
FACTA UNIVERSITATIS (NIŠ)

Ser. Math. Inform. Vol. 32, No 2 (2017), 181–193

DOI: 10.22190/FUMI1702181P

ON THE CHARACTERIZATION OF TASKS MODELED BY

INTERVAL DESIGN STRUCTURE MATRIX ON

DOMAIN-DRIVEN DESIGN SOFTWARE DEVELOPMENT ∗

Ivan Petković, Petar Rajković and Aleksandar Milenković

Abstract. Development and design of new products of various kinds often contain a
very complex set of relationships among many coupled tasks. Ranking, controlling and
redesigning the features of these tasks can be usefully performed by a suitable model
based on the design structure matrix in an iteration procedure. The proposed interval
approach of design iteration controls and predicts the convergence speed of iteration
work on tasks within a project. Interval method is based on Perron-Frobenius theorem
and interval linear algebra where intervals and interval matrices are employed instead
of real numbers and real matrices. In this way, a more relaxed quantitative estimation
of tasks is achieved and the presence of undetermined quantities is allowed to a certain
extent. The presented model is demonstrated in the example of simplified domain-
driven design process, an approach to software development.
Keywords: Interval method; Perron-Frobenius theorem; Interval linear algebra; Soft-
ware development

1. Introduction

Industrial, software, hardware and manufacturing companies of various types
are faced with the growing demands to improve, upgrade and modernize their pro-
ductivity in the research, development and production of their products. Most
frequently, design and development of new products of various kinds (e.g., indus-
trial innovations, technical products, bioengineering, hardware, software, etc.) deal
with very complex relationships among a large number of mutually connected tasks.
For this reason, solving a given general problem in a large project often requests
the solution step by step, that is, requires the design iteration (the terminology in-
troduced by Smith and Eppinger (see [14], [15]) which involves different, mutually
dependent tasks in the development of a new product. Models that are developed

Received September 24, 2016; accepted October 10, 2016
2010 Mathematics Subject Classification. Primary 15A90, 15A18; Secondary 26A18, 65G30

∗This study was supported by the Serbian Ministry of Education and Science.

181

182 I. Petković, P. Rajković and A. Milenković

or designed by iteration enable an essential insight into the complex relationships
within a design process.

An iterative approach to improve the characteristics of a product is entirely
logical since, naturally, the development and design of products themselves are
often of procedural nature and, therefore, they are carried out through an iterative
process. Using an analytical analysis of a complex system modeled by the so-called
design structure matrix, it is possible to get a proper insight into the individual
contribution or influence of each task in each iteration step. The model can be
regarded as successful if all the planned activities converge after a certain number
of iterative steps. If the number of iterations is smaller, it is clear that the model is
more successful. Such an approach enables a fruitful analysis of the global process
through individual tasks. A further benefit is the recognition of those subsets of
tasks that require the major part of the increased effort in the course of the iterative
process.

Following Eppinger and Browning [1], design structure matrix (DSM) is “a
straightforward and flexible modeling technique that can be used for designing, de-
veloping and managing complex system.” For its clear advantages, such as compact
format, intuitive representation, visual nature and flexibility, DSM has now become
a powerful tool applicable in many disciplines: engineering management, financial
systems, computer science, public policy, natural science, health care management,
etc. It is of interest to note that in recent time a broad range of DSM applications
address such complex issue as aircraft jet engine, Mars Pathfinder spacecraft, he-
licopters, automobile control system, various software, digital printing system and
others, see [1].

In this paper we present an approach based on interval design structure ma-
trix for ranking tasks of a considered design mode and for controlling the speed of
improvement of tasks in design iteration. Such strategy provides a more relaxed
quantitative estimation of tasks. The interval approach has not been considered
in the literature and requires further investigation in different scientific disciplines,
including interval mathematics. A part of research on the mentioned theme was
presented in the dissertation [9]. Some basic concepts and properties of matrix al-
gebra are given in Section 2. A model of design iteration is described in Section 3
applied to a simplified domain-driven design (DDD). Section 4 presents an interval
approach for ranking tasks of a design mode using interval eigenvalues and eigen-
vectors. Finally, a characterization of the design iteration by interval work vectors
is described in Section 5. The proposed methods are illustrated by two examples
taking DDD process as a model.

2. Some basic concepts of matrix algebra

In this section we give some definitions and properties from the (interval) matrix
theory necessary for our analysis of design modes.

Definition 1. Given a real or complex n× n matrix A, a non-zero vector x is

Interval Design Structure Matrix on DDD Software Development 183

called an eigenvector of A if there is a scalar λ such that

Ax = λx.

holds. The scalar λ is called an eigenvalue of A corresponding to the eigenvector
x. The eigenvalue largest in magnitude is the spectral radius of the matrix, denoted
by ρ(A).

Definition 2. An n × n nonnegative matrix A = (aij) (n > 2) is said to be
irreducible (coupled) if and only if for any pair of indices i, j ∈ {1, . . . , n} there is a
sequence of nonzero elements of the matrix A of the form

aii1 , ai1i2 , . . . , aimj (m > n).

Consequently, irreducible matrix cannot be transformed into block upper-triangular
form by permutation.

Definition 3. Let A be a square n × n matrix. Then, A is convergent (to
zero) if the sequence of matrices A,A2, A3, . . . converges to the null matrix O, and
is divergent otherwise.

Theorem 1. A square matrix A of order n × n is convergent if and only if
ρ(A) < 1.

The following theorem has an important role in the analysis of the convergence
of design iterations.

Theorem 2. (Perron-Frobenius [8]) Let A be a nonnegative and irreducible
square matrix of order n× n. Then

1) A has a positive real eigenvalue equal to its spectral radius.

2) To ρ(A) there corresponds a positive eigenvector.

3) ρ(A) increases when any entry of A increases.

4) ρ(A) is a simple eigenvalue of A.

We will use the following denotation. Real numbers are denoted by small letters
a, b, c, . . . ; closed real intervals [a, a] (a 6 a) by capital letters A,B, . . . ; the set
of all such intervals by I(R). The interval [a, a] is nonnegative if a > 0. Matrices
whose elements are from I(R) will be denoted with capitals in bold A,B, . . . or
by (Aij), (Bij), . . . ; the set of these matrices is Mnm(I(R)). Real and interval vec-
tors are denoted uniquely with small bold letters x, y,. . . without being confused.
Finally, point matrices belonging to Mnm(R), will be denoted by A. ,B. , More
about the properties of interval matrices and operations in Mnm(I(R)) can be found
in [5] and [7].

For the purpose of further analysis we introduce the notion of absolute value of
an interval matrix A. For a real interval A = [a, a], we define its absolute value as
|A| := max{|a|, |a|}. Nonnegative real matrix |A| := (|Aij |) is called the absolute
value of interval matrix A = (Aij).

184 I. Petković, P. Rajković and A. Milenković

Definition 4. Interval matrix A is called irreducible if the real matrix |A| is
irreducible.

Definition 5. Interval matrix A = (Aij) is called nonnegative if all elements
Aij are nonnegative intervals.

Remark 1. It is easy to prove that Theorems 1 and 2 hold for an interval
matrix A taking |A| instead of A.

In this paper we will have to estimate the convergence speed of the geometrical
(Neumann) series I+A+A2+ · · ·+ . For this purpose, we use the notion of average
convergence speed introduced by the following definition.

Definition 6. Let A and B be two n × n interval matrices. If ‖Ak‖ < 1 for
some integer k, then

R(Ak) := − ln
[

(‖Ak‖)1/k
]

=
− ln ‖Ak‖

k

is called the average convergence speed for k iterations of the matrix A. If R(Ak) <
R(Bk), it is said that B is iteratively faster than A for k iterations.

Using the result from Varga [17, p. 73] we can directly state the following
assertion.

Theorem 3. Let A be a convergent n × n interval matrix. Then the average
convergence speed R(Ak) for k iterations satisfies the relation

lim
k→∞

R(Ak) = − ln ρ(|A|) =: R∞(A).

The value R∞(A) is called the asymptotic convergence speed. Obviously, the
convergence is slower if the spectral radius of the matrix |A| is closer to 1.

The following example illustrates the introduced concept of convergence speed.

Example 1. For p ∈ [0, 1] let us define the real matrix A as follows

A =
1

p+ 1

[

1 p
0 1

]

.

Its spectral radius is ρ(A) = 1/(p + 1). Therefore, the convergence asymptotic speed is
R∞ = − ln(ρ(A)) = p+ 1. By mathematical induction we find

Ak =
1

(p+ 1)k

[

1 kp
0 1

]

with Euclidean norm ‖Ak‖2 =

√

2 + (kp)2

(p+ 1)k
.

Hence, in regard to Definition 6 and Theorem 3, R(Ak) = ln(p + 1) −
ln(2 + (kp)2)

2k
→

R∞ = ln(p+ 1) when k → ∞ and R(Ak) < R∞ for every finite k. We observe that as the

value of p is larger, the average convergence speed is faster.

Interval Design Structure Matrix on DDD Software Development 185

In Section 5 we are interested in the convergence of the geometrical series I +
A+A2 + · · ·+ and, for this reason, we use the following assertion.

Theorem 4. (Mayer [6]) Let A ∈ Mnn(I(R)). The Neumann (geometrical)
series

∑

∞

k=0
Ak is convergent if ρ(|A|) < 1.

3. Model of design iteration

The solutions of the model of the design iteration can deliver very useful out-
comes: for instance, they can provide some additional information concerning the
considered model, involve reconstruction of the process, enable new engineering
tools, redefine the problems, bound or extend the goals of design, etc. The example
that will illustrate this approach is concerned with domain-driven design process,
an approach to software development.

The method that uses square matrices of the design structure consists of sepa-
rating individual tasks within the design project, or separated blocks of tasks, see
Fig.1. Its main aim is to identify the key structure of the project by analyzing the
relationships among these tasks (or blocks of tasks). More details can be found in
[2] and [16]. In Fig.1 the entries ”x” in each column j of a square scheme indicate
which other tasks get input information from the task j. As an illustration of a
relatively large model, we give a design structure matrix in Fig.1. See [2] for many
examples of design structure matrices applied to various branches.

186 I. Petković, P. Rajković and A. Milenković

42

42

41

4140

40

39

39

38

38

37

37

36

36

35

3534

34

33

33

32

32

31

31

30

30

29

2928

28

27

27

26

2624

24

23

2322

22

21

21

20

20

19

19

18

18

17

17

16

16

15

15

14

14

13

13

12

12

11

11

10

10

9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

25

25

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x
x

x

x

x

x

x

x

x

x

x
x

x

x

x
x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x
x

x

x

x
x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x
x

x
x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x
x

x

xx

x

x

x

x

x

x

x

x

x

x
x

x x

Figure 1: Design structure matrix of a large model

Specific design tasks are arranged into a square matrix A with non-negative
entries, where each row and the corresponding column are associated to one of the
tasks,

A = (aij) =

0 a12 · · · a1n
a21 0 · · · a2n
...

an1 an2 · · · 0

.

The matrix A is called the design structure matrix, or shorter DSM. The co-
efficients of the design structure matrix A represent the intensity of dependence
between tasks, which influences the transfer of work (or rework) on the tasks dur-
ing the iterative process. Each entry aij of A indicates that one unit of work on
design task j creates aij (∈ (0, 1)) units of rework on design task i. For example,
if the strength of this dependence is 10%, then aij = 0.1. Diagonal entries of DSM
are equal to 0 since the task does not depend on its own completion.

Interval Design Structure Matrix on DDD Software Development 187

As already said in Introduction, a greater degree of freedom in the quantitative
estimation of dependence of tasks can be accomplished by using intervals instead
of real numbers in the model presented with interval design structure matrix A =
(Aij), where we deal with real intervals Aij instead of real numbers. For example,
if some task participates in some design process with approximately 10%, it is more
constructive to deal with the interval (0.09, 0.11) (which presents the estimate of at
least 9% and of most 11%) than the fixed number 0.1 (10%). According to Theorem
3 it follows that a process of production should be designed in such way that the
spectral radius ρ(|A|) is as small as possible (and ultimately less than 1), where A

is interval DSM that models the process.

x

x

x

x x x

x x

x

x

x

x

x x

x

x

A

A B

B

C

C

D

D

E

E

F

F

G

G

H

H I

I

C

D

E

F

Influence

strong

moderate

weak/negligible

Gather system requirements

Create domain model (POCO classes)

Create & execute unit test

Create repositories

Create domain services

Extend domain model

Create front-end services

Integration testing

Create documentation

Figure 2: Example of simplified domain-driven design process

For demonstration, in this paper we consider the design structure matrix of
the simplified domain driven design process, see Fig. 2. Domain-driven design
(DDD), the term coined by E. Evans in the book [3], is an approach to software
development where core of the software is a domain model. Domain model contains
POCO classes, unaware of the rest of the infrastructure. More details on DDD can
be found in [3]. In this process task T3 needs input from tasks T2, T4, T5 and T6,
task T1 needs input only from task T2, while task T2 does not need any input to
start. The sub-matrix 4× 4 from Fig. 2 (left) presents an extracted group of tasks,
the so called design mode; it can be also displayed by digraphs (Fig.2, right). These
tasks are mutually related and complex enough so that it takes an iterative process
to finish them. DSM can be used to identify the priority of the tasks, their ranking
and to get insight into the most demanding tasks in the design process.

Design iteration is modeled by the use of the design matrix which obeys the
following properties:

1) All tasks are carried out in every step, meaning fully parallel iterating.

2) Such a model is constructed so that design structure matrix (DSM) is non-
negative and irreducible.

3) Rework is done as a function of work in the previous iterative step.

4) The coefficients Aij of DSM do not vary with time.

A detailed discussion on these assumptions is given in [14].

188 I. Petković, P. Rajković and A. Milenković

4. Ranking the tasks

The problem of ranking the tasks can be solved in a satisfactory way using
Keener’s method [4]. Let P1, . . . , Pn be participants or constitutive elements in
some event (engineering design, competition, game, etc.) whose outcome depends
on the influence of P -s, assuming that interactions between participants exist. For
example, let P1, . . . , Pn be players in a game. Define aij as nonnegative numbers
which depend on the outcome of the game between players i and j, and let mi is the
number of games played by the player i. The elements aij formmatrixA = (aij/mi),
which is called a preference matrix. The task is to find a good method to produce
a ranking list of players to satisfactory objective extent, taking into account both
the outcome of interaction, and the relative strength of the opponents.

Following Keener’s method [4], one can estimate the strength rj of the player
j and form the ranking vector v = (v1, . . . , vn) by a direct manner. The elements
of v determine the position of a player on the ranking list. As proposed in [4], the
ranking place of a participant should be proportional to its score, that is,

Av = λv.

According to the last relation, Definition 1 and Theorem 2, an interesting and
very useful conclusion follows: the ranking vector v is a positive eigenvector of the
nonnegative matrix A.

Let us return to the problem of ranking the tasks. Having in mind that the
design structure matrix A is nonnegative and irreducible, by virtue of the Perron-
Frobenius theorem (Theorem 2 with |A| instead of A), the matrix |A| has one
positive eigenvalue largest in magnitude (and equal to the spectral radius ρ(|A|)
and the corresponding positive eigenvector. Just this eigenvector, denoted by v,
gives the rank of the tasks.

From the previous discussion we conclude the following:

• The largest eigenvalue, say λm, has the dominant influence to the convergence
speed of design iteration.

• The i-th entry of the corresponding eigenvector vm, related to the eigenvalue
λm (= ρ(|A|)), characterizes the relative contribution of the design task i to
the design mode.

• The greater the entry of the positive eigenvector vm, the more important the
influence of that entry (task) to the mode.

In other words, by ranking entries of the corresponding eigenvector, we rank the
contributions of the design tasks. The following example illustrates these conclu-
sions.

Interval Design Structure Matrix on DDD Software Development 189

Example 2. Let interval design structure matrix be given by the interval matrix

A = (Aij) =

0 [0.23, 0.25] [0.28, 0.3] [0.08, 0.1]
[0.18, 0.2] 0 0 [0.23, 0.25]

0 [0.18, 0.2] 0 [0.28, 0.3]
[0.29, 0.31] [0.08, 0.1] [0.18, 0.2] 0

.

This interval matrix is, in fact, a quantitative version of the coupled blocks (tasks T3−T6)
in the domain-driven design shown in Fig. 2. For example, A21 = [0.18, 0.2] means that if
the class diagram is totally redesigned, then the developed single module will take 18 to
20% of rework.

The problem of finding interval eigenvalues and eigenvectors of interval matrices in
general case is not an easy task. Fortunately, we need only dominant eigenvalue (spectral
radius) and the corresponding eigenvector of nonnegative irreducible point matrices so
that the problem is relaxed to a certain extent. Using the programming package INTLAB
created by Rump [12, 13], combined by Rohn’s checking process by random matrices
random (R) ∈ A (107 random matrices were applied [11]), and theoretical results from
Rohn’s paper [10], we have found that the dominant eigenvalue belongs to the interval

Λ1 = [0.5050, 0.5551].

Its corresponding positive interval eigenvector v1 is given by the interval vector

v1 =

[0.2617, 0.2844]
[0.2114, 0.2330]
[0.2191, 0.2409]
[0.2642, 0.2853]

.

From the values of v1 we conclude that the fourth and first task are dominant, that is,

they require more work than the second and third task.

5. Design iterations

In order to follow and control the considered model during the developing and
improving process (for example, that given in Fig. 2), we introduce the notion of the
work (real or interval) vector uk as an n-dimensional vector, whose components may
be real numbers or real interval. Here n is the number of coupled design tasks which
have to be performed. Each component of the work vector contains the information
on the quantity of work which has to be completed on every task after the k-
th iteration. Obviously, the initial work vector u0 is given by u0 = (1, 1, . . . , 1).
Simply, at the beginning of the iteration process the remaining work on all tasks in
the design process is 100%.

The required work is carried out during every iterative step on all design tasks.
However, due to the mutual dependence of tasks (defined by the design structure
matrix A = (Aij)), the work on some task, say i, will request the rework on all
other tasks with the amount depending on the information from the considered task
i. Each element Aij of A denotes that one unit of work on design task j creates
Aij units of rework on design task i (given by an interval, or by real number in a

190 I. Petković, P. Rajković and A. Milenković

special case working in real arithmetic). This means that the matrix A defines the
strength of the dependence between tasks. For example, Aij = [0.6, 0.7] denotes a
strong dependence, while Aij = [0.06, 0.07] denotes a weak dependence.

After the first iteration the remaining work to be performed is calculated as
u1 = Au0, after the second iteration is u2 = A ·Au0 = A2u0, etc. Each iteration
step leads to the change in the work vector. After the k-th iteration the remaining
work is given by

uk = Auk−1 = Aku0.(5.1)

It can be noticed that the described model is analogous to dynamical systems.

The total work vector u, which contains the information about the total work
done on all tasks, is the sum of all work vectors obtained in the course of m iterative
steps:

u =

m
∑

k=0

uk =

m
∑

k=0

Aku0 =

(m
∑

k=0

Ak

)

u0.(5.2)

The obtained quantity u is the total amount of work required for finishing each
task. For example, if the i-th component of u is [1.5, 1.55], this means that 50% to
55% of rework will be necessary for task i after the initial iteration.

To state the conditions under which the sum of interval matrices I +A+A2 +
· · ·+Am in (2) is bounded and converges to a fixed interval matrix as the number
of iterations m grows, we use Theorem 4. According to this theorem, it follows that
this series converges if and only if ρ(|A|) < 1. In that case we have

m
∑

k=0

Ak ⊂

∞
∑

k=0

Ak = (I −A)−1.

According to (2) and the last inclusion, the total work vector can be bounded in
the following way

u =

(m
∑

k=0

Ak

)

u0 ⊂ (I −A)−1u0.(5.3)

Example 3. The characterization of tasks which take part in the design mode
through the eigenvalues and eigenvectors of interval matrix A will be illustrated using
data obtained in Example 2. Design structure matrix A is nonnegative and irreducible
by assumption. According to the Perron-Frobenius theorem (Theorem 2 with |A| instead
of A), there is exactly one positive eigenvalue largest in magnitude (and, therefore, equal
to the spectral radius ρ(|A|)) and the corresponding eigenvector with positive elements.
Assuming that this eigenvalue is less than 1, then it dominantly influences the convergence
speed of the sequence {Ak}, and, consequently, the sequence of work vectors {uk} (ac-
cording to (1)). From Theorem 3 it follows that as its value is higher (but not exceeding
1), the convergence is slower so that such a design mode requires special attention during
the reconstruction of model.

We shall show that the higher the entries of the corresponding positive eigenvector, the
greater the influence of that entry (and the corresponding task) to that mode. We found
in Example 2, were a domain-driven design is considered, that the dominant eigenvalue

Interval Design Structure Matrix on DDD Software Development 191

belongs to the interval Λ1 = [0.5050, 0.5551]. This interval has a dominant influence to the
convergence speed of the sum of interval matrices I +A+A

2 +A
3 + · · · , defining in this

way the slowest design mode. This means that most of the work in the iteration process is
described by that primary design mode. Since |Λ1| = 0.5551... < 1, the geometrical series
I +A+A

2 +A
3 + · · · is convergent (due to Theorem 4).

This is also confirmed by the values of the interval work vectors, evaluated for the first
four iterations,

u1 =

[0.59, 0.65]
[0.41, 0.45]
[0.46, 0.50]
[0.55, 0.61]

, u2 =

[0.267, 0.326]
[0.233, 0.283]
[0.228, 0.273]
[0.286, 0.347]

,

u3 =

[0.1402, 0.1872]
[0.1140, 0.1514]
[0.1221, 0.1605]
[0.1370, 0.1832]

, u4 =

[0.07139, 0.10428]
[0.05677, 0.08322]
[0.05890, 0.08521]
[0.07178, 0.10525]

.

Conclusion: the work done in the second and third task is less than the work in the

first and fourth task.

The formula (3) is applied for the estimation of the vector of total work. The inversion
of the interval matrix I − A is performed by the use of programming package INTLAB
[12]:

(I −A)−1 =

[1.1399, 1.1933] [0.3479, 0.4194] [0.3667, 0.4286] [0.2720, 0.3528]
[0.2915, 0.3501] [1.1154, 1.1618] [0.1374, 0.1811] [0.3168, 0.3798]
[0.1578, 0.2038] [0.2656, 0.3258] [1.1121, 1.1506] [0.3836, 0.4471]
[0.3807, 0.4457] [0.2361, 0.3114] [0.3160, 0.3811] [1.1711, 1.2368]

.

According to this we have estimated the interval total work vector

u ⊂ (I −A)−1
u0 =

[2.1265, 2.3941]
[1.8611, 2.0728]
[1.9191, 2.1273]
[2.1039, 2.3751]

.

The elements of u reveal that the first and fourth task demand more work, as was

concluded from the insight to the values of each work vector u1,u2, . . . and the interval

eigenvalue v1 (see Example 2).

6. Conclusion

In this paper we are concerned with a method for ranking tasks modeled on
design structure interval matrix and a precise interpretation of the model matrix
structure of the design iteration by the use of the eigenvalues and eigenvectors of the
corresponding matrix. Compared to the analysis presented in [15], we give a more
general approach using interval linear algebra where we deal with real intervals
and interval matrices instead of real numbers and real matrices. In this way a

192 I. Petković, P. Rajković and A. Milenković

more relaxed quantitative estimation of tasks is achieved and the presence of the
“undetermined” quantities is allowed to a certain extent (defined by the length of
interval). The use of intervals is natural for practical reasons since many quantities
are available only approximately.

Acknowledgment. The authors are grateful to Professor J. Rohn (Institute of
Computer Science, Czech Academy of Sciences) for his very fruitful discussion on
interval eigenvalues, and to Professor S. Eppinger from Massachusetts Institute of
Technology (Cambridge, Massachusetts) and Professor G. Mayer from the Univer-
sity of Rostock for their earlier helpful discussions concerning the topic.

REFERENCES

1. S. D. Eppinger and T. R. Browning, Design Structure Matrix Methods and Appli-

cations. MIT Press, Cambridge, MA, 2012.

2. S. D. Eppinger, D. E. Witney, R. P. Smith and D. A. Gebala, A model-based

method for organizing tasks in product development. Res. Engineering Design 6 (1994),
1–13.

3. E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley, 2004.

4. J. P. Keener, The Perron-Frobenius theorem and the ranking of football teams. SIAM
Review 35 (1993), 80–93.

5. G. Mayer, On the convergence of power of interval matrices. Linear Algebra with
Applications 58 (1984), 201–216.

6. G. Mayer, On the convergence of the Neumann series in interval analysis. Linear
Algebra with Applications 65 (1985), 63–70.

7. G. Mayer, Interval Analysis and Automatic Result Verification. Walter de Gruyter
(to appear).

8. C. Meyer, Matrix Analysis and Applied Linear Algebra. SIAM, 2000.

9. I. Petković, Analysis of Processor and Computational Iterations by Applying Modern

Computer Arithmetics. Ph. D. Thesis, Faculty of Electronic Engineering, University of
Nǐs, Nǐs, 2011.

10. J. Rohn, Perron vectors of an irreducible nonnegative interval matrix. Linear and
Multilinear Algebra 54 (2006), 399–404.

11. J. Rohn, Eigenvalues and eigenvectors of interval matrices (private correspondence).

12. S. M. Rump, INTLAB - INTerval LABoratory. In: Proceedings of a Conference on
Developments in Reliable Computing (T. Csendes, ed.), Kluwer Academic Publishers,
Dordrecht, 1999, pp. 77–104.

13. S. M. Rump, Verification methods: Rigorous results using floating-point arithmetic.
Acta Numerica 19 (2010), 287–449.

14. R. P. Smith, Development and verification of engineering design iteration models. Ph.
D. Thesis, MIT Sloan School of Management, Cambridge, MA, 1992.

15. R. P. Smith and S. D. Eppinger, Identifying controlling features of engineering

design iteration. Management Science 43 (1997), 276–293.

Interval Design Structure Matrix on DDD Software Development 193

16. D. V. Steward, The design structure system: a model for managing the design of

complex systems. IEEE Trans. Engineering Management EM-28 (1981), 71–74.

17. R. S. Varga, Matrix Iterative Analysis. Springer-Verlag, Berlin-Heidelberg, 2009.

Ivan Petković

Faculty of Electronic Engineering

University of Nǐs

A. Medvedeva 14

18000 Nǐs, Serbia

ivan.petkovic@elfak.ni.ac.rs

Petar Rajković

Faculty of Electronic Engineering

University of Nǐs

A. Medvedeva 14

18000 Nǐs, Serbia

petar.rajkovic@elfak.ni.ac.rs

Aleksandar Milenković

Faculty of Electronic Engineering

University of Nǐs

A. Medvedeva 14

18000 Nǐs, Serbia

aleksandar.milenkovic@elfak.ni.ac.rs

