R̄(X,Y ).∇̄α)(U, V, Z) = R̃⊥(X,Y )(∇̄α)(U, V, Z)− (∇̄α)(R̃(X,Y )U, V, Z)

− (∇̄α)(U, R̃(X,Y )V, Z)− (∇̄α)(U, V, R̃(X,Y )Z),
(2.33)

for all vector fields tangent to M̃ , where [1]

(∇̄α)(U, V, Z) = (∇̄Uα)(V, Z).

Definition 2.1. Let M̃ be a submanifold of a hyperbolic Sasakian manifold M.
The submanifold M̃ of M is said to be invariant if the structure vector field ξ is
tangent to M̃ at every point of M̃ and φX is tangent to M̃ for any vector field X
tangent to M̃ at every point of M̃ , i.e. φTM̃ ⊂ TM̃ at every point of M̃ .

Definition 2.2. A submanifold M̃ of a hyperbolic Sasakian manifold M is called
totally geodesic if

(2.34) α(X,Y ) = 0 or equivalentally AN = 0

for all X, Y ∈ TM̃ and any N ∈ T⊥M̃ .

3. Semiparallel and 2-Semiparallel Invariant Submanifolds of

Hyperbolic Sasakian Manifolds

Lemma 3.1. [22] For an invariant submanifold M̃ of a hyperbolic Sasakian man-

ifold M, we have for the two differentiable tangent vectors X, Y of M̃

(3.1) α(X, ξ) = 0,

(3.2) α(X,φY ) = φα(X,Y ) = α(φX, Y ).
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Lemma 3.2. [22] If M̃ is an invariant submanifold of a hyperbolic Sasakian man-

ifold M. Then the following holds on M̃

(3.3) ∇̃Xξ = −φX,

(3.4) R̃(X,Y )ξ = η(Y )X − η(X)Y,

(3.5) R̃(ξ,X)Y = g(X,Y )ξ − η(Y )X,

(3.6) Q̃Y = (n− 1)Y, Q̃ξ = (n− 1)ξ,

(3.7) S̃(X, ξ) = (n− 1)η(X),

Proposition 3.1. [22] An invariant submanifold M̃ of a hyperbolic Sasakian man-

ifold M is also hyperbolic Sasakian.

Theorem 3.1. Let M̃ be an invariant submanifold of a hyperbolic Sasakian man-

ifold M. Then M̃ is semiparallel if and only if it is totally geodesic.

Proof: Let M̃ be an invariant submanifold of a hyperbolic Sasakian manifold and
let M̃ be semiparallel, i.e. R̄.α = 0. Then from the equation (2.32), we have

(3.8) R̃⊥(X,Y )α(U, V )− α(R̃(X,Y )U, V )− α(U, R̃(X,Y )V ) = 0.

Taking X = V = ξ in the above equation, we get

(3.9) R̃⊥(ξ, Y )α(U, ξ) − α(R̃(ξ, Y )U, ξ)− α(U, R̃(ξ, Y )ξ) = 0.

In view of the equation (3.1), the above equation reduces to

(3.10) α(U, R̃(ξ, Y )ξ) = 0.

By virtue of the equation (3.5), the above equation takes the form

α(U, ξ)η(Y ) + α(U, Y ) = 0,

which, on using the equation (3.1), gives

α(U, Y ) = 0.

This shows that M̃ is totally geodesic. The converse of the statement is trivial.
This completes the proof.

Theorem 3.2. Let M̃ be an invariant submanifold of a hyperbolic Sasakian man-

ifold M. Then M̃ has a parallel second fundamental form if and only if M̃ is totally

geodesic.
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Proof: Since M̃ has a parallel second fundamental form, it follows from the equa-
tion (2.28), that

(3.11) (∇̄Xα)(Y, Z) = ∇̃⊥

X(α(Y, Z))− α(∇̃XY, Z)− α(Y, ∇̃XZ) = 0.

Now, putting Z = ξ in the above equation and using the equation (3.1), we get

−α(Y, ∇̃Xξ) = 0.

Thus in view of the equation (3.3), we have

(3.12) α(Y, φX) = 0.

Replacing X by φX in the above equation and using the equations (2.1) and (3.1),
we get

α(Y,X) = 0,

, which shows that M̃ is totally geodesic. The converse statement is trivial. This
completes the proof.

Theorem 3.3. An invariant submanifold M̃ of a hyperbolic Sasakian manifold M

is 2-semiparallel if and only if M̃ is totally geodesic.

Proof: Let M̃ be a 2-semiparallel, i.e. R̄.∇̄α = 0. Then, in view of the equation
(2.33), we have

R̃⊥(X,Y )(∇̄α)(U, V, Z)− (∇̄α)(R̃(X,Y )U, V, Z)− (∇̄α)(U, R̃(X,Y )V, Z)

− (∇̄α)(U, V, R̃(X,Y )Z) = 0.
(3.13)

Taking X = V = ξ in the above equation, we get

R̃⊥(ξ, Y )(∇̄α)(U, ξ, Z)− (∇̄α)(R̃(ξ, Y )U, ξ, Z)− (∇̄α)(U, R̃(X,Y )V, Z)

− (∇̄α)(U, ξ, R̃(ξ, Y )Z) = 0.
(3.14)

By virtue of the equations (2.28), (2.32) and (3.1), we have the following equalities

(∇̄α)(U, ξ, Z) = (∇̄Uα)(ξ, Z)

= ∇̃⊥

U (α(ξ, Z)) − α(∇̃Uξ, Z)− α(ξ, ∇̃UZ)

= −α(∇̃Uξ, Z).

(3.15)

Now, using the equation (3.3) in the above equation, we get

(3.16) (∇̄α)(U, ξ, Z) = α(φU,Z),

(∇̄α)(R̃(ξ, Y )U, ξ, Z) = (∇̄R̃(ξ,Y )Uα)(ξ, Z)

= ∇̃⊥

R̃(ξ,Y )U
(α(ξ, Z)) − α(∇̃R̃(ξ,Y )Uξ, Z)− α(ξ, ∇̃R̃(ξ,Y )UZ)

= −α(∇̃R̃(ξ,Y )Uξ, Z)

= α(φ(R̃(ξ, Y )U), Z).

(3.17)
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In view of the equation (3.5), the above equation takes the form

(3.18) (∇̄α)(R̃(ξ, Y )U, ξ, Z) = −η(U)α(φY, Z),

(∇̄α)(U, R̃(ξ, Y )ξ, Z) = (∇̄Uα)(R̃(ξ, Y )ξ, Z)

= ∇̃⊥

U (α(R̃(ξ, Y )ξ, Z))− α(∇̃U R̃(ξ, Y )ξ, Z)

− α(R̃(ξ, Y )ξ, ∇̃UZ),

which, on using the equation (3.4), gives

(3.19) (∇̄α)(U, R̃(ξ, Y )ξ, Z)=∇̃⊥

Uα(Y, Z)−α(∇̃U (η(Y )ξ+Y ), Z)−α(Y, ∇̃UZ).

Now

(∇̄α)(U, ξ, R̃(ξ, Y )Z) = (∇̄Uα)(ξ, R̃(ξ, Y )Z)

= ∇̃⊥

U (α(ξ, R̃(ξ, Y )Z))− α(∇̃Uξ, R̃(ξ, Y )Z)

− α(ξ, ∇̃U R̃(ξ, Y )Z)

= −α(∇̃Uξ, R̃(ξ, Y )Z)

= α(φU, R̃(ξ, Y )Z).

(3.20)

Using the equations (3.16), (3.18), (3.19) and (3.20) in equation (3.14), we get

R̃⊥(ξ, Y )α(φU,Z) + η(U)α(φY, Z) + ∇̃⊥

Uα(Y, Z)

+ α(∇̃U (η(Y )ξ + Y ), Z) + α(Y, ∇̃UZ)− α(φU, R̃(ξ, Y )Z) = 0.
(3.21)

Taking Z = ξ in the above equation and using the equation (3.1), we get

α(Y, φU) = 0.

Putting U = φU in the above equation and using the equations (2.1) and (3.1), we
get

α(Y, U) = 0,

which shows that M̃ is totally geodesic. The converse part is obvious. This com-
pletes the proof.

4. Invariant Submanifold of Hyperbolic Sasakian Manifolds Satisfying

Ī(X,Y ).α = 0 and Ī(X,Y ).∇̄α = 0.

The concircular curvature tensor I of an n-dimensional Riemannian manifold is
given by [26]

(4.1) I(X,Y )Z = R(X,Y )Z −
r

n(n− 1)
[g(Y, Z)X − g(X,Z)Y ],
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for all vector fields X, Y and Z on M, where r is the scalar curvature of M .
Putting X = ξ in the above equation and using the equations (2.7) and (3.5), we
get

(4.2) Ĩ(ξ, Y )Z = [1−
r̃

n(n− 1)
][g(Y, Z)ξ − η(Z)Y ],

which gives

(4.3) Ĩ(ξ, Y )ξ = [1−
r̃

n(n− 1)
][η(Y )ξ + Y ],

where Ĩ is the concircular curvature tensor of M̃ .
Similar to the equations (2.32) and (2.33) the tensors Ī(X,Y ).α and Ī(X,Y ).∇̄α

are defined by [18]

(4.4) (Ī(X,Y ).α)(U, V ) = R̃⊥(X,Y )α(U, V )− α(Ĩ(X,Y )U, V )− α(U, Ĩ(X,Y )V )

and

(Ī(X,Y ).∇̄α)(U, V, Z) = R̃⊥(X,Y )(∇̄α)(U, V, Z)− (∇̄α)(Ĩ(X,Y )U, V, Z)

− (∇̄α)(U, Ĩ(X,Y )V, Z)− (∇̄α)(U, V, Ĩ(X,Y )Z),
(4.5)

respectively.

Theorem 4.1. On an invariant submanifold M̃ of a hyperbolic Sasakian manifold

M, the condition Ī(X,Y ).α = 0 holds if and only if it is totally geodesic provided

that r̃ 6= n(n− 1).

Proof: Suppose M̃ satisfies the condition Ī(X,Y ).α(U, V ) = 0. Then from the
equation (4.4), we have

(4.6) R̃⊥(X,Y )α(U, V )− α(Ĩ(X,Y )U, V )− α(U, Ĩ(X,Y )V ) = 0.

Putting X = V = ξ in the above equation, we get

(4.7) R̃⊥(ξ, Y )α(U, ξ)− α(Ĩ(ξ, Y )U, ξ)− α(U, Ĩ(ξ, Y )ξ) = 0,

which, on using the equation (3.1), gives

(4.8) α(U, Ĩ(ξ, Y )ξ) = 0.

Using the equation (4.3) in the above equation, we get

(4.9) [1−
r̃

n(n− 1)
]α(Y, U) = 0,

which shows that α(U, Y ) = 0, provided that r̃ 6= n(n − 1). The converse part is
trivial. This completes the proof.

Theorem 4.2. On an invariant submanifold M̃ of a hyperbolic Sasakian manifold

M, the condition Ī(X,Y ).∇̄α = 0 holds if and only if it is totally geodesic provided

that r̃ 6= n(n− 1).
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Proof: Suppose M̃ satisfies the condition Ī(X,Y ).(∇̄α)(U, V, Z) = 0. Then in
view of the equation (4.5), we have

R̃⊥(X,Y )(∇̄α)(U, V, Z)− (∇̄α)(Ĩ(X,Y )U, V, Z)

− (∇̄α)(U, Ĩ(X,Y )V, Z)− (∇̄α)(U, V, Ĩ(X,Y )Z) = 0.
(4.10)

Taking X = V = ξ in the above equation, we get

R̃⊥(ξ, Y )(∇̄α)(U, ξ, Z)− (∇̄α)(Ĩ(ξ, Y )U, ξ, Z)

− (∇̄α)(U, Ĩ(ξ, Y )ξ, Z)− (∇̄α)(U, ξ, Ĩ(ξ, Y )Z) = 0.
(4.11)

Now, by virtue of the equations (2.28), (3.1), (4.2) and (4.3), we have the following
equalities

(∇̄α)(Ĩ(ξ, Y )U, ξ, Z) = (∇̄Ĩ(ξ,Y )Uα)(ξ, Z)

= ∇̃⊥

Ĩ(ξ,Y )U
(α(ξ, Z)) − α(∇̃Ĩ(ξ,Y )Uξ, Z)− α(ξ, ∇̃Ĩ(ξ,Y )UZ)

= −α(∇̃Ĩ(ξ,Y )Uξ, Z)

= α(φ(Ĩ(ξ, Y )U), Z)

= −[1−
r̃

n(n− 1)
]η(U)α(φY, Z),

(4.12)

(∇̄α)(U, Ĩ(ξ, Y )ξ, Z) = (∇̄Uα)(Ĩ(ξ, Y )ξ, Z)

= ∇̃⊥

U (α(Ĩ(ξ, Y )ξ, Z))− α(∇̃U (Ĩ(ξ, Y )ξ), Z)

− α(Ĩ(ξ, Y )ξ, ∇̃UZ)

= ∇̃⊥

U ((1 −
r̃

n(n− 1)
)α(Y, Z))

− α(∇̃U ((1 −
r̃

n(n− 1)
)(η(Y )ξ + Y ), Z)

− (1−
r̃

n(n− 1)
)α(Y, ∇̃UZ)

(4.13)

and

(∇̄α)(U, ξ, Ĩ(ξ, Y )Z) = (∇̄Uα)(ξ, Ĩ(ξ, Y )Z)

= ∇̃⊥

U (α(ξ, Ĩ(ξ, Y )Z))− α(∇̃Uξ, Ĩ(ξ, Y )Z)

− α(ξ, ∇̃U Ĩ(ξ, Y )Z)

= −[1−
r̃

n(n− 1)
]η(Z)α(φU, Y ).

(4.14)
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Now substituting the equations (3.16), (4.12), (4.13) and (4.14) in the equation
(4.11), we get

R̃⊥(ξ, Y )α(φU,Z) + [1−
r̃

n(n− 1)
]η(U)α(φY, Z) − ∇̃⊥

U ((1 −
r̃

n(n− 1)
)α(Y, Z))

+ α(∇̃U ((1 −
r̃

n(n− 1)
)(η(Y )ξ + Y ), Z) + (1−

r̃

n(n− 1)
)α(Y,∇UZ)

+ [1−
r̃

n(n− 1)
]η(Z)α(φU, Y ) = 0.

(4.15)

Now taking Z = ξ in the above equation and using the equations (3.1) and (3.3),
we get

[1−
r̃

n(n− 1)
]α(Y, φU) = 0,

which, by assuming r̃ 6= n(n− 1), yields

(4.16) α(Y, φU) = 0.

Analogous to the proof of the previous theorem, we have α(Y, U) = 0, which shows
that M is totally geodesic. The converse part is trivial. This completes the proof.

5. Invariant Submanifold of Hyperbolic Sasakian Manifolds Satisfying

C̄(X,Y ).α = 0 and C̄(X,Y ).∇̄α = 0.

The conformal curvature tensor C of an n-dimensional Riemannian manifold is given
by [26]

C(X,Y )Z=R(X,Y )Z−
1

(n− 2)
[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX−g(X,Z)QY ]

+
r

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ],

(5.1)

for all vector fields X,Y and Z on M , where S and r are the Ricci tensor of type
(0, 2) and the scalar curvature respectively of M .
Putting X = ξ in the above equation and using the equations (2.7), (3.5) and (3.7),
we get

(5.2) C̃(ξ, Y )Z =
r̃ − (n− 1)

(n− 1)(n− 2)
[g(Y, Z)ξ−η(Z)Y ]−

1

(n− 2)
[S̃(Y, Z)ξ−η(Z)Q̃Y ],

which, on putting Z = ξ and by use of the equation (2.4), gives

(5.3) C̃(ξ, Y )ξ =
(n− 1)(n− 2) + r̃

(n− 1)(n− 2)
[η(Y )ξ + Y ],
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where C̃ is the conformal curvature tensor of M̃ .
In view of the equations (2.32) and (2.33), the tensors C̄(X,Y ).α and C̄(X,Y ).∇̄α

are defined by [18]

(5.4) (C̄(X,Y ).α)(U, V ) = R̃⊥(X,Y )α(U, V )−α(C̃(X,Y )U, V )−α(U, C̃(X,Y )V )

and

(C̄(X,Y ).∇̄α)(U, V, Z) = R̃⊥(X,Y )(∇̄α)(U, V, Z)− (∇̄α)(C̃(X,Y )U, V, Z)

− (∇̄α)(U, C̃(X,Y )V, Z)− (∇̄α)(U, V, C̃(X,Y )Z)
(5.5)

respectively.

Theorem 5.1. On an invariant submanifold M̃ of a hyperbolic Sasakian manifold

M, the condition C̄(X,Y ).α = 0 holds if and only if it is totally geodesic provided

that r̃ 6= −(n− 1)(n− 2).

Proof: Suppose M̃ satisfies the condition (C̄(X,Y ).α)(U, V ) = 0. Then from the
equation (5.4), we have

(5.6) R̃⊥(X,Y )α(U, V )− α(C̃(X,Y )U, V )− α(U, C̃(X,Y )V ) = 0.

Putting X = V = ξ in the above equation, we get

(5.7) R̃⊥(ξ, Y )α(U, ξ)− α(C̃(ξ, Y )U, ξ)− α(U, C̃(ξ, Y )ξ) = 0,

which, on using the equation (3.1), gives

(5.8) α(U, C̃(ξ, Y )ξ) = 0.

Using the equation (5.3) in the above equation, we get

(5.9) [
r̃ + (n− 1)(n− 2)

(n− 1)(n− 2)
]α(Y, U) = 0,

which shows that α(U, Y ) = 0, provided that r̃ 6= −(n − 1)(n − 2). The converse
statement is trivial. This completes the proof.

Theorem 5.2. On an invariant submanifold M̃ of a hyperbolic Sasakian manifold

M, the condition C̄(X,Y ).∇̄α = 0 holds if and only if it is totally geodesic provided

that r̃ 6= (n− 1).

Proof: Suppose M̃ satisfies the condition C̄(X,Y ).(∇̄α)(U, V, Z) = 0. Then in
view of the equation (5.5), we have

R̃⊥(X,Y )(∇̄α)(U, V, Z)− (∇̄α)(C̃(X,Y )U, V, Z)

− (∇̄α)(U, C̃(X,Y )V, Z)− (∇̄α)(U, V, C̃(X,Y )Z) = 0.
(5.10)
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Putting X = V = ξ in the above equation, we get

R̃⊥(ξ, Y )(∇̄α)(U, ξ, Z)− (∇̄α)(C̃(ξ, Y )U, ξ, Z)

− (∇̄α)(U, C̃(ξ, Y )ξ, Z)− (∇̄α)(U, ξ, C̃(ξ, Y )Z) = 0.
(5.11)

Now, by virtue of the equations (2.28), (3.1), (5.2) and (5.3), we have the following
equations

(∇̄α)(C̃(ξ, Y )U, ξ, Z) = (∇̄C̃(ξ,Y )Uα)(ξ, Z)

= ∇̃⊥

C̃(ξ,Y )U
(α(ξ, Z)) − α(∇̃C̃(ξ,Y )Uξ, Z)

− α(ξ, ∇̃C̃(ξ,Y )UZ)

= α(φ(C̃(ξ, Y )U), Z)

= [
n(n− 1)− r̃

(n− 1)(n− 2)
]η(U)α(φY, Z),

(5.12)

(∇̄α)(U, C̃(ξ, Y )ξ, Z) = (∇̄Uα)(C̃(ξ, Y )ξ, Z)

= ∇̃⊥

U (α(C̃(ξ, Y )ξ, Z))− α(∇̃U (C̃(ξ, Y )ξ), Z)

− α(C̃(ξ, Y )ξ, ∇̃UZ)

= ∇̃⊥

U ((
r̃ + (n− 1)(n− 2)

(n− 1)(n− 2)
)α(Y, Z))

− α(∇̃U ((
r̃ + (n− 1)(n− 2)

(n− 1)(n− 2)
)(η(Y )ξ + Y ), Z)

− (
r̃ + (n− 1)(n− 2)

(n− 1)(n− 2)
)α(Y, ∇̃UZ)

(5.13)

and

(∇̄α)(U, ξ, C̃(ξ, Y )Z) = (∇̄Uα)(ξ, C̃(ξ, Y )Z)

=∇̃⊥

U (α(ξ, C̃(ξ, Y )Z))−α(∇̃Uξ, C̃(ξ, Y )Z)−α(ξ, ∇̃U C̃(ξ, Y )Z)

=
n(n− 1)− r̃

(n− 1)(n− 2)
]η(Z)α(φU, Y ).

(5.14)

In view of the equations (3.16), (5.12), (5.13) and (5.14), the equation (5.11) takes
the form

R̃⊥(ξ, Y )α(φU,Z) + [
n(n− 1)− r̃

(n− 1)(n− 2)
]η(U)α(φY, Z)

− ∇̃⊥

U ((
r̃ + (n− 1)(n− 2)

(n− 1)(n− 2)
)α(Y, Z)) + α(∇̃U ((

r̃ + (n− 1)(n− 2)

(n− 1)(n− 2)
)(η(Y )ξ + Y ), Z)

+ (
r̃ + (n− 1)(n− 2)

(n− 1)(n− 2)
)α(Y, ∇̃UZ)−

n(n− 1)− r̃

(n− 1)(n− 2)
]η(Z)α(φU, Y ) = 0,

(5.15)
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which, on taking Z = ξ and by use of the equations (3.1) and (3.3), gives

(5.16)
(n− 1)− r̃

(n− 1)(n− 2)
α(Y, φU) = 0.

Now putting U = φU in the above equation and using the equations (2.1) and (3.1),
we get

(n− 1)− r̃

(n− 1)(n− 2)
α(Y, U) = 0,

which yields by assuming r̃ 6= (n− 1),

α(Y, U) = 0.

This shows that M̃ is totally geodesic. The converse part is trivial. This completes
the proof.
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