
FACTA UNIVERSITATIS (NIŠ)
Ser. Math. Inform. Vol. 29, No 2 (2014), 189–208

TRIANGULATION OF CONVEX POLYGON WITH STORAGE SUPPORT ∗

Predrag Krtolica, Predrag Stanimirović, Milan Tasić, Selver Pepić

Abstract. Unlike the algorithms for convex polygon triangulation which make the trian-
gulation of an n-gon from the scratch, we propose the algorithm making the triangulation
of an (n + 1)-gon on the base of the already found triangulations of an n-gon. For such
a purpose we must maintain suitable file storage to store previously derived triangula-
tions and later use them to generate the triangulations of polygon with one more vertex.
The file storage is partially exploited for the elimination of the duplicates our algorithm
produces. Yet, the generation and elimination of duplicates do not critically decrease our
algorithm performances for smaller values of n.

1. Introduction and Preliminaries

The convex polygon triangulation problem represents finding all possible poly-
gon splittings on triangles by its diagonals without gaps and overlaps of these
splittings. This is a classical problem that has so far been solved in several ways.

Triangulation of a convex polygon with n vertices requires n−3 nonintersecting
internal. For convex polygons, all diagonals are internal diagonals. In this case, the
number of triangulations of a convex n-gon is independent of shape, and therefore,
it can uniquely be characterized by the number of vertices n. It is well known that
the number of triangulations of a convex n-gon is equal to the (n − 2)-th Catalan
number [3, 4], i.e.

Cn−2 =
1

n − 1

(
2n − 4
n − 2

)
, n ≥ 3.

This number grows rapidly. In the following section, we describe our attempt to
employ file storage to make this task less tedious and to eliminate the repetition of
calculations.

In this paper we try to get the (n+1)-gon triangulations on the base of the n-gon
triangulations. A similar approach was used by Hurtado and Noy in [2] where

Received March 17, 2014.; Accepted June 9, 2014.
2010 Mathematics Subject Classification. Primary 68P20; Secondary 68W30,32B25
∗The authors were supported in part by the Research Project 174013 of the Serbian Ministry of Science.

189

190 P. V. Krtolica, P. S. Stanimirović, M. B. Tasić, S. H. Pepić

the tree of the convex polygon triangulations is presented. Also, the algorithm for
generating the triangulations of (n + 1)-gon on the base of n-gon triangulations is
proposed. We will use this distinguished algorithm for comparison purposes later
in the paper. Because of this, in Algorithm 1.1 we present the Hurtado’s algorithm
in an appropriate algorithmical form.

Algorithm 1.1 Hurtado’s algorithm from [2].

Require: Positive integer n and the triangulations of an n-gon. Each triangulation
is described as a structure containing 2n − 3 vertex pairs presenting n-gon
diagonals (here diagonals means both internal diagonals and outer face edges).

1: Check the structure containing 2n − 3 vertex pairs looking for pairs (ik, n),
ik ∈ {1, 2, . . . , n − 1}, 2 � k � n − 1, i.e. diagonals incident to vertex n. The
positions of these indices ik within structure describing a triangulation should
be stored in the array.

2: For every ik perform the transformation (il, n)→ (il, n+ 1), il < ik, 0 � l � n− 2.

3: Insert new pairs (ik, n + 1) and (n, n + 1).

4: Take next ik, if any, and go to Step (2).

5: Continue the above procedure with next n-gon triangulation (i.e. structure
with 2n − 3 vertex pairs) if any. Otherwise halt.

The implementation of Hurtado’s algorithm in several languages is described
in [7].

The paper is organized as follows. In the second section we present our al-
gorithm for the polygon triangulation with file storage support. The application
details are given in the third section. Numerical experience is presented in the
fourth section. Algorithm complexity is described in the fifth section. Implemen-
tation details are described in the Appendix.

2. The Algorithm

As the algorithm presented in [5] is recursive, finding one particular triangu-
lation is equal to passing via one particular path of the corresponding expression
tree. It means that much of the computational effort is repeated.

We have an idea to employ file storage and use the already completed work
without redundant repetitions. Particulary, if we have found all triangulations for
a n-gon, we make only the necessary actions to get all triangulations of a (n+1)-gon.

We use a set of internal diagonals (i.e. an (n − 3) × 2 matrix where every
row contains ending vertices of the diagonal) as a data structure presenting one
triangulation. The procedure is based on transforming the outer face edge into the
internal diagonal which is equal to transformation of this edge into the triangle.

Triangulation of Convex Polygon with Storage Support 191

We are aware that we will get some duplicates, which should be eliminated.
Storage support is used for this purpose, too.

Algorithm 2.1 Algorithm with only diagonals stored.

Require: Positive integer n ≥ 3.

1: For every triangulation of a n-gon store the collection of diagonals sets Ed(n) =
{E1

d(n), . . . ,ECn−2
d (n)}, where each Ei

d(n) contains diagonals describing one partic-
ular triangulation. For the triangle Ed(3) = Ø. Also, generate the set of outer
edges for a n-gon

Eo(n) = {(i, (i + 1) mod n) | i = 1, . . . , n}.
What we really need in the further steps is the set

Eb(n) = Eo(n) \ {(1, 2)}.
2: Denote by Td(n) the set of different elements in Ed(n). To make all triangulations

(or collection of sets Ed(n + 1)) of the (n + 1)-gon from every set Ti
d(n) make

additional n − 1 sets Eik
d (n + 1), k = 1, . . . , n − 1 of (n + 1)-gon diagonals by

including one of the members of the set Eb(n). Therefore,

(2.1) Eik
d (n + 1) = Ti

d(n) ∪ {Eb(n)[k]}, i ∈ {1, . . . ,Cn−2}, k = 1, . . . , n − 1.

In the general case, we have

(2.2) Ei
d(n + 1) = T�i/n�+1

d (n) ∪ {Eb(n)[〈i, n〉]}, i = 1, . . . , (n − 1)Cn−2,

where �·� denotes the floor function and

〈i, n〉 =
{

i mod (n − 1), i mod (n − 1) � 0,
n − 1, i mod (n − 1) = 0.

3: If we include a pair (k, k + 1), then increase by 1 every pair member (from the
set Ei

d(n + 1)) greater than or equal to k + 1, including the newly added. Let us
observe that when the pairs of the form (1, n) are included, the increment is not
needed.

The number of duplicates generated by Algorithm 2.1 is equal to

(n − 1)size(Td(n)) − size(Td(n + 1)) = (n − 1)Cn−2 − Cn−1 =
(n − 2)(n − 3)

n
Cn−2,

where the operator size(·) denotes the number of elements in a set.

192 P. V. Krtolica, P. S. Stanimirović, M. B. Tasić, S. H. Pepić

Example 2.1. Let us start from Td(3) = Ø and

Eb(3) = Eo(3) \ {(1, 2)} = {(2, 3), (3, 1)}.
Applying (2.2), we get the collection Ed(4) = {E1

d(4),E2
d(4)} corresponding to the

square triangulations:

E1
d(4) = Td(3)∪ {Eb(3)[1]} = {(2, 3)} → {(2, 4)}

E2
d(4) = Td(3)∪ {Eb(3)[2]} = {(3, 1)}.

The set Eb(3) has only two elements so we could get only two sets Ei
d(4). Note

that we have had to update elements in E1
d(4) according to Step (3) of Algorithm

2.1.

Now, we will make triangulations of a pentagon on the base of stored sets Ei
d(4)

and easily generated set Eb(4) = {(2, 3), (3, 4), (4, 1)}. According to Algorithm 2.1, it
is easy to verify

Ed(5) = {Ei
d(5), i = 1, . . . , 2 ∗ 3} = {Ei

d(5), i = 1, . . . ,C2 ∗ 3}.
Therefore, since C3 = 5, one triangulation will be excessive.

E1
d(5) = T1

d(4)∪ {Eb(4)[1]} = {(2, 4), (2, 3)} → {(2, 5), (2, 4)}
E2

d(5) = T1
d(4)∪ {Eb(4)[2]} = {(2, 4), (3, 4)} → {(2, 5), (3, 5)}

E3
d(5) = T1

d(4)∪ {Eb(4)[3]} = {(2, 4), (4, 1)}
E4

d(5) = T2
d(4)∪ {Eb(4)[1]} = {(3, 1), (2, 3)} → {(4, 1), (2, 4)} (the same as E 3

d(5))

E5
d(5) = T2

d(4)∪ {Eb(4)[2]} = {(3, 1), (3, 4)} → {(3, 1), (3, 5)}
E6

d(5) = T2
d(4)∪ {Eb(4)[3]} = {(3, 1), (4, 1)}

3. Application and Implementation Details

Our application is presented by client/server model and it is implemented using
the PHP/MySQL environment for the following reasons [1, 9].

PHP is a specialized script language originally aimed for producing Web pages.
It is a simple language with C-like syntax with facilities for dynamic memory
allocation, high performances, possibilities to be integrated with many DBMS’s
and good portability.

MySQL is an open source software with high performances and reliability. Its
usage is simple but functionality is powerful. Free technical support is easily
obtained. It works on different platforms and in multiuser environments.

Triangulation of Convex Polygon with Storage Support 193

Fig. 3.1: Web interface of application for triangulations display.

The implementation of the web database application is based on the three-tier
architecture. The database tier consists of the database management system and
presents the basis of the three-tier architecture [9]. A complex middle tier, which
contains most of the application logic and communicates data between the other
tiers, is at the top of the database tier. Usually web browser software interacts with
the application and it is placed at the top of the client tier. Most of three-tier web
database systems contain the application logic in the middle tier. The client tier
presents data to the user and collects data from the user.

The application is the extension of the application from [8] and it is presented
by combinations of PHP/MySQL elements and implemented by special database
operations, which support the SQL-aware implementation of a wide range of clas-
sification algorithms.

For this approach, a suitable Web interface, shown in figures 3.1–3.3, has been
developed.

In the left part of the web page presented in Figure 3.1 there is a navigator,
where the user selects the link for the calculation of all possible triangulations for
a given n-gon. The page with a field to enter the polygon edges opens by selecting
a link.

This page presents the possibility to show the obtained solutions in the form of
pdf or txt file. All previously generated results are memorized in the database. If
for some n, the triangulations are already generated, they will be displayed from
the database. Otherwise, the triangulation algorithm is engaged.

Application could check user obtained triangulation. The user enters the ele-
ments describing the triangulation in the text area, chooses the element separator
and clicking on <Calculate> button gets the message about entered triangulation
validity. This option is illustrated in Figure 3.2.

194 P. V. Krtolica, P. S. Stanimirović, M. B. Tasić, S. H. Pepić

Fig. 3.2: Page that allows the user to determine the validity of triangulation.

Fig. 3.3: Page that allows the review of the randomly selected triangulation.

In Figure 3.3 the facility for listing randomly chosen triangulations when n > 20
is displayed. The user chooses the number of polygon edges from the dropdown
list and gets a display in the text area.

In our implementation we use three different strategies, called the Application
Logic (AL), Application Logic+Database (ALD) and Application Logic+Database+ Files
(ALDF).

Approach AL uses only the arrays of strings, where each string represents a
triangulation. The main properties of this approach are denoted by AL1 - AL3.

AL1: The main disadvantage is that the generated triangulations are not stored
for further usage.

AL2: Our algorithms generate some duplicate triangulations which have to be
removed. This removal will be payed by a significant computational cost (operat-
ing memory consumption could be a problem too). Built-in PHP function called
array unique() takes an input array and returns a new array without duplicate
values. Function array unique()firstly sorts the values treated as strings, keeping
the first key encountered for every value, and ignores all following keys.

Triangulation of Convex Polygon with Storage Support 195

AL3: The number of triangulations of n-gon grows rapidly with n. The AL
approach uses array to store triangulations, which is the reason of relatively
quick memory exhaustion. The maximum size of an array in PHP depends on
memory limit directive in the php.ini configuration file. There is not a limit on
the size of an array, but there is a limit on the size of the memory allocated to PHP
script.

Consequently, we need to use secondary memory facilities to store triangula-
tions, which implies the necessity of the ALD approach. This approach implies
DBMS support to the application logic. Instead of storing every new triangulation
Ei

d(n + 1) in the database immediately upon its generation, we generate data in
blocks size up to 5 million triangulations and then record them in a database. In
this way we reduce the storage time.

The properties of the ALD approach, denoted by ALD1 - ALD4, should be
pointed out.

ALD1: Firstly, it solves the problem of the memory exhaustion.

ALD2: Moreover, in ALD approach, duplicates removal could be automatized
with unique key usage for every triangulation (i.e. set of diagonals in the case of
Algorithm 2.1). If we have already stored particular triangulation in the database,
recording of the duplicate one will be denied.

ALD3: Also, the triangulation correctness could be checked upon a simple
query on database table.

ALD4: The drawback of the ALD approach is frequent reading and writing
data, which is time consuming.

The approach ALDF solves the disadvantage ALD4. Database approach is
necessary to avoid re-computations and the memory exhaustion as well as to
store generated triangulations. On the other hand, in order to avoid a permanent
triangulations retrieval and recording, we decide to involve a text file support.
Because of their simplicity, text files are commonly used for storage of information
that are structured as a sequence of lines. In our case this is a logical choice
because we present triangulations as strings. AL approach is the fastest in removing
duplicates, while the duplicates elimination is the slowest in text files.

The ALDF approach means that the elements of Td(n) are retrieved from the
database and temporarily stored in the text file during the process of Ed(n + 1)
generation. Each triangulation from Ed(n+1) remains in the array until the maximal
array index (the number of triangulations) is reached.

For the polygons with n < 15 vertices the whole set Ed(n + 1) (block) is placed
in the text file. At this moment, duplicate triangulations in that block are removed
using the PHP function array unique(). Furthermore the contents of the text file is
inserted into the database with a simple SQL statement LOAD DATA LOCAL INFILE
(see Function 6).

196 P. V. Krtolica, P. S. Stanimirović, M. B. Tasić, S. H. Pepić

For the polygons with n ≥ 15 vertices, when the number of elements in the array
reaches the maximum capacity of the block (in our implementation it is 5 million
triangulations), duplicates within the block are removed firstly on the AL level,
using the array unique() function. After that, the whole block without duplicates
is transferred to a text file. This procedure repeats with the next block until all
triangulations are generated. In this way, in a text file duplicate triangulations
from different blocks could be found. This is resolved during the database storage.
More precisely, DBMS is used for efficient transformation of the set Ed(n + 1) into
the set Td(n + 1).

The best results are achieved by the ALDF approach, because we avoid re-
computations and frequent storage. Besides, the user can see the results simply by
querying the table. Also, we solved the problem of memory congestion and we
provided a faster algorithm for data manipulations.

4. Experimental Results

The application is implemented obeying requirements of three-layer web architec-
ture: client layer, application layer and database layer. The testing is done using
application logic and using client/server model (using database).

Testing was done on the local machine and from a client in a wireless net-
work. We had an access to the web server using the infrastructure mode wireless
networking with an access point.

Testing was executed on the server machine with: Windows edition: Windows
Vista(TM) Ultimate; Processor: Intel(R) Pentium(R) Dual CPU T3200 @ 2.00GHz;
Memory (RAM) : 2940MB; System type: 32− bit Operatin� System; Free Softwares:
PHP 5.2.5, MySQL 5.0.45 and phpMyAdmin 2.11.2.1.

CPU times comparisons for Algorithm 2.1 and three different approaches, as
well as for Hurtado’s algorithm from [2], are given in Table 4.1, wherein the sign *
means that operating memory exhausted.

As it is supposed, Table 4.1 illustrates that usage of ALDF approach for Algo-
rithm 2.1 gives the best way to decrease the CPU time and memory consumption.
Nevertheless Algorithm 2.1 produces the duplicates which must be eliminated, for
n � 11 it is better even than Hurtado’s algorithm, while for n > 11 its performances
are not far away from the Hurtado’s algorithm performances. This is a little bit
surprising result and we try to explain this in Section 5.

For the input file with C7 = 429 rows using the LOAD DATA LOCAL INFILE
statement requires 0.066 seconds, and to select 1000 records from a table 0.000617
seconds are required. Time for data insertion in the database table as well as the
time required to select data from the table do not depend on the total number of
records in the table.

In order to shorten execution time for large n we have split the table with
previously calculated triangulations into k ≥ 2 parts. The parallelization process

Triangulation of Convex Polygon with Storage Support 197

Table 4.1: Times for Algorithm 2.1 with the database approach and file support vs.
Hurtado’s Algorithm.

n AL[n] ALD[n] ALDF[n] Hurtado[n] HurtadoALF[n]
7 0. 007 0.086 0.006 0.009 0.0088
8 0. 019 0.189 0 .016 0.038 0.0285
9 0. 090 0.421 0.060 0.122 0.0967
10 0. 336 1.168 0.249 0.427 0.366
11 1. 301 3.562 1.035 1.978 1 .072
12 5. 955 10.276 4.620 5.626 4.002
13 26.909 40.634 18.166 23 .532 14.162
14 113.798 153.248 77.090 81.357 55.942
15 489.271 598.859 353.539 393.420 234.804
16 2103.860 2508.273 1798.729 1982.358 1540.989
17 * 10717 .120 9741.606 * 6443.415
18 * 44122.383 39564.870 * 27069.430
19 * very long time 162452.920 * 115315.772

Table 4.2: Times for Algorithm 2.1 with the separated files support.

separate pieces n = 13 n = 14 n = 15 n = 16
2 12.122 55.388 246.758 1342.577
3 12.568 55.463 259.880 1499.280
4 12.865 63.737 260.563 1530.782
5 14.643 64.237 287.844 1571.957

is simulated with more clients in the local network, where each of them generates
triangulations from one part on a single server.

We get the best processing time in the case when the input file is divided in two
parts processed by two PHP scripts. Table 4.2 contains CPU times for segmented
files.

Further research could be directed to perform some computations in the net-
work based on n hosts and m clients. The computation time would be obviously
much shorter in that case.

In the case when we reach the maximum table capacity (for some n) we will
observe the MySQL Cluster implementation. MySQL Cluster allows data sets
larger than the capacity of a single machine. Data could be stored and accessed
across multiple machines. MySQL Cluster is implemented through an additional
storage engine available within MySQL called NDB or NDBCLUSTER (”NDB”
stands for Network Database).

The application allows display of 100 randomly chosen triangulations for n > 20,
which is presented in the third section. CPU times for this case are in the Table 4.3.

198 P. V. Krtolica, P. S. Stanimirović, M. B. Tasić, S. H. Pepić

Table 4.3: Randomly selected triangulations for n > 20.

n CPU time[s]
20 0.242
25 0.329
30 0.427
35 0.631
40 0.878
45 1.226
50 1.399

� � �
�

�
�

�
�

�

�

�

�

�

� � � �
� � � �

�

�

�

�

�

8 10 12 14 16 18
n0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

� Hurtado ALF�n��C�n�2�

� ALDF�n��C�n�2�

Fig. 4.1: Values for ALDF[n]/Cn−2 and HurtadoALF[n]/Cn−2

It is obvious that when we take a small set of data, our algorithm can reach
a much larger n in a short time. If we take, for example, 100 randomly selected
triangulations of (n − 1)-gon, we get very quickly triangulations for polygons with
a greater number of edges, as it is shown in Table 4.3.

4.1. Interpolation of data

We use the MATHEMATICA package to investigate the results arranged in the
columns ALDF and Hurtado ALF of Table 4.1. For more information about the pack-
age see for example [10]. Using the standard function Fitwe find a least–squares fit
to the list of values for the quotients ALDF[n]/Cn−2 and HurtadoALF[n]/Cn−2. These
quotients represent the CPU time needed for generating particular triangulations
for a given n–gon. Graphical illustration for n = 7, . . . , 19 is given in Figure 4.1.

Triangulation of Convex Polygon with Storage Support 199

8 10 12 14 16 18
n

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Hurtado ALF�n��C�n�2�

ALDF�n��C�n�2�

Fig. 4.2: Quadratic fits for ALDF[n]/Cn−2 and HurtadoALF[n]/Cn−2.

The quadratic fits to the sequences of values ALDF[n]/Cn−2 and
HurtadoALF[n]/Cn−2 are equal to

0.0000113862x2 − 0.000201402x+ 0.00101689

and
8.622342551125387× 10−6x2 − 0.000170513x+ 0.00103012,

respectively.

The graphical illustrations of these quadratic approximations are given in Figure
4.2.

5. Algorithm Complexity

Let us consider the complexity of producing a single triangulation Eik
d (n + 1),

1 ≤ ik ≤ (n − 1)Cn−2 by Algorithm 2.1, applying (2.1).
Complexity of Step (1): To generate set Eb(n) we need a loop of complexity n−1.

Complexity of Step (2): During the process of making the set Eik
d (n+ 1) we need

to include Eb(n)[k] to a set Ti
d(n). Denote by I the complexity of this inclusion.

Complexity of Step (3): The number of elements in Eik
d (n+1) is (n+1)−3 = n−2.

Therefore, the complexity of this step is n − 2 operations on pairs.

The complexity of generating Eik
d (n + 1), defined by (2.1), is equal to n − 2 + I.

The complexity of generating all triangulations Eik
d (n + 1), k = 1, . . . , n − 1 is

(n − 2 + I) (n − 1).

200 P. V. Krtolica, P. S. Stanimirović, M. B. Tasić, S. H. Pepić

In total, since the number of elements in the set Td(n) is equal to Cn−2, we
conclude that the complexity of generating Ed(n + 1) by Algorithm 2.1 is

E f (n + 1) = n − 1 + (n − 2 + I) (n − 1)Cn−2.

Note that the cardinality of Ed(n+1) is (n−1)Cn−2 and the above complexity concerns
the generation of the complete set Ed(n + 1).

Database storage time needed to store text file contents to database (and com-
plete duplicate elimination) is denoted by S(n + 1) (complexity of transformation
Ed(n + 1) into Td(n + 1)).

Therefore, overall complexity of Algorithm 2.1 is E fo = E f (n + 1) + S(n + 1).

Let us consider the complexity of Algorithm 1.1.
Complexity of Step (1): To check 2n − 3 pairs we need as many comparisons.
Complexity of Step (2): For every ik we need l transformations. Maximal l is

equal to n − 2.
Complexity of Step (3): We need two insertions of pairs with complexity 2I.
Complexity of Step (4): The maximal k is equal to n − 1 and we need as many

repetitions of Steps (2)-(3).
Overall efficiency for Algorithm 1.1 is

E fH(n + 1) = [2n − 3 + (n − 2 + 2I) (n − 1)] Cn−2.

If we make a difference between the numbers of needed operations for these
two algorithms we get

E fH(n + 1) − E f (n + 1)
= [2n−3+ (n − 2 + 2I) (n−1)]Cn−2 − (n−1)− (n − 2 + I) (n−1)Cn−2

= (2n − 3)Cn−2 + I(n − 1)Cn−2 − (n − 1)

which explains why our algorithm works faster than Hurtado’s in some cases. Of
course, our algorithm spends a certain amount of time for storage where elimination
of duplicates is done. Hurtado’s algorithm does not produce any duplicates and
the time difference is reduced.

E fH(n + 1) − E fo(n + 1) = (2n − 3)Cn−2 + I(n − 1)Cn−2 − (n − 1) − S(n + 1)

It is difficult to estimate time needed to complete S(n + 1) operations of du-
plicate elimination and storage (it is DBMS dependent). But, for smaller n the
number of duplicates is relatively small (one for n = 5, 6 for n = 6, and so on), the
cost of its elimination is moderate and simplicity of Algorithm 2.1 prevails. For
larger n the number of the generated duplicates is even larger than the number of
”real” triangulations and cost of its elimination grows, decreasing Algorithm 2.1
performances.

Triangulation of Convex Polygon with Storage Support 201

Let us consider the complexity of producing a single triangulation Eik
d (n + 1),

1 ≤ ik ≤ (n − 1)Cn−2 by Algorithm 2.1, applying (2.1).
Complexity of Step (1): To generate set Eb(n) we need a loop of complexity n−1.

Complexity of Step (2): During the process of making the set Eik
d (n+ 1) we need

to include Eb(n)[k] to a set Ti
d(n). Denote by I the complexity of this inclusion.

Complexity of Step (3): The number of elements in Eik
d (n+1) is (n+1)−3 = n−2.

Therefore, the complexity of this step is n − 2 operations on pairs.

The complexity of generating Eik
d (n + 1), defined by (2.1), is equal to n − 2 + I.

The complexity of generating all triangulations Eik
d (n + 1), k = 1, . . . , n − 1 is

(n − 2 + I) (n − 1).

In total, since the number of elements in the set Td(n) is equal to Cn−2, we
conclude that the complexity of generating Ed(n + 1) by Algorithm 2.1 is

E f (n + 1) = n − 1 + (n − 2 + I) (n − 1)Cn−2.

Note that the cardinality of Ed(n+1) is (n−1)Cn−2 and the above complexity concerns
the generation of the complete set Ed(n + 1).

Database storage time needed to store text file contents to database (and com-
plete duplicate elimination) is denoted by S(n + 1) (complexity of transformation
Ed(n + 1) into Td(n + 1)).

Therefore, overall complexity of Algorithm 2.1 is E fo = E f (n + 1) + S(n + 1).

Let us consider the complexity of Algorithm 1.1.
Complexity of Step (1): To check 2n − 3 pairs we need as many comparisons.
Complexity of Step (2): For every ik we need l transformations. Maximal l is

equal to n − 2.
Complexity of Step (3): We need two insertions of pairs with complexity 2I.
Complexity of Step (4): The maximal k is equal to n − 1 and we need as many

repetitions of Steps (2)-(3).
Overall efficiency for Algorithm 1.1 is

E fH(n + 1) = [2n − 3 + (n − 2 + 2I) (n − 1)] Cn−2.

If we make the difference between the numbers of needed operations for these
two algorithms we get

E fH(n + 1) − E f (n + 1)
= [2n−3+ (n − 2 + 2I) (n−1)]Cn−2 − (n−1)− (n − 2 + I) (n−1)Cn−2

= (2n − 3)Cn−2 + I(n − 1)Cn−2 − (n − 1)

202 P. V. Krtolica, P. S. Stanimirović, M. B. Tasić, S. H. Pepić

which explains why our algorithm works faster than Hurtado’s in some cases. Of
course, our algorithm spends a certain amount of time for storage where elimination
of duplicates is done. Hurtado’s algorithm does not produce any duplicates and
the time difference is reduced.

E fH(n + 1) − E fo(n + 1) = (2n − 3)Cn−2 + I(n − 1)Cn−2 − (n − 1) − S(n + 1)

It is difficult to estimate time needed to complete S(n + 1) operations of dupli-
cate elimination and storage (it is DBMS dependent). However, for smaller n the
number of duplicates is relatively small (one for n = 5, 6 for n = 6, and so on), the
cost of its elimination is moderate and simplicity of Algorithm 2.1 prevails. For
larger n the number of the generated duplicates is even larger than the number of
”real” triangulations and cost of its elimination grows, decreasing Algorithm 2.1
performances.

6. Conclusion

We have suggested the algorithm for convex polygon triangulation based on
triangulations already stored in database, corresponding to the polygon with one
edge less. In this way, we do not repeat all work needed in the case of algorithm
from [5].

Some computational and storage cost must be paid, but in return we could
retrieve stored triangulations in very short time and use them for another purpose.

Used DBMS system also serves to prevent storing of duplicated triangulations
generated by the algorithm.

This approach gives relatively good performance results in comparison with
Hurtado’s algorithm ([2]) which produces no duplicates at all.

The generation of different triangulations is independent and suitable for par-
allelization and execution on parallel machine.

Note that, for higher n, triangulations generation and storage in database need
large amount of time (in days), because of very rapid growth of triangulations
number. But, once we have filled database, retrieval time is very short. The reader
should have in mind the nature of the problem: if someone wants to observe all
triangulations of e.g. 18-gon, and he/she manages to check one triangulations per
second, he/she still needs almost a year to complete the job. In the case of larger n
we get quickly the situation that lifetime is not enough to complete browsing of all
triangulations.

7. Appendix

7.1. Data Storage System

Our database application use single table database with no relations and foreign
keys. Database contains one table called triangulations.

Triangulation of Convex Polygon with Storage Support 203

Table 7.1: Database table trian�ulations.

id dia�onals n
1 2, 4, 2, 5 5
2 2, 5, 3, 5 5
3 2, 4, 4, 1 5
4 3, 1, 3, 5 5
5 3, 1, 4, 1 5

The unique field used in the tables is described as follows:
- id: identification number, defined as an autonumber;
- diagonals: string containing diagonals of polygon in the form of pairs, which

are separated with the comma sign (sets Ed(n)).
- n: number of edges for the given polygon.

The field diagonals is declared as the primary key to prevent duplicates storage.

The structure of SQL code for generating table triangulations has the following
form.

Table s t ruc tu re fo r t ab l e ‘ t r i angu la t i ons ‘ CREATE TABLE
‘ t r i angu la t i ons ‘ (

‘ id ‘ i n t (1 1) NOT NULL auto increment ,
‘ diagonals ‘ varchar (180) NOT NULL,
‘n ‘ i n t (3) NOT NULL,
PRIMARY KEY (‘ diagonals ‘) ,

) ENGINE=InnoDB DEFAULT CHARSET= l a t i n 1 MAX ROWS=4294967295;

The example of the table for pentagon with stored diagonals (according to
Algorithm 2.1) is presented in Table 7.1.

The effective maximum of the table size for MySQL databases is usually de-
termined by the operating system constraints, not by MySQL internal limits [6].
We did not encounter a full-table error even though we used the InnoDB stor-
age engine with the maximal number of rows equal to 232 − 1 and defined by
MAX ROWS = 4294967295 rows. The main reason to limit the rows number in our
table is to avoid limitations based on operating system file-size limits. The InnoDB
storage engine maintains InnoDB tables within a tables space that can be created
from several files. This enables a table to exceed the maximum individual file size
[6].

7.2. Implementation Details of Algorithm 2.1

This algorithm gives the best results.
In the beginning, several auxiliary procedures used in our implementation are

described.

204 P. V. Krtolica, P. S. Stanimirović, M. B. Tasić, S. H. Pepić

Function 1. Increments every pair member in set of diagonals Ed(n + 1) greater
than or equal to newly added element.

funct ion increment ($array , $last num , $n) {
f o r ($ i =0; $i <2∗ ($n−3) ; $ i ++){

i f ($array [$ i]>=$last num)
$array [$ i]= $array [$ i]+1 ; }

re turn $array ;
}

Function 2. Creates set Eb(n) from Algorithm 2.1.

funct ion createEb ($n) {
f o r ($ j =2 , $z=0; $ j<$n ; $ j ++){

$k=$ j +1;
$Eb [$z]=” $ j , $k ” ;
$z++; }

$Eb [$z]=”$n , 1 ” ;
re turn $Eb ;
}

Function 3. Creates sets Ed(n) without elements increment.

funct ion setsEd ($Ed n−1 ,$Eb , $n) {
$Ed=array (array ()) ;
f o r ($ j =0; $ j<$n−2; $ j ++){

$Ed [$ j] [0]= $Ed n−1;
$Ed [$ j] [1]= $Eb [$ j] ;
$Ed [$ j]=$Ed [$ j] [0] . ” ,” . $Ed [$ j] [1] ; }

re turn $array ;
}

Function 4. Lexicographic ordering by pairs of the set Ed(n + 1), generated by
Algorithm 2.1.
funct ion s o r t s t r i n g ($array , $n) {

f o r ($ i =0 , $z=0; $i <($n−3) ; $ i ++){
f o r ($ j =0; $ j <2; $ j ++){

$array 2D [$ i] [$ j]= $array [$z] ;
$z++; } }

a r ray mul t i so r t ($array 2D) ;
f o r ($ i =0 , $z=0; $i <($n−3) ; $ i ++){

f o r ($ j =0; $ j <2; $ j ++){
$array 1D [$z]= $array 2D [$ i] [$ j] ;
$z++; } }

$ a r r a y s t r i n g=implode (” , ” , $array 1D) ;
re turn $ a r r a y s t r i n g ;

}

Function 5. Loads file into the database in order to prevent duplicate storage.
funct ion f i l e mysq l ($ i) { $ f i l e = $ i . ” . t x t ” ; $query0 = ’ LOAD
DATA LOCAL INFILE $ f i l e ’

. ’ INTO TABLE ‘ t r i angu la t i ons ‘ ’

. ’ LINES TERMINATED BY \ ’\\n\ ’ ’

. ’ FIELDS TERMINATED BY \ ’ ; \ ’ ’

. ’ (‘ diagonals ‘ , ‘ n ‘) ; ’ ;
$ r e su l t 0 = mysql query ($query0) ; }

Triangulation of Convex Polygon with Storage Support 205

Function 6. Selects data, without duplicates, from the database and place them
into file.

funct ion mysq l f i l e ($ i) {
$ f i l e = $ i . ” . t x t ” ;
unl ink ($ l ink) ;
$query1= ’SELECT ‘ diagonals ‘ , ‘ n ‘ INTO OUTFILE $ f i l e ’

. ’ FIELDS TERMINATED BY \ ’ ; \ ’ ’

. ’ LINES TERMINATED BY \ ’\\n\ ’ ’

. ’ FROM ‘ t r i angu la t i ons ‘ ; ’ ;
$ r e su l t 1 = mysql query ($query1) ;

}

Function 7. Computation of triangulations of a n-gon, and usage of database
facilities to enter unique values.

funct ion decomp ($n , $ l ink) {
$ l ink n = $n . ” . t x t ” ;
$fp = fopen ($l ink , ” r ”) ;
$fp n=fopen ($ l ink n , ”w+”) ;
$Eb = createEb ($n−1) ;
$array out = array () ;
while (! f eo f ($fp)) {

$s t r ing row= f g e t s ($fp) ;
$array 1D=array (array ()) ;
$array 1D [$ i]= setsEd (chop ($s t r ing row) , $Eb , $n) ;
f o r ($ j =0; $ j<$n−2; $ j ++){

$ a r r a y s t r i n g=array (array ()) ; $array row = array (array ()) ;
$array row=explode (” , ” , $array 1D [$ i] [$ j]) ;
i f (abs ($array row [2 ∗ ($n−3)−2]−$array row [2 ∗ ($n−3) −1])==1){

$max=max($array row [2 ∗ ($n−3) −2] , $array row [2 ∗ ($n−3) −1]) ;
$increment=increment ($array row , $max , $n) ;
$array out []= s o r t s t r i n g ($increment , $n) ;

}
e l s e i f ($array row [2 ∗ ($n−3)−2]==$n−1 and $array row [2 ∗ ($n−3)−1]==1)
{

$array out []= s o r t s t r i n g ($array row , $n) ;
} }
i f (count ($array out)>=5000000) {

$array out = array unique ($array out) ;
foreach ($array out as $key => $value) {

fwr i t e ($fp n , $value . ” \n ”) ;
}
$array out = array () ;

} }
$array out = array unique ($array out) ;
foreach ($array out as $key => $value) {

fwr i t e ($fp n , $value . ” \n ”) ;
}
re turn $array out ;

}

Function 8. Displays the result, if it exists in the database, or calls the function
to calculate the triangulations.

funct ion decomposition ($n) {
$query=” s e l e c t max (n) from t r i a n g u l a t i o n s ” ;

206 P. V. Krtolica, P. S. Stanimirović, M. B. Tasić, S. H. Pepić

$ r e s u l t=mysql query ($query) ;
$row=mysql fetch row ($ r e s u l t) ;
$max=$row [0] ;
i f ($n<=$max) {

echo ” Display pdf and t x t f i l e with t r i a n g u l a t i o n s ” ; }
e l s e {

f o r ($ i=$max+1; $i<=$n ; $ i ++){
$ l ink = $i −1 . ” . t x t ” ;
decomp ($i , $ l i nk) ;
f i l e mysq l ($ i) ;
/ / mysq l f i l e ($ i) ;

} } }

7.3. Implementation Details for Hurtado’s Algorithm

We present here some key parts of the code implementing Hurtado’s algorithm.

Function 1. Transforms unidimensional array in the array of pairs.

funct ion array1D 2Darray ($array) {
f o r ($ j =0 , $z=0; $ j<count ($array) ; $ j=$ j +2) {

$array 2D [$z]= $array [$ j] . ” ,” . $array [$ j +1] ;
$z++;

}
re turn $array 2D ;

}

Function 2. Extracts pairs of the form (i, n).

funct ion e x t r a c t n ($niz , $k , $n) {
$s=0;
f o r ($ i =0; $i<$k ; $ i ++){

$drugi = explode (” , ” , $niz [$ i]) ;
i f ($drugi [1]== $n) {

$novi [$s]= $ i . ” ; ” . $niz [$ i] ;
$s++;

}
}
re turn $novi ;

}

Function 3. Makes diagonal ”splitting” according to Hurtado’s algorithm.

funct ion hurtado ($n , $ l ink) {
$fp = fopen ($l ink , ” r ”) ;
$ l i nk n = ” . / h f i l e s 1 /” . $n+1 . ” . t x t ” ;
$fp n=fopen ($ l ink n , ”w+”) ;
f o r ($k=0; $k<numCatalan ($n) ; $k++){

$novi=array () ;
$red = tr im (f g e t s ($fp)) ;
$red a = array () ;
$red a = explode (” , ” , $red) ;
$novi = array1D 2Darray ($red a) ;

Triangulation of Convex Polygon with Storage Support 207

$parovi n = array () ;
$parovi n = e x t r a c t n ($novi , count ($novi) , $n) ;
f o r ($ i =0; $i<count ($parovi n) ; $ i ++){

$red b = array () ;
$red b = $red a ;
$edim1 = explode (” ; ” , $parovi n [$ i]) ;
$edim2 = explode (” , ” , $edim1 [1]) ;
$ t = $edim2 [0] ;
$parovi ns = explode (” , ” , $parovi n [$ i]) ;
f o r ($ j =0; $ j<count ($parovi n) ; $ j ++){

$edim1 = explode (” ; ” , $parovi n [$ j]) ;
$edim2 = explode (” , ” , $edim1 [1]) ;
$ t2 = $edim2 [0] ;
i f ($t2<$t) {

$red b [2 ∗ $edim1 [0]+1]= $n+1;
}

}
$red b [2 ∗ (2 ∗ $n−3)] = $t ;
$red b [] = $n+1;
$red b [] = $n ;
$red b [] = $n+1;
fwr i t e ($fp n , implode (” , ” , $red b) . ” \ n ”) ;

}
}
re turn $ t r i a n ;

}

R E F E R E N C E S

1. J. Greenspan, B. Bulger, MySQL/PHP Database Applications M&T Books: An imprint
of IDG Books Worldwide, Inc., 2001.

2. F. Hurtado, M. Noy, Graph of Triangulations of a Convex Polygon and tree of triangula-
tions, Comput. Geom. 13 (1999), 179–188.

3. R. L. Graham, D. E. Knuth and O. Potsshnik, Concrete Mathematics, Addison-
Wesley, Reading, MA, (1988).

4. H. W. Gould, Research bibliography on two special number sequences, Mathematica
Monongaliae 12 (1971).

5. P. V. Krtolica, P. S. Stanimirović, R. Stanojević, Reverse Polish Notation in Con-
structing the Algorithm for Polygon Triangulation, FILOMAT 15 (2001), 25-33.

6. MySQL Developer Zone, http://dev.mysql.com/doc/refman/5.0/en/full-table.html

7. Saračević, M., Stanimirović, P., Mašović, S., Biševac, E., Implementation of the
convex polygon trangulation algorithm, Facta Universitatis, Series Mathematics and
Informatics, 27(2) (2012), 213–228.

8. M. B. Tasić, P. S. Stanimirović, S. H. Pepić, Computation of the generalized inverses
using PHP/MySQL environment, Int. J. Comput. Math. 88 (2011), 2429–2446.

9. H. Williams, D. Lane, Web Database Applications with PHP & MySQL, 2nd Edition,
O’Reilly Media, Inc., Beijing, Cambridge, Famham, Köln, Paris, Sebastopol, Taipei,
Tokyo, 2004.

208 P. V. Krtolica, P. S. Stanimirović, M. B. Tasić, S. H. Pepić

10. S. Wolfram, The Mathematica Book, 5th ed., Champaign: Wolfram Media, Inc., 2004.

Predrag Krtolica
Faculty of Science and Mathematics
Computer Science Department
Višegradska 33
18000 Niš, Serbia
krca@pmf.ni.ac.rs

Predrag Stanimirović
Faculty of Science and Mathematics
Computer Science Department
Višegradska 33
18000 Niš, Serbia
pecko@pmf.ni.ac.rs

Milan Tasić
Faculty of Science and Mathematics
Computer Science Department
Višegradska 33
18000 Niš, Serbia
milan12t@ptt.rs

Selver Pepić
Faculty of Science and Mathematics
Computer Science Department
Višegradska 33
18000 Niš, Serbia
p selver@yahoo.com

	Introduction and Preliminaries
	The Algorithm
	Application and Implementation Details
	Experimental Results
	Interpolation of data

	Algorithm Complexity
	Conclusion
	Appendix
	Data Storage System
	Implementation Details of Algorithm 2.1
	Implementation Details for Hurtado's Algorithm

