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APPLICATIONS OF THE MEAN CURVATURE FLOW ASSOCIATED TO
ANISOTROPIC GENERALIZED LAGRANGE METRICS IN IMAGE

PROCESSING

Vladimir Balan and Jelena Stojanov

Abstract. The Geodesic Active Field (GAF) approach from image processing - whose
mathematical background is the Riemannian theory of submanifolds - was recently ex-
tended by the authors to the Finslerian setting, for certain specific metrics of Randers
type. The present work studies the significantly more flexible Generalized Lagrange (GL)
extensions, which allow a versatile adapting of the GAF process to Finslerian, pseudo-
Finslerian and Lagrangian structures. The GAF mean curvature flow PDEs of three such
GL structures (Randers-Ingarden, Synge-Beil, and proper Generalized Lagrange) are ex-
plicitly obtained, discussed, implemented, and their corresponding feature evolutions
are compared with the classic results produced by the established original Riemannian
GAF model.
Keywords: The Geodesic Active Field; Riemannian manifold; Image processing; Gener-
alized Lagrange metrics.

1. Introduction. Related works.

The Beltrami framework and its practical importance in image processing were
extensively described in [5, 11, 14, 15]. Applications to image segmentation, edge
detection, denoising and stereo vision were achieved by means of a flow technique,
which evolves surfaces associated to digital images. The related surface evolution
details are comprehensively presented in [10, 12].

A curve evolution technique, called geodesic active contours (GAC) is used in
image segmentation [6]. As a natural extension, the geodesic active field (GAF)
framework for image registration was introduced in [16], and further improved
in [17]. The GAF technique is based on minimization of the deformation field
between a pair of images. It evolves a surface corresponding to the deformation
field to achieve the minimality of a weighted Polyakov action [5], by employing
the mean curvature (MC) flow. The weighted Polyakov action minimization in the
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Riemannian type framework is achieved by the Beltrami PDE flow - an isotropic
(directional independent) evolutive equation of a 2-dimensional geometric active
object.

On the other hand, [9] and [13] promote anisotropic extensions of geodesic
active contours. They consider a curve as 1-dimensional geometric active object,
and use anisotropic weighted curve length for segmentation and for curve extrac-
tion, respectively. The non-weighted anisotropic evolution of image surfaces was
recently proposed in [1], where an approximate minimizing flow contains only the
most significant term from the scaled extremal equation. The present work relies
on the general anisotropic Beltrami framework, which was recently developed by
the authors in [2]; it discusses as well discretization and applicable aspects of the
obtained theoretical results.

2. Beltrami framework and anisotropic extension

The central object of a Beltrami framework is a surface embedded into a Rieman-
nian manifold, and its evolution in accordance with the minimization of a global
scalar property of the surface, expressed as a Poyakov action. Let us consider the
embedding map

X : D→M, (dim D = n < dim M = m).(2.1)

The embedding produces the submanifold Σ = X(D) of the Riemannian manifold
(M, h), usually called the image surface. This is endowed with a Riemannian metric
�, which is not necessarily induced from h. The preliminary aim is to describe
the evolution of the image surface (Σ, �) towards the extreme state of the minimal
Polyakov action S(X, �, h, f ) =

∫
L dx1 . . . dxn defined by the Lagrangian density

L = f (X, �, h) · �μν ∂Xi

∂xμ
∂Xj

∂xν
hij
√
�,(2.2)

where we denote by f the weight function and by � the determinant of the metric
tensor (�μν).

We shall further briefly denote, for a given function Φ:

Φ;α :=
∂Φ
∂xα

Φ,i :=
∂Φ

∂Xi
Φ,( i

α) :=
∂Φ

∂Xi
α

.

The Euler-Lagrange equation

∂tXr = −1
2

1√
γ

hir
(
L,i − L,( i

α);α

)
(2.3)

yields the descent flow, called the Beltrami flow

∂Xr
t = fτr(X) − n

2
f,i hir + f,i �σμXi

σX
r
μ,(2.4)
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where τr(X) is the tension field associated to the embedding,

τr(X) = �ασXr
ασ − �ρθΓσρθXr

σ + �
σμΓr

klX
k
σX

l
μ.(2.5)

The main benefits of the Beltrami framework and of the resulting flow, are the
arbitrary and independent choices of � and h, the possibility of considering the
vector value feature, and the geometrical quality of the flow (its reparametrization
invariance).

The various choices of metric � and the weight function f yield different flows:

mean curvature flow, ∂tXr = Hr: � -induced, f ≡ 1;

tension flow, ∂tXr = τr: � = �(x) -arbitrary, f ≡ 1;

Beltrami flow, ∂tXr = ∂tXr(x): � = �(x) -arbitrary;

anisotropic flow, ∂tXr = ∂tXr(x, v): � = �(x, v) -directionally dependent.

In the last case - the anisotropic Beltrami framework - the image metric is a
smooth tensor field on the tangent bundle TΣ. In order to distinguish it from the
used Riemannian type metrics, we denote this with Greek letters, γ=γμνdxμ ⊗ dxν.
If the metric γ is symmetric, regular and of constant signature, then (Σ, γ) is a
generalized Lagrange space [4], and the anisotropic Beltrami flow ensuring the
minimal Polyakov action is briefly called the GL flow. Its explicit form is developed
in [2].

Theorem 2.1. (The anisotropic Beltrami flow) Let γ be a generalized Lagrange metric
on the surface embedded via (2.1) into the Riemannian manifold (M, h). The PDE of the
anisotropic Beltrami flow which provides the minimality of the non-weighted Polyakov
action on the surface (Σ, γ), is

∂tXr= τr(X)

+
1
2

hir
{
�σμ;α

[
(γσμ),( i

α) + γ
σμ(ln

√
γ),( i

α)

]
+

�σμ

[
(γσμ),( i

α);α+ (γσμ),( i
α)(ln

√
γ);α+(γσμ);α(ln

√
γ),( i

α)

+ γσμ 1√
γ (
√
γ),( i

α);α − (γσμ),i − γσμ(ln
√
γ),i
] }
,

where �μν = hij∂μXi∂νXj is the induced metric on the embedded surface.

Without losing the generality, one can consider for the anisotropic metric γ, the
deformed induced one

γμν(x, v) = �μν(x) + ϕμν(x, v), x ∈ Σ, v ∈ TxΣ.

If the embedded surface is endowed with a Finsler structure F : TΣ→ R [3, 8], then
the anisotropic metric is defined by the halved Hessian

γμν(x, v) =
1
2
∂2F2

∂vμ∂vν

∣∣∣∣
(x,v)
.
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A particular linearly deformed induced norm is the one of Randers type [3, 8, 7],

F(x, v) =
√
�μν(x)vμvν + bμ(x)vμ;

in this case, the corresponding Beltrami flow is ([2]),

∂R
t (Xr) = τr(X) + φ(�μν(x), bμ(x), ||v||�).(2.6)

As well, for Σ endowed with a generalized Lagrange structure of Synge-Beil type,

γμν(x, v) = �μν(x) + c(X)vμvν,

having the covariant directional vector (vμ) = (�μνvν), Theorem 2.1 produces the
Synge-Beil type Beltrami flow,

∂SB
t (Xr) = τr(X) + ψ(�μν(x), c(X), ||v||�).(2.7)

3. The Beltrami framework in image processing

The Beltrami framework commonly used in image processing mainly considers
a Monge surface in the 3-dimensional Euclidean space X : D→ M, where (M, h) =
(R3, hij = diag(1, 1, β2)),

X : (x1, x2) �→ (x1, x2, I(x1, x2)).

The components of the induced metric on the surface are

(�μν) =

⎛⎜⎜⎜⎜⎝
1 + β2I2

x1 β2Ix1Ix2

β2Ix1Ix2 1 + β2I2
x2

⎞⎟⎟⎟⎟⎠ ,

where, for brevity, we use the notation Ixμ =
∂I
∂xμ .

The gradient vector field �radI = (�1αIxα , �2αIxα ) is an ingredient for constructing
the following Finslerian norm of Randers-Ingarden type ([3]):

F(x, v) =
√
�μνvμvν + Ixμvμ,(3.1)

where bμ = Ixμ is the term which characterizes the Ingarden structure. Further, the
Finslerian-Randers type metric components and the PDE of the evolution flow can
be calculated, and only the third component of the flow, ∂tX3 = ∂tI is nontrivial.
This allows to derive the flow ∂R

t I for the Monge surface evolution (2.6).
Theorem 2.1 and the Synge-Beil structure given on the Monge surface,

γμν(x, v) = �μν(x) + vμvν,(3.2)

yield the corresponding flow ∂SB
t I (2.7).

We note that this extends the isotropic Beltrami flow used in [16], which coin-
cides with the mean curvature flow, ∂tI = H3.
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4. Application and tentative implementation

A grayscale image is viewed as a matrix Σ =
(
I(i, j)

)
, whose elements express

the greyness of pixels:

x = (x1, x2) = (i, j) − matrix position, I(i, j) ∈ {0, 1, . . . , 255},
where the tangent vectors point to the neighboring pixels characterized by the
displacements

v(i, j) = (v1, v2) ∈ {(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 1), (1,−1), (1, 0), (1, 1)}.
The evolution is achieved by the successive shifting of the grayscale image

I(i, j)→ I(i, j) + �I(i, j),(4.1)

where�I(i, j) discretizes one of the following flow types: Randers-Ingarden, Synge-
Beil or mean curvature.

We use Matlab programming for implementing the three Beltrami flows. The
corresponding Beltrami evolutions (4.1) are achieved by successive shifting, where
each iteration assumes the following steps:
- accessing pixel (except of the boundary) to get the corresponding feature value;
- determining the shift tangent vector - optionally, in the cases of anisotropic flows;
- applying the flow expression on the feature value and optionally on the shift

tangent vector to obtain the shift value �I;
- computing the modified feature value, I→ I + �I.
The main difference between the implementation of isotropic and anisotropic evo-
lution types is in the dependence - in the latter case - of the metric on the eight
discretized neighboring Gateaux derivatives at each pixel position. Namely, the
anisotropic flows exhibit the extra local dependence of the norm and hence metric
tensor on the eight neighbors as well, compared to dependence on position only,
present in the isotropic flow. In our research point, the gradient is taken for the
anisotropic shift.

Due to technical limitations, low resolution images were considered for process-
ing. The shifting was achieved for β = 2, by the use of the Randers-Ingarden flow
∂R

t I given by (2.6)-(3.1), the Synge-Beil flow ∂SB
t I from (2.7)-(3.2), and the classical

mean curvature flow

∂MC
t I =

1
�2

(
Ix1x1�22 + Ix2x2�11 − 2Ix1x2�12

)
.

The applicative aspects of the research currently emphasize the construction
of the shift matrices �I = (�I(i, j)) and the low resolution is a limiting factor in
visualizing immediate enhancement of the starting image as effect of the flow
action.

The Randers-Ingarden evolution sample obtained after 15 iterations can be seen
in Figure (4.1). The effects of the preliminarily implementations can be tracked by
means of the shift matrices corresponding to the three flows.
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Fig. 4.1: Original flower image (60×60), the 16-th RI iteration output, and the latter
flow-shift.

5. Conclusions and further developments

The obtained preliminary results show that for all the three considered flows,
the output differs from the input by a slight increase of contrast between com-
pact regions of the image. The anisotropic evolutions need extra computational
resources than the mean curvature one, due to the complexity of the anisotropic
flow expressions compared to the MC flow. However, though the directional de-
pendence slows down the speed of the enhancement process, it has the merit of
considerably enabling its sensitivity. Due to their extended local character, the
anisotropic flows provide more information than the Riemannian ones, and aim to
simplify the further intended processing of the output features.

Further concerns of the subject will address the optimal adapted selection of
the direction-dependent anisotropic structure, and will consider a non-constant
weight function within the Polyakov energy, which tunes the evolution shift, and
accelerates the image enhancement.
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