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A STUDY OF THE STABILITY IN NEUTRAL NONLINEAR
DIFFERENTIAL EQUATIONS WITH FUNCTIONAL DELAY VIA

FIXED POINTS

Mouataz Billah Mesmouli, Abdelouaheb Ardjouni and Ahcene Djoudi

Abstract. In this paper, we use a modification of Krasnoselskii’s fixed point theorem
introduced by Burton (see [8] Theorem 3) to obtain stability results of the zero solution
of totally nonlinear neutral differential equations with functional delay

x′ (t) = −a (t)h (x (t− τ (t))) + c (t)x′ (t− τ (t)) +G (t, x (t) , x (t− τ (t))) .

The stability of the zero solution of this equation provided that h (0) = G (t, 0, 0) = 0.
The Caratheodory condition is used for the function G.

Key words: Fixed point, stability, nonlinear neutral equation, large contraction map-
ping, integral equation.

1. Introduction

Lyapunov functions and functionals have been successfully used to obtain bounded-
ness, stability and the existence of periodic solutions of differential equations with
functional delays and functional differential equations. In a study of differential
equations with functional delays by using Lyapunov functionals, many difficulties
arise if the delay is unbounded or if the differential equation in question has un-
bounded terms, see [7]–[12] and [14, 23, 28, 29]. In recent years, several investiga-
tors have tried stability by using a new technique. Particularly, Burton, Furumochi,
Zhang and others began a study in which they noticed that some of these difficulties
vanish or might be overcome by means of fixed point theory (see [1]–[6], [12, 13],
[15]–[22] and [25, 26]). The most striking object is that the fixed point method does
not only solve the problem on stability but has a significant advantage over Lya-
punov’s direct method. The conditions of the former are often averages but those
of the latter are usually pointwise (see [9]). While it remains an art to construct
a Liapunov’s functional when it exists, a fixed point method, in one step, yields
existence, uniqueness and stability. All we need to use the fixed point method is a
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complete metric space, a suitable fixed point theorem and an elementary integral
methods to solve problems that have frustrated investigators for decades.

This paper is mainly concerned with the the stability and asymptotic stability
of the zero solution of the nonlinear neutral differential equation with functional
delay expressed as follows

(1.1) x′ (t) = −a (t)h (x (t− τ (t))) + c (t)x′ (t− τ (t)) +G (t, x (t) , x (t− τ (t))) ,

with an assumed initial function x (t) = ψ (t), t ∈ [m0, 0], where ψ ∈ C ([m0, 0] ,R),
m0 = inf {t− τ(t) : t ≥ 0}. Throughout this paper we assume that a ∈ C (R+,R),
c ∈ C1 (R+,R), τ ∈ C2 (R+,R) such that

(1.2) τ ′ (t) 6= 1, t ∈ R+

and h : R → R is continuous and G : R × R × R → R satisfies the Caratheodory
condition with h (0) = G (t, 0, 0) = 0.

Our purpose here is to use a modification of Krasnoselskii’s fixed point theorem
due Burton (see [8], Theorem 3) to give a study of boundedness and stability of
the zero solution which concerns the neutral type of totally nonlinear differential
equation (1.1). So, we resort to the idea of adding and subtracting a linear term,
as noted by Burton in [9], the added term destroys a contraction already present in
part of the equation but it replaces it with the so called a large contraction mapping
which is suitable for fixed point theory. During the process we have to transform
(1.1) into an integral equation written as a sum of two mappings; one is a large
contraction and the other is compact.

The outline of this work is as follows. In Section 2 we introduce the functional
setting of the problem and fix the different notations and facts needed in the sequel.
Section 3 is devoted to the stability and the asymptotic stability of the zero solution.

2. Preliminaries

We begin this section by the following Lemma.

Lemma 2.1. Let v : [m0,∞) → R+ be an arbitrary bounded continuous function
and suppose that (1.2) hold. Then x is a solution of (1.1) if and only if

x (t)

=

[
ψ (0)− c (0)

1− τ ′ (0)
ψ (−τ (0))−

∫ 0

−τ(0)
v (s)h (ψ (s)) ds

]
e−

∫ t
0
v(u)du

+
c (t)

1− τ ′ (t)
x (t− τ (t)) +

∫ t

0

v (s) e−
∫ t
s
v(u)duH (x (s)) ds

+

∫ t

t−τ(t)
v (s)h (x (s)) ds−

∫ t

0

v (s) e−
∫ t
s
v(u)du

[∫ s

s−τ(s)
v (u)h (x (u)) du

]
ds

+

∫ t

0

e−
∫ t
s
v(u)du [p (s)h (x (s− τ (s)))− b (s)x (s− τ (s))

+ G (s, x (s) , x (s− τ (s)))] ds.(2.1)
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where

(2.2) b (s) =
(c′ (s)− c (s) v (s)) (1− τ ′ (s)) + τ ′′ (s) c (s)

(1− τ ′ (s))2
,

(2.3) p (s) = (1− τ ′ (s)) v (s− τ (s))− a (s) ,

and

(2.4) H (x) = x− h (x) .

Proof. Let x be a solution of (1.1). Rewrite the equation (1.1) as

x′ (t) + v (t)x (t) = v (t)x (t)− v (t)h (x (t)) + v (t)h (x (t))− a (t)h (x (t− τ (t)))

+c (t)x′ (t− τ (t)) +G (t, x (t) , x(t− τ (t))

= v (t) [x (t)− h (x (t))] +
d

dt

∫ t

t−τ(t)
v (u)h (x (u)) du

+ [(1− τ ′ (t)) v (t− τ (t))− a (t)]h (x (t− τ (t)))

+c (t)x′ (t− τ (t)) +G (t, x (t) , x (t− τ (t))) ,

Multiply both sides of the above equation by exp
(∫ t

0
v (u) du

)
and then integrate

from 0 to t, we obtain∫ t

0

[
x (s) e

∫ s
0
v(u)du

]′
ds =

∫ t

0

v (s) [x (s)− h (x (s))] e
∫ s
0
v(u)duds

+

∫ t

0

[
d

ds

∫ s

s−τ(s)
v (u)h (x (u)) du

]
e
∫ s
0
v(u)duds

+

∫ t

0

[p (s)h (x (s− τ (s))) + c (s)x′(s− τ(s))

+ G (s, x (s) , x (s− τ (s)))] e
∫ s
0
v(u)duds.

where p (·) is given by (2.3). As a consequence, we arrive at

x (t) e
∫ t
0
v(u)du − ψ (0) =

∫ t

0

v (s) [x (s)− h (x (s))] e
∫ s
0
v(u)duds

+

∫ t

0

[
d

ds

∫ s

s−τ(s)
v (u)h (x (u)) du

]
e
∫ s
0
v(u)duds

+

∫ t

0

[p (s)h (x (s− τ (s))) + c (s)x′(s− τ(s))

+ G (s, x (s) , x (s− τ (s)))] e
∫ s
0
v(u)duds.
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By dividing both sides of the above equation by exp
(∫ t

0
v(u)du

)
we obtain

x (t)− ψ (0) e−
∫ t
0
v(u)du =

∫ t

0

v (s) [x (s)− h (x (s))] e−
∫ t
s
v(u)duds

+

∫ t

0

[
d

ds

∫ s

s−τ(s)
v (u)h (x (u)) du

]
e−

∫ t
s
v(u)duds

+

∫ t

0

[p (s)h (x (s− τ (s))) + c (s)x′(s− τ(s))

+ G (s, x (s) , x (s− τ (s)))] e−
∫ t
s
v(u)duds.(2.5)

Rewrite ∫ t

0

c (s)x′ (s− τ (s)) e−
∫ t
s
v(u)duds

=

∫ t

0

(1− τ ′ (s))x′ (s− τ (s))
c (s)

1− τ ′ (s)
e−

∫ t
s
v(u)duds.

Integration by parts on the above integral with

U =
c (s)

1− τ ′ (s)
e−

∫ t
s
v(u)du, and dV = (1− τ ′ (s))x′ (s− τ (s)) ,

we obtain ∫ t

0

c (s)x′ (s− τ (s)) e−
∫ t
s
v(u)duds

=
c (t)

1− τ ′ (t)
x (t− τ (t))− c (0)

1− τ ′ (0)
ψ (−τ (0)) e−

∫ t
0
v(u)du

−
∫ t

0

b (s)x (s− τ (s)) e−
∫ t
s
v(u)duds,(2.6)

where b (·) is given by (2.2), and in the same way, the integral∫ t

0

[
d

ds

∫ s

s−τ(s)
v (u)h (x (u)) du

]
e−

∫ t
s
v(u)duds

=

[∫ s

s−τ(s)
v (u)h (x (u)) due−

∫ t
s
v(u)du

]t
0

−
∫ t

0

[∫ s

s−τ(s)
v (u)h (x (u)) du

]
v (s) e−

∫ t
s
v(u)duds

=

∫ t

t−τ(t)
v (s)h (x (s)) ds−

∫ 0

−τ(0)
v (s)h (ψ (s)) dse−

∫ t
0
v(u)du

−
∫ t

0

[∫ t

t−τ(t)
v (u)h (x (u)) du

]
v (s) e−

∫ t
s
v(u)duds.(2.7)
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Then substituting (2.6) and (2.7) into (2.5) we obtain(2.1). The converse implication
is easily obtained and the proof is complete.

Now, we give some definitions which its to use in following it

Definition 2.1. The map f : [0,∞) × Rn → R is said to satisfy Carathéodory
conditions with respect to L1 [0,∞) if the following conditions hold.

(i) For each z ∈ Rn, the mapping t 7→ f (t, z) is Lebesgue measurable.

(ii) For almost all t ∈ [0,∞), the mapping z 7→ f (t, z) is continuous on Rn.

(iii) For each r > 0, there exists αr ∈ L1 ([0,∞) ,R+) such that for almost all
t ∈ [0,∞) and for all z such that |z| < r, we have |f (t, z)| ≤ αr (t).

T.A. Burton studied the theorem of Krasnoselskii (see [9, 27]) and observed
(see [7, 13]) that Krasnoselskii’s result can be more interesting in applications with
certain changes and formulated the Theorem 2.1 below (see [7] for its proof).

Definition 2.2. Let (M, d) be a metric space and assume that B :M→M. B
is said to be a large contraction, if for ϕ, φ ∈M, with ϕ 6= φ, we have d (Bϕ,Bφ) <
d (ϕ, φ), and if ∀ε > 0, ∃δ < 1 such that

[ϕ, φ ∈M, d (ϕ, φ) ≥ ε] =⇒ d (Bϕ,Bφ) < δd (ϕ, φ) .

It is proved in [8] that a large contraction defined on a bounded and complete metric
space has a unique fixed point.

Theorem 2.1. Let M be a closed bounded convex nonempty subset of a Banach
space (X , ‖.‖). Suppose that A and B map M into M such that

(i) A is continuous and AM is contained in a compact subset of M,

(ii) B is large contraction,

(iii) x, y ∈M, implies Ax+By ∈M,

Then there exists z ∈M with z = Az +Bz.

Here we manipulate function spaces defined on infinite t-intervals. So, for com-
pactness we need an extension of the Arzelà-Ascoli theorem. This extension is taken
from [9, Theorem 1.2.2 p. 20] and is as follows.

Theorem 2.2. Let q : R+ → R be a continuous function such that q (t) → 0 as
t → ∞. If {ϕn (t)} is an equicontinuous sequence of Rm-valued functions on R+

with |ϕn (t)| ≤ q (t) for t ∈ R+, then there is a subsequence that converges uniformly
on R+ to a continuous function ϕ (t) with |ϕ (t)| ≤ q (t) for t ∈ R+, where |.| denotes
the Euclidean norm on Rm.
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3. Main results

From the existence theory, which can be found in [9] or [24], we conclude that
for each continuous initial function ψ ∈ C ([m0, 0] ,R), there exists a continuous
solution x (t, 0, ψ) which satisfies (1.1) on an interval [0, σ) for some σ > 0 and
x (t, 0, ψ) = ψ (t), t ∈ [m0, 0]. We refer the reader to [9] for the stability definitions.

To apply Theorem 2.1, we need to define a Banach space X , a closed bounded
convex subset M of X and construct two mappings; one large contraction and the
other is compact operator. So, let w : [m0,∞) → [1,∞) be any strictly increasing
and continuous function with w (m0) = 1, w (t) → ∞ as t → ∞. Let (S, |·|w) be
the Banach space of continuous ϕ : [m0,∞)→ R for which

|ϕ|w = sup
t∈[m0,∞)

∣∣∣∣ϕ (t)

w (t)

∣∣∣∣ <∞.
Let R ∈ (0, 1] and define the set

M : = {ϕ ∈ S : ϕ is Lipschitzian, |ϕ (t)| ≤ R, t ∈ [m0,∞) ,

ϕ (t) = ψ (t) if t ∈ [m0, 0]} .(3.1)

Clearly, if {ϕn} is a sequence of k-Lipschitzian functions converging to some function
ϕ, then

|ϕ (t)− ϕ (s)| = |ϕ (t)− ϕn (t) + ϕn (t)− ϕn (s) + ϕn (s)− ϕ (s)|
≤ |ϕ (t)− ϕn (t)|+ |ϕn (t)− ϕn (s)|+ |ϕn (s)− ϕ (s)|
≤ k |t− s| ,

as n→∞, which implies ϕ k-Lipschitzian. It is clear that M is closed convex and
bounded. For ϕ ∈ M and t ≥ 0, we define by (2.1) the mapping P : M → S as
follows:

(Pϕ) (t)

=

[
ψ (0)− c (0)

1− τ ′ (0)
ψ (−τ (0))−

∫ 0

−τ(0)
v (s)h (ψ (s)) ds

]
e−

∫ t
0
v(u)du

+
c (t)

1− τ ′ (t)
ϕ (t− τ (t)) +

∫ t

0

v (s) e−
∫ t
s
v(u)duH (ϕ (s)) ds

+

∫ t

t−τ(t)
v (s)h (ϕ (s)) ds−

∫ t

0

v (s) e−
∫ t
s
v(u)du

[∫ s

s−τ(s)
v (u)h (ϕ (u)) du

]
ds

+

∫ t

0

e−
∫ t
s
v(u)du [p (s)h (ϕ (s− τ (s)))− b (s)ϕ (s− τ (s))

+ G (s, ϕ (s) , ϕ (s− τ (s)))] ds.(3.2)

Therefore, we express equation (3.2) as

Pϕ = Aϕ+ Bϕ,
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where A,B :M→ S are given by

(Aϕ) (t) =
c (t)

1− τ ′ (t)
ϕ (t− τ (t)) +

∫ t

t−τ(t)
v (s)h (ϕ (s)) du

−
∫ t

0

v (s) e−
∫ t
s
v(u)du

[∫ s

s−τ(s)
v (u)h (ϕ (u)) du

]
ds

+

∫ t

0

e−
∫ t
s
v(u)du [p (s)h (ϕ (s− τ (s)))− b (s)ϕ (s− τ (s))

+ G (s, ϕ (s) , ϕ (s− τ (s)))] ds,(3.3)

and

(Bϕ) (t) =

[
ψ (0)− c (0)

1− τ ′ (0)
ψ (−τ (0))−

∫ 0

−τ(0)
v (s)h (ψ (s)) ds

]
e−

∫ t
0
v(u)du

+

∫ t

0

v (s) e−
∫ t
s
v(u)duH (ϕ (s)) ds.(3.4)

By applying Theorem 2.1, we need to prove that P has a fixed point ϕ on the
set M, where x (t, 0, ψ) = ϕ (t) for t ≥ 0 and x (t, 0, ψ) = ψ (t) on [m0, 0], x (t, 0, ψ)
satisfies (1.1) and |x (t, 0, ψ)| ≤ R with R ∈ (0, 1]. For t ≥ 0, we will assume that
the following conditions hold.

The function h is locally Lipschitz continuous, then for x, y ∈ M there exist a
constant E > 0, such that

(3.5) |h (x)− h (y)| ≤ E ‖x− y‖ ,

The function G satisfies Carathéodory conditions with respect to L1 [0,∞), such
that

(3.6) |G (t, ϕ (t) , ϕ (t− τ (t)))| ≤ g√2R (t) ,

(3.7) α1 = sup
t∈[0,∞)

∣∣∣∣ c (t)

1− τ ′ (t)

∣∣∣∣ ,
(3.8) β1β2E1 ≤

α2

2
,

where β1 = maxt∈[0,∞) |τ (t)|, β2 = maxt∈[0,∞) {v (t)},

(3.9) |p (t)|E1 ≤ α3v (t) ,

(3.10) |b (t)| ≤ α4v (t) ,
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(3.11) g√2R (t) ≤ α5v (t)R,

(3.12) J [α1 + α2 + α3 + α4 + α5] ≤ 1,

where αi, 1 ≤ i ≤ 5 are positive constants and J > 3. Now, let α (t) = c(t)
1−τ ′(t) and

assume that there are constants l1, l2, l3 > 0 such that for 0 ≤ t1 < t2

(3.13) |α (t2)− α (t1)| ≤ l1 |t2 − t1| ,

(3.14) |τ (t2)− τ (t1)| ≤ l2 |t2 − t1| ,

(3.15)

∣∣∣∣∫ t2

t1

v (u) du

∣∣∣∣ ≤ l3 |t2 − t1| .
By a series of steps we will prove the fulfillment of (i), (ii) and (iii) in Theorem
2.1.

Lemma 3.1. For A defined in (3.3), suppose that (1.2) and (3.5)–(3.15) hold.
Then, A :M→M and A is continuous and AM is contained in a compact subset
of M.

Proof. Let A be defined by (3.3). Observe that in view of (3.5) we have

|h (x)| = |h (x)− h (0) + h (0)|
≤ |h (x)− h (0)|+ |h (0)|
≤ E ‖x‖ ,

So, for any ϕ ∈M, we have

|Aϕ(t)| ≤
∣∣∣∣ c (t)

1− τ ′ (t)
ϕ (t− τ (t))

∣∣∣∣+

∫ t

t−τ(t)
v (u) |h (ϕ (u))| du

+

∫ t

0

v(s)e−
∫ t
s
v(u)du

[∫ s

s−τ(s)
v(u) |h (ϕ(u))| du

]
ds

+

∫ t

0

e−
∫ t
s
v(u)du |p (s)| |h (ϕ (s− τ (s)))| ds

+

∫ t

0

e−
∫ t
s
v(u)du [|b (s)ϕ(s− τ (s))|+ |G (s, ϕ (s) , ϕ (s− τ (s)))|] ds,
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thus

|Aϕ(t)| ≤
∣∣∣∣ c (t)

1− τ ′ (t)

∣∣∣∣R+R

∫ t

t−τ(t)
v (u)Edu

+R

∫ t

0

v (s) e−
∫ t
s
v(u)du

[∫ s

s−τ(s)
v (u)Edu

]
ds

+R

∫ t

0

e−
∫ t
s
v(u)du |p (s)|E1ds

+R

∫ t

0

e−
∫ t
s
v(u)du

(
|b (s)|+

g√2R (s)

R

)
ds

≤ α1R+
α2

2
R+

α2

2
R+ α3R+ α4R+ α5R

≤ R

J
< R.

That is ‖Aϕ‖ < R. Second we show that, for any ϕ ∈ M the function Aϕ is
Lipschitzian. Let ϕ ∈M, and let 0 ≤ t1 < t2, then

|Aϕ (t2)−Aϕ (t1)|

≤
∣∣∣∣ c (t2)

1− τ ′ (t2)
ϕ (t2 − τ (t2))− c (t1)

1− τ ′ (t1)
ϕ (t1 − τ (t1))

∣∣∣∣
+

∣∣∣∣∣
∫ t2

t2−τ(t2)
v (s)h (ϕ (s)) du−

∫ t1

t1−τ(t1)
v (s)h (ϕ (s)) ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t2

0

v (s) e−
∫ t2
s
v(u)du

[∫ s

s−τ(s)
v (u)h (ϕ (u)) du

]
ds

−
∫ t1

0

v (s) e−
∫ t1
s
v(u)du

[∫ s

s−τ(s)
v (u)h (ϕ (u)) du

]
ds

∣∣∣∣∣
+

∣∣∣∣∫ t2

0

e−
∫ t2
s
v(u)dup (s)h (ϕ (s− τ (s))) ds

−
∫ t1

0

e−
∫ t1
s
v(u)dup (s)h (ϕ (s− τ (s))) ds

∣∣∣∣
+

∣∣∣∣∫ t2

0

e−
∫ t2
s
v(u)du [−b (s)ϕ (s− τ (s)) +G (s, ϕ (s) , ϕ (s− τ (s)))] ds

−
∫ t1

0

e−
∫ t1
s
v(u)du [−b (s)ϕ (s− τ (s)) +G (s, ϕ (s) , ϕ (s− τ (s)))] ds

∣∣∣∣ .(3.16)
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By hypotheses (3.13)–(3.15), we have by adding and substracting of terms

∣∣∣∣∣
∫ t2

t2−τ(t2)
v (s)h (ϕ (s)) ds−

∫ t1

t1−τ(t1)
v (s)h (ϕ (s)) ds

∣∣∣∣∣
≤ ER

(∫ t2

t1

v (s) ds+

∫ t2−τ(t2)

t1−τ(t1)
v (s) ds

)

≤ ER

(∫ t2

t1

v (s) ds+

∫ t2−τ(t2)

t1−τ(t1)
v (s) ds

)
≤ ERl3 |t2 − t1|+ ERl3 (1 + l2) |t2 − t1|
= (2ERl3 + ERl3l2) |t2 − t1| ,(3.17)

and

|α (t2)ϕ (t2 − τ (t2))− α (t1)ϕ (t1 − τ (t1))|
≤ αk |(t2 − t1)− (τ (t2)− τ (t1))|+Rl1 |t2 − t1|
≤ (αk + αkl2 +Rl1) |t2 − t1| ,(3.18)

where k is the Lipschitz constant of ϕ. By the hypotheses (3.9) and (3.15), we have

∣∣∣∣∫ t2

0

e−
∫ t2
s
v(u)dup (s)h (ϕ (s− τ (s))) ds

−
∫ t1

0

e−
∫ t1
s
v(u)dup (s)h (ϕ (s− τ (s))) ds

∣∣∣∣
≤

∣∣∣∣∫ t1

0

p (s)h (ϕ (s− τ (s))) e−
∫ t1
s
v(u)du

(
e−

∫ t2
t1
v(u)du − 1

)
ds

∣∣∣∣
+

∣∣∣∣∫ t2

t1

e−
∫ t2
s
v(u)dup (s)h (ϕ (s− τ (s))) ds

∣∣∣∣
≤ α3R

∣∣∣e− ∫ t2
t1
v(u)du − 1

∣∣∣ ∫ t1

0

v (s) e−
∫ t1
s
v(u)duds

+ER

∫ t2

t1

e−
∫ t2
s
v(u)du |p (s)| ds.
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Consequently,∣∣∣∣∫ t2

0

e−
∫ t2
s
v(u)dup (s)h (ϕ (s− τ (s))) ds

−
∫ t1

0

e−
∫ t1
s
v(u)dup (s)h (ϕ (s− τ (s))) ds

∣∣∣∣
≤ α3R

∫ t2

t1

v (u) du+ ER

∫ t2

t1

e−
∫ t2
s
v(u)dud

(∫ s

t1

|p (r)| dr
)
ds

= α3R

∫ t2

t1

v (u) du+ ER

[
e−

∫ t2
s
v(u)du

∫ s

t1

|p (r)| dr
]t2
t1

+ER

∫ t2

t1

v (s) e−
∫ t2
s
v(u)du

∫ s

t1

|p (r)| drds

≤ α3R

∫ t2

t1

v (u) du+ ER

∫ t2

t1

|p (s)| ds
(

1 +

∫ t2

t1

v (s) e−
∫ t2
s
v(u)duds

)
≤ α3R

∫ t2

t1

v (u) du+ 2ER

∫ t2

t1

|p (s)| ds

≤ α3R

∫ t2

t1

v (u) du+ 2α3R

∫ t2

t1

v (u) du ≤ 3α3Rl3 |t2 − t1| .(3.19)

In the same way, by (3.8), (3.11), (3.12) and (3.15), we have∣∣∣∣∫ t2

0

e−
∫ t2
s
v(u)du [−b (s)ϕ (s− τ (s)) +G (s, ϕ (s) , ϕ (s− τ (s)))] ds

−
∫ t1

0

e−
∫ t1
s
v(u)du [−b (s)ϕ (s− τ (s)) +G (s, ϕ (s) , ϕ (s− τ (s)))] ds

∣∣∣∣
≤ 3R (α4 + α5) l3 |t2 − t1| ,(3.20)

and ∣∣∣∣∣
∫ t2

0

v (s) e−
∫ t2
s
v(u)du

[∫ s

s−τ(s)
v (u)h (ϕ (u)) du

]
ds

−
∫ t1

0

v (s) e−
∫ t1
s
v(u)du

[∫ s

s−τ(s)
v (u)h (ϕ (u)) du

]
ds

∣∣∣∣∣
≤ 3

2
Rα2l3 |t2 − t1| ,(3.21)

Thus, by substituting (3.17)–(3.21) in (3.16), we obtain

|Aϕ (t2)−Aϕ (t1)|
≤ (αk + αkl2 +Rl1) |t2 − t1|+ (2ERl3 + ERl3l2) |t2 − t1|

+3R
(α2

2
+ α3 + α4 + α5

)
l3 |t2 − t1|

= K |t2 − t1| ,
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for some constant K > 0. This shows that Aϕ is Lipschitzian if ϕ is.

Since Aϕ is Lipschitzian, then AM is equicontinuous, which implies that the
set AM resides in a compact set in the space (S, |·|w).

Now, we show that A is continuous in the weighted norm, let ϕn ∈M where n
is a positive integer such that ϕn → ϕ as n→∞. Then∣∣∣∣Aϕn (t)−Aϕ (t)

w (t)

∣∣∣∣
≤

∣∣∣∣ c (t)

1− τ ′ (t)

∣∣∣∣ |ϕn (t− τ (t))− ϕ (t− τ (t))|w

+

∫ t

t−τ(t)
v (s) |h (ϕn (s))− h (ϕ (s))|w ds

+

∫ t

0

v (s) e−
∫ t
s
v(u)du

∫ s

s−τ(s)
v (u) |h (ϕn (u))− h (ϕ (u))|w duds

+

∫ t

0

e−
∫ t
s
v(u)du |p (s)| |h (ϕn (s− τ (s)))− h (ϕ (s− τ (s)))|w ds

+

∫ t

0

e−
∫ t
s
v(u)du |b (s)| |ϕn (s− τ (s))− ϕ (s− τ (s))|w ds

+

∫ t

0

e−
∫ t
s
v(u)du |G (s, ϕn(s), ϕn (s− τ (s)))−G (s, ϕ (s) , ϕ (s− τ (s)))|w ds.

By the Dominated Convergence Theorem, limn→∞ |(Aϕn) (t)− (Aϕ) (t)| = 0. Then
A is continuous. This complete to prove A : M → M is continuous and AM is
contained in a compact subset of M.

Now, we state an important result implying that the mapping H given by (2.4)
is a large contraction on the setM. This result was already obtained in [1, Theorem
3.4] and for convenience we present below its proof. We shall assume that

(H1) h : R→ R is continuous on [−R,R] and differentiable on (−R,R),

(H2) The function h is strictly increasing on [−R,R],

(H3) supt∈(−R,R) h
′ (t) ≤ 1.

Theorem 3.1. Let h : R → R be a function satisfying (H1)–(H3). Then the
mapping H in (2.4) is a large contraction on the set M.

Proof. Let ϕ, φ ∈ M with ϕ 6= φ. Then ϕ(t) 6= φ(t) for some t ∈ R. Let us denote
the set of all such t by D(ϕ, φ), i.e.,

D(ϕ, φ) = {t ∈ R : ϕ(t) 6= φ(t)} .
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For all t ∈ D(ϕ, φ), we have

|(Hϕ) (t)− (Hφ) (t)| ≤ |ϕ(t)− φ(t)− h (ϕ(t)) + h (φ(t))|

≤ |ϕ(t)− φ(t)|
∣∣∣∣1− h (ϕ(t))− h (φ(t))

ϕ(t)− φ(t)

∣∣∣∣ .(3.22)

Since h is a strictly increasing function we have

(3.23)
h (ϕ(t))− h (φ(t))

ϕ(t)− φ(t)
> 0 for all t ∈ D(ϕ, φ).

For each fixed t ∈ D(ϕ, φ) define the interval It ⊂ [−R,R] by

It =

{
(ϕ (t) , φ (t)) if ϕ (t) < φ (t) ,
(φ (t) , ϕ (t)) if φ (t) < ϕ (t) .

The Mean Value Theorem implies that for each fixed t ∈ D(ϕ, φ) there exists a real
number ct ∈ It such that

h (ϕ(t))− h (φ(t))

ϕ(t)− φ(t)
= h′ (ct) .

By (H2) and (H3) we have

(3.24) 0 ≤ inf
s∈(−R,R)

h′ (s) ≤ inf
s∈It

h′ (s) ≤ h′ (ct) ≤ sup
s∈It

h′ (s) ≤ sup
s∈(−R,R)

h′ (s) ≤ 1.

Hence, by (3.22)–(3.24) we obtain

(3.25) |(Hϕ) (t)− (Hφ) (t)| ≤ |ϕ(t)− φ(t)|
∣∣∣∣1− inf

s∈(−R,R)
h′ (s)

∣∣∣∣ ,
for all t ∈ D(ϕ, φ). This implies a large contraction in the supremum norm. To
see this, choose a fixed ε ∈ (0, 1) and assume that ϕ and φ are two functions in M
satisfying

ε ≤ sup
t∈(−R,R)

|ϕ(t)− φ(t)| = ‖ϕ− φ‖ .

If |ϕ(t)− φ(t)| ≤ ε
2 for some t ∈ D(ϕ, φ), then we get by (3.24) and (3.25) that

(3.26) |(Hϕ) (t)− (Hφ) (t)| ≤ 1

2
|ϕ(t)− φ(t)| ≤ 1

2
‖ϕ− φ‖ .

Since h is continuous and strictly increasing, the function h
(
s+ ε

2

)
− h (s) attains

its minimum on the closed and bounded interval [−R,R]. Thus, if ε
2 ≤ |ϕ(t)− φ(t)|

for some t ∈ D(ϕ, φ), then by (H2) and (H3) we conclude that

1 ≥ h (ϕ(t))− h (φ(t))

ϕ(t)− φ(t)
> λ,
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where

λ :=
1

2R
min

{
h
(
s+

ε

2

)
− h(s) : s ∈ [−R,R]

}
> 0.

Hence, (3.22) implies

(3.27) |(Hϕ) (t)− (Hφ) (t)| ≤ (1− λ) ‖ϕ− φ‖ .

Consequently, combining (3.26) and (3.27) we obtain

(3.28) |(Hϕ) (t)− (Hφ) (t)| ≤ δ ‖ϕ− φ‖ ,

where

δ = max

{
1

2
, 1− λ

}
.

The proof is complete.

The next result shows the relationship between the mappings H and B in the
sense of large contractions, for this assume that

(3.29) max {|H (−R)| , |H (R)|} ≤ 2R

J
.

Choose γ > 0 small enough such that

(3.30)

[
1 +

∣∣∣∣ c (0)

1− τ ′ (0)

∣∣∣∣+ E

∫ 0

−τ(0)
v (u) du

]
γe−

∫ t
0
v(u)du +

R

J
+

2R

J
≤ R.

The chosen in the relation (3.30) will be used below in Lemma 3.2 and Theorem 3.2
to show that if ε = R and if ‖ψ‖ < γ, then the solutions satisfies |x (t, 0, ψ)| < ε.

Lemma 3.2. Let B be defined by (3.4), suppose (1.2), (3.15), (H1)–(H3), (3.29)
and (3.30) hold. Then B :M→M and B is a large contraction.

Proof. Let B be defined by (3.4). Obviously, B is continuous with the weighted
norm. Let ϕ ∈M

|Bϕ(t)| ≤

∣∣∣∣∣ψ (0)− c (0)

1− τ ′ (0)
ψ (−τ (0))−

∫ 0

−τ(0)
v(s)h (ψ(s)) ds

∣∣∣∣∣ e− ∫ t
0
v(u)du

+

∫ t

0

v(s)e−
∫ t
s
v(u)du |H (ϕ(s))| ds

≤

(
1 +

c (0)

1− τ ′ (0)
+ E

∫ 0

−τ(0)
v(s)ds

)
γe−

∫ t
0
v(u)du

+

∫ t

0

v(s)e−
∫ t
s
v(u)du max {|H (−R)| , |H (R)|} ds < R,
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and we use a method like in Lemma 3.1, we deduce that, for any ϕ ∈M the function
Bϕ is Lipschitzian, which implies B :M→M.

By Theorem 3.1 H is large contraction on M, then for any ϕ, φ ∈ M, with
ϕ 6= φ and for any ε > 0, from the proof of that Theorem, we have found a δ < 1,
such that∣∣∣∣Bϕ (t)− Bφ (t)

w (t)

∣∣∣∣ ≤ ∫ t

0

v(s)e−
∫ t
s
v(u)du |H (ϕ (u))−H (φ (u))|w du

≤ δ |ϕ− φ|w .

The proof is complete.

Theorem 3.2. Assume the hypothesis of Lemmas 3.1 and 3.2 hold. Suppose
(3.30) hold. Let M defined by (3.1). Then the equation (1.1) has a solution in
M.

Proof. By Lemma 3.1, A : M → M is continuous and A(M) is contained in
a compact set. Also, from Lemma 3.2, the mapping B : M → M is a large
contraction. Next, we show that if ϕ, φ ∈ M, we have ‖Aϕ+ Bφ‖ ≤ R. Let
ϕ, φ ∈M with ‖ϕ‖ , ‖φ‖ ≤ R. By (3.5)–(3.12)

‖Aϕ+ Bϕ‖ ≤

[
1 +

∣∣∣∣ c (0)

1− τ ′ (0)

∣∣∣∣+ E

∫ 0

−τ(0)
v (u) du

]
γe−

∫ t
0
v(u)du

+ [α1 + α2 + α3 + α4 + α5]R+
2R

J

≤

[
1 +

∣∣∣∣ c (0)

1− τ ′ (0)

∣∣∣∣+ E

∫ 0

−τ(0)
v (u) du

]
γe−

∫ t
0
v(u)du +

R

J
+

2R

J

≤ R.

Clearly, all the hypotheses of the Krasnoselskii-Burton’s theorem are satisfied. Thus
there exists a fixed point z ∈M such that z = Az + Bz. By Lemma 2.1 this fixed
point is a solution of (1.1). Hence (1.1) is stable.

Now, for the asymptotic stability, define M0 by

M0 : = {ϕ ∈ S : ϕ is Lipschitzian, |ϕ (t)| ≤ R, t ∈ [m0,∞) ,

ϕ (t) = ψ (t) if t ∈ [m0, 0] and |ϕ (t)| → 0 as t→∞} .(3.31)

All of the calculations in the proof of Theorem 3.2 hold with w (t) = 1 when |·|w is
replaced by the supremum norm ‖·‖. Now, assume that

(3.32) t− τ (t)→∞ as t→∞ and

∫ t

0

v (s) ds→∞ as t→∞,

(3.33) α (t) =
c (t)

1− τ ′ (t)
→ 0 as t→∞,
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(3.34)
p (s)

v (t)
→ 0 as t→∞,

(3.35)
b (t)

v (t)
→ 0 as t→∞,

(3.36)
g√2R (t)

v (t)
→ 0 as t→∞.

Lemma 3.3. Let (1.2), (3.5)–(3.15) and (3.32)–(3.36) hold. Then, the operator
A maps M into a compact subset of M.

Proof. First, we deduce by the Lemma 3.1 that A (M) is equicontinuous. Next, we
notice that for arbitrary ϕ ∈M we have

|Aϕ(t)| ≤ α (t)R+ ER

∫ t

t−τ(t)
v(s)ds+ ER

∫ t

0

v(s)e−
∫ t
s
v(u)du

∫ t

t−τ(t)
v(u)duds

+

∫ t

0

e−
∫ t
s
v(u)duv (s)

[∣∣∣∣p (s)

v (s)

∣∣∣∣ER+

∣∣∣∣ b (s)

v (s)

∣∣∣∣R+
g√2R (s)

v (s)

]
ds

: = q (t) .

We see that q (t)→ 0 as t→∞, which implies that the set AM resides in a compact
set in the space (S, ‖·‖) by Theorem 2.2.

Theorem 3.3. Assume the hypothesis of Lemmas 3.1, 3.3 and 3.2 hold. Suppose
(3.30) hold. Let M0 defined by (3.31). Then the equation (1.1) has a solution in
M0.

Proof. Note that, all of the steps in the proof of Theorem 3.2 hold with w (t) = 1
when |·|w is replaced by the supremum norm ‖·‖. It is sufficient to show, for ϕ ∈M0

then Aϕ→ 0 and Bϕ→ 0. Let ϕ ∈M be fixed, we will prove that |Aϕ(t)| → 0 as
t→∞, as above we have

|Aϕ (t)| ≤
∣∣∣∣ c (t)

1− τ ′ (t)
ϕ (t− τ (t))

∣∣∣∣+

∫ t

t−τ(t)
v (u) |h (ϕ (u))| du

+

∫ t

0

v (s) e−
∫ t
s
v(u)du

[∫ s

s−τ(s)
v (u) |h (ϕ (u))| du

]
ds

+

∫ t

0

e−
∫ t
s
v(u)du [|p (s)h (ϕ (s− τ (s)))|+ |b (s)ϕ (s− τ (s))|

+ |G (s, ϕ (s) , ϕ (s− τ (s)))|] ds.

First, we have∣∣∣∣ c (t)

1− τ ′ (t)
ϕ (t− τ (t))

∣∣∣∣ ≤ α1 |ϕ (t− τ (t))| → 0 as t→∞,
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and ∫ t

t−τ(t)
v(u) |h (ϕ (u))| du ≤ ER

∫ t

t−τ(t)
v (u) du→ 0 as t→∞.

Second, let ε > 0 be given. Find T such that |ϕ (t− τ (t))| , |ϕ (t)| < ε, for t ≥ T .
Then we have∫ t

0

v (s) e−
∫ t
s
v(u)du

[∫ s

s−τ(s)
v (u) |h (ϕ (u))| du

]
ds

= e−
∫ t
T
v(u)du

∫ T

0

v (s) e−
∫ T
s
v(u)du

[∫ s

s−τ(s)
v (u) |h (ϕ (u))| du

]
ds

+

∫ t

T

v (s) e−
∫ t
s
v(u)du

[∫ s

s−τ(s)
v (u) |h (ϕ (u))| du

]
ds

≤ e−
∫ t
T
v(u)duα2

2
R+

α2

2
ε,

and ∫ t

0

e−
∫ t
s
v(u)du (|p (s)| |h (ϕ (s− τ (s)))|

+ |b (s)ϕ (s− τ (s))|+ |G (s, ϕ (s) , ϕ (s− τ (s)))|) ds

=

∫ T

0

e−
∫ t
s
v(u)du (|p (s)| |h (ϕ (s− τ (s)))|

+ |b (s)ϕ (s− τ (s))|+ |G (s, ϕ (s) , ϕ (s− τ (s)))|) ds

+

∫ t

T

e−
∫ t
s
v(u)du (|p (s)| |h (ϕ (s− τ (s)))|

+ |b (s)ϕ (s− τ (s))|+ |G (s, ϕ (s) , ϕ (s− τ (s)))|) ds
≤ e−

∫ t
T
v(u)du (α3 + α4 + α5)R+ (α3 + α4 + α5) ε.

By (3.32) the terms e−
∫ t
T
v(u)du α2

2 R and e−
∫ t
T
v(u)du (α3 + α4 + α5)R are, as t→∞,

arbitrarily small. In the same way for Bϕ→ 0. This end the proof.

4. Conclusion

In this paper, we provided an asymptotic stability theorem with sufficient conditions
for nonlinear neutral differential equations. The main tool of this paper is the
method of fixed points. However, by introducing a new fixed mapping, we get new
stability conditions.
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6. E. Biçer, C. Tunç, On the existence of periodic solutions to non-linear neutral differen-
tial equations of first order with multiple delays, Proc. Pakistan Acad. Sci. 52 (2015),
no. 1, 89–94.

7. T. A. Burton, Integral equations, implicit functions, and fixed points, Proc. Amer.
Math. Soc. 124(1996), No. 8, 2383-2390.

8. T. A. Burton, Liapunov functionals, fixed points and stability by Krasnoseskii’s theo-
rem, Nonlinear Stud., 9 (2002), 181–190.

9. T.A. Burton, Stability by Fixed Point Theory for Functional Differential Equations,
Dover Publications, New York, 2006.

10. T.A. Burton, Liapunov functionals, fixed points, and stability by Krasnoselskii’s theo-
rem, Nonlinear Stud. 9 (2001), 181–190.

11. T.A. Burton, Stability by fixed point theory or Liapunov’s theory: A comparison, Fixed
Point Theory 4 (2003), 15–32.

12. T.A. Burton, Fixed points and stability of a nonconvolution equation, Proc. Amer.
Math. Soc. 132 (2004), 3679–3687.

13. T.A. Burton, C. Kirk, A fixed point theorem of Krasnoselskii-Schaefer type, Math.
Nachr. 189 (1998), 23–31.

14. T.A. Burton, T. Furumochi, Krasnoselskii’s fixed point theorem and stability, Nonlin-
ear Anal. 49 (2002), 445–454.

15. T.A. Burton, T. Furumochi, A note on stability by Schauder’s theorem, Funkcial.
Ekvac. 44 (2001), 73–82.

16. T.A. Burton, T. Furumochi, Fixed points and problems in stability theory, Dynam.
Systems Appl. 10 (2001), 89–116.

17. T.A. Burton, T. Furumochi, Krasnoselskii’s fixed point theorem and stability, Nonlin-
ear Anal. 49 (2002), 445–454.

18. T.A. Burton, T. Furumochi, Asymptotic behavior of solutions of functional differential
equations by fixed point theorems, Dynam. Systems Appl. 11 (2002), 499–519.

19. H. Deham, A. Djoudi, Periodic solutions for nonlinear differential equation with func-
tional delay, Georgian Math. J. 15 (2008) 4, 635–642.



Stability in Neutral Nonlinear Differential Equations 627

20. H. Deham, A. Djoudi, Existence of periodic solutions for neutral nonlinear differential
equations with variable delay, Electron. J. Differential Equations 2010 (2010) 127, 1–8.

21. A. Djoudi, R. Khemis, Fixed point techniques and stability for neutral nonlinear dif-
ferential equations with unbounded delays, Georgian Math. J. 13 (2006) 1, 25–34.

22. I. Derrardjia, A. Ardjouni, and A. Djoudi, Stability by Krasnoselskii’s theorem in
totally nonlinear neutral differential equation, Opuscula Math. 33, no. 2 (2013), 255–
272.

23. L. Hatvani, Annulus arguments in the stability theory for functional differential equa-
tions, Differential and Integral Equations 10, 975-1002, (1997).

24. J.K. Hale, Theory of Functional Differential Equation, Springer, New York, 1077.

25. Z. Lin, W. Wei and J. R. Wang, Existence and stability results for impulsive integrodif-
ferential equations, Facta Universitatis (NIŠ), Ser. Math. Inform. Vol. 29, No 2 (2014),
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