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Abstract. In this paper, we introduce the idea of relative type and relative weak type
of entire functions of two complex variables with respect to another entire function of
two complex variables and prove some related growth properties of it.
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1. Introduction, Definitions and Notations

Let f be any entire function of two complex variables holomorphic in the
closed polydisc

U = {(z1, z2) : |zi| ≤ ri, i = 1, 2 for all r1 ≥ 0, r2 ≥ 0}

and Mf (r1, r2) = max {|f (z1, z2)| : |zi| ≤ ri, i = 1, 2}. Then in view of maximum
principal and Hartogs’s theorem {[10], p.2, p.51}, Mf (r1, r2) is increasing function
of r1, r2. For any two entire functions f and g of two complex variables, the ratio
Mf (r1,r2)
Mg(r1,r2)

as r1, r2 →∞ is called the growth of f with respect to g. Taking this into

account, the following definition is well known:

Definition 1.1. {[10], p.339, (see also [5])} The order v2ρf of an entire function
f(z1, z2) is defined as

v2ρf = lim sup
r1,r2→∞

log logMf (r1, r2)

logMexp(z1z2) (r1, r2)
= lim sup
r1,r2→∞

log logMf (r1, r2)

logMexp(z1z2) (r1, r2)
.

We see that the order v2ρf of an entire function f(z1, z2) is defined in
terms of the growth of f(z1, z2) with respect to the exponential function exp (z1z2).
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However, In the same way one can define the lower order of f(z1, z2) denoted by

v2λf as follows :

v2λf = lim inf
r1,r2→∞

log logMf (r1, r2)

logMexp(z1z2) (r1, r2)
= lim inf
r1,r2→∞

log logMf (r1, r2)

logMexp(z1z2) (r1, r2)
.

An entire function of two complex variables for which order and lower order
are the same is said to be of regular growth. Functions which are not of regular
growth are said to be of irregular growth.

The rate of growth of an entire function generally depends upon the order
( lower order) of it. The entire function with higher order is of faster growth than
that of lesser order. But if orders of two entire functions are the same, then it is
impossible to detect the function with faster growth. In that case, it is necessary
to compute another class of growth indicators of entire functions called their types
and thus one can define type of an entire function f(z1, z2) denoted by v2σf in the
following way:

Definition 1.2. The type v2σf of an entire function f(z1, z2) is defined as

v2σf = lim sup
r1,r2→∞

logMf (r1, r2)

[r1r2]v2
ρf , 0 < v2ρf <∞ .

Similarly, the lower type v2σf of an entire function f(z1, z2) may be defined as

v2σf = lim inf
r1,r2→∞

logMf (r1, r2)

[r1r2]v2
ρf , 0 < v2ρf <∞ .

Analogously, to determine the relative growth of two entire functions of two
complex variables having same non zero finite lower order one may introduce the
definition of weak type v2τf of f(z1, z2) of finite positive lower order v2λf in the
following way:

Definition 1.3. The weak type v2τf of an entire function f(z1, z2) of finite positive
lower order v2λf is defined by

v2τf = lim inf
r1,r2→∞

logMf (r1, r2)

[r1r2]v2
λf

, 0 < v2λf <∞ .

Similarly, one may define the growth indicator v2τf of an entire function f(z1, z2)
of finite positive lower order v2λf in the following way:

v2τf = lim sup
r1,r2→∞

logMf (r1, r2)

[r1r2]v2
λf

, 0 < v2λf <∞ .
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Bernal (see [6], [7]) introduced the definition of relative order between two
entire functions of single variable. During the past decades, several authors ( see
[11],[12],[13],[14]) made close investigations on the properties of relative order of
entire functions of single variable. Using the idea of Bernal’s relative order (see
[6], [7]) of entire functions of single variable, Banerjee and Datta [8] introduced
the definition of relative order of entire functions of two complex variables to avoid
comparing growth just with exp (z1z2) which is as follows:

v2ρg (f) = inf {µ > 0 : Mf (r1, r2) < Mg (rµ1 , r
µ
2 ) ; r1 ≥ R (µ) , r2 ≥ R (µ)}

= lim sup
r1,r2→∞

logM−1g Mf (r1, r2)

log (r1r2)

where g is also an entire function holomorphic in the closed polydisc

U = {(z1, z2) : |zi| ≤ ri, i = 1, 2 for all r1 ≥ 0, r2 ≥ 0}

and the definition coincides with the classical one [8] if g(z1, z2) = exp (z1z2) .

Likewise, one can define the relative lower order of f with respect to g
denoted by v2λg (f) as follows:

v2λg (f) = lim inf
r1,r2→∞

logM−1g Mf (r1, r2)

log (r1r2)
.

Now, in the case of relative order of entire functions of two complex vari-
ables, it therefore seems reasonable to define suitably the relative type and relative
weak type respectively in order to compare the relative growth of two entire func-
tions of two complex variables having same non zero finite relative order or relative
lower order with respect to another entire function of two complex variables. Their
definitions are as follows:

Definition 1.4. Let f(z1, z2) and g(z1, z2) be any two entire functions such that
0 < v2ρg (f) < ∞. Then the relative type v2σg (f) of f(z1, z2) with respect to
g(z1, z2) is defined as :

v2σg (f) = inf
{
k > 0 : Mf (r1, r2) < Mg(kr

v2ρg(f)
1 , krv2

ρg(f)
2 )

for all sufficiently large values of r1 and r2} .

The equivalent formula for v2σg (f) is

v2σg (f) = lim sup
r1,r2→∞

M−1g Mf (r1, r2)

[r1r2]v2
ρg(f)

.

Likewise, one can define the relative lower type of an entire function f(z1, z2)
with respect to an entire function g(z1, z2) denoted by v2σg (f) as follows :

v2σg (f) = lim inf
r1,r2→∞

M−1g Mf (r1, r2)

[r1r2]v2
ρg(f)

, 0 < v2ρg (f) <∞ .
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Definition 1.5. The relative weak type v2τg (f) of an entire function f(z1, z2) with
respect to another entire function g(z1, z2) having finite positive relative lower order

v2λg (f) is defined as:

v2τg (f) = lim inf
r1,r2→∞

M−1g Mf (r1, r2)

[r1r2]v2
λg(f)

.

Also, one may define the growth indicator v2τg (f) of an entire function f with
respect to an entire function g in the following way:

v2τg (f) = lim sup
r1,r2→∞

M−1g Mf (r1, r2)

[r1r2]v2
λg(f)

, 0 < v2λg (f) <∞ .

Considering g(z1, z2) = exp (z1z2) one may easily verify that Definition 1.4
and Definition 1.5 coincide with Definition 1.2 and Definition 1.3, respectively.

In this paper, we study some relative growth properties of entire functions
of two complex variables with respect to another entire function of two complex
variables on the basis of relative type and relative weak type of two complex variables.
We do not explain the standard definitions and notations in the theory of entire
functions as those are available in [10].

2. Lemmas

In this section, we present some lemmas which will be needed in the sequel.

Lemma 2.1. [9] Let f(z1, z2) be an entire function with 0 ≤ v2λf ≤ v2ρf < ∞
and g(z1, z2) be entire of regular growth . Then

v2λg (f) =
v2λf

v2λg
and v2ρg (f) =

v2ρf

v2ρg
.

Lemma 2.2. [9] Let f(z1, z2) be an entire function with regular growth and g(z1, z2)
be entire with 0 ≤ v2λg ≤ v2ρg <∞. Then

v2λg (f) =
v2ρf

v2ρg
and v2ρg (f) =

v2λf

v2λg
.

3. Main Results

In this section, we present the main results of the paper.

Theorem 3.1. Let f(z1, z2) and g(z1, z2) be any two entire functions with finite
non-zero order. Also let g(z1, z2) be of regular growth. Then[
v2σf

v2σg

] 1
v2
ρg

≤ v2σg (f) ≤ min

{[
v2σf

v2σg

] 1
v2
ρg

,

[
v2σf

v2σg

] 1
v2
ρg

}
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≤ max

{[
v2σf

v2σg

] 1
v2ρg

,

[
v2σf

v2σg

] 1
v2ρg

}
≤ v2σg (f) ≤

[
v2σf

v2σg

] 1
v2ρg

.

Proof. From the definitions of v2σf and v2σf we have for all sufficiently large values
of r1, r2 that

Mf (r1, r2) ≤ exp {(v2σf + ε) [r1r2]v2
ρf } ,(3.1)

Mf (r1, r2) ≥ exp {(v2σf − ε) [r1r2]v2
ρf }(3.2)

and also for a sequence of values of r1, r2 tending to infinity we get that

Mf (r1, r2) ≥ exp {(v2σf − ε) [r1r2]v2
ρf } ,(3.3)

Mf (r1, r2) ≤ exp {(v2σf + ε) [r1r2]v2
ρf } .(3.4)

Similarly, from the definitions of v2σg and v2σf , it follows for all sufficiently large
values of r1, r2 that

Mg (r1, r2) ≤ exp {(v2σg + ε) [r1r2]v2
ρg}

i.e., [r1r2] ≤ M−1g [exp {(v2σg + ε) [r1r2]v2
ρg}]

i.e., M−1g (r1, r2) ≥

[(
log (r1r2)

(v2σg + ε)

) 1
v2
ρg

]
,(3.5)

Mg (r1, r2) ≥ exp {(v2σ − ε) [r1r2]v2
ρg}

i.e., [r1r2] ≥ M−1g [exp {(v2σ − ε) [r1r2]v2
ρg}]

i.e., M−1g (r1, r2) ≤

[(
log (r1r2)

(v2σ − ε)

) 1
v2
ρg

]
(3.6)

and for a sequence of values of r1, r2 tending to infinity we obtain that

Mg (r1, r2) ≥ exp {(v2σg − ε) [r1r2]v2
ρg}

i.e., [r1r2] ≥ M−1g [exp {(v2σg − ε) [r1r2]v2
ρg}]

i.e., M−1g (r1, r2) ≤

[(
log (r1r2)

(v2σg − ε)

) 1
v2ρg

]
,(3.7)

Mg (r1, r2) ≤ exp {(v2σg + ε) [r1r2]v2
ρg}

i.e., [r1r2] ≤ M−1g [exp {(v2σg + ε) [r1r2]v2
ρg}]

i.e., M−1g (r1, r2) ≥

[(
log (r1r2)

(v2σg − ε)

) 1
v2
ρg

]
.(3.8)

Now from (3.3) and in view of (3.5) , we get for a sequence of values of r1, r2 tending
to infinity we get that

M−1g Mf (r1, r2) ≥M−1g [exp {(v2σf − ε) [r1r2]v2
ρf }]
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i.e., M−1g Mf (r1, r2) ≥

[(
log exp {(v2σf − ε) [r1r2]v2

ρf }
(v2σg + ε)

) 1
v2ρg

]

i.e., M−1g Mf (r1, r2) ≥
[

(v2σf − ε)
(v2σg + ε)

] 1
v2
ρg

· [r1r2]
v2
ρf

v2
ρg

i.e.,
M−1g Mf (r1, r2)

[r1r2]
v2
ρf

v2
ρg

≥
[

(v2σf − ε)
(v2σg + ε)

] 1
v2ρg

.

As ε (> 0) is arbitrary, in view of Lemma 2.1 it follows that

lim sup
r1,r2→∞

M−1g Mf (r1, r2)

[r1r2]
v2
ρg(f)

≥
[
v2σf

v2σg

] 1
v2ρg

i.e., v2σg (f) ≥
[
v2σf

v2σg

] 1
v2
ρg

.(3.9)

Analogously, from (3.2) and in view of (3.8) , it follows for a sequence of values of
r1, r2 tending to infinity we get that

M−1g Mf (r1, r2) ≥M−1g
[
exp

{
(v2σf − ε) [r1r2]

v2ρf
}]

i.e., M−1g Mf (r1, r2) ≥

[(
log exp {(v2σf − ε) [r1r2]v2

ρf }
(v2σg + ε)

) 1
v2
ρg

]

i.e., M−1g Mf (r1, r2) ≥
[

(v2σf − ε)
(v2σg + ε)

] 1
v2ρg

· [r1r2]
v2
ρf

v2
ρg

i.e.,
M−1g Mf (r1, r2)

[r1r2]
v2ρf

v2ρg

≥
[

(v2σf − ε)
(v2σg + ε)

] 1
v2
ρg

.

Since ε (> 0) is arbitrary, we get from above and Lemma 2.1 that

lim sup
r1,r2→∞

M−1g Mf (r1, r2)

[r1r2]
v2ρg(f)

≥
[
v2σf

v2σg

] 1
v2
ρg

i.e., v2σg (f) ≥
[
v2σf

v2σg

] 1
v2ρg

.(3.10)

Again, in view of (3.6) we have from (3.1) , for all sufficiently large values of r1, r2
that

M−1g Mf (r1, r2) ≤M−1g [exp {(v2σf + ε) [r1r2]v2
ρf }]

i.e., M−1g Mf (r1, r2) ≤

[(
log exp {(v2σf + ε) [r1r2]v2

ρf }
(v2σg − ε)

) 1
v2ρg

]
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i.e., M−1g Mf (r1, r2) ≤
[

(v2σf + ε)

(v2σg − ε)

] 1
v2ρg

· [r1r2]
v2
ρf

v2
ρg

i.e.,
M−1g Mf (r1, r2)

[r1r2]
v2ρf

v2ρg

≤
[

(v2σf + ε)

(v2σg − ε)

] 1
v2ρg

.

Since ε (> 0) is arbitrary, we obtain in view of Lemma 2.1 that

lim sup
r1,r2→∞

M−1g Mf (r1, r2)

[r1r2]
v2ρg(f)

≤
[
v2σf

v2σg

] 1
v2
ρg

i.e., v2σg (f) ≤
[
v2σf

v2σg

] 1
v2ρg

.(3.11)

Again, from (3.2) and in view of (3.5) , we get for all sufficiently large values of
r1, r2 that

M−1g Mf (r1, r2) ≥M−1g [exp {(v2σf − ε) [r1r2]v2
ρf }]

i.e., M−1g Mf (r1, r2) ≥

[(
log exp {(v2σf − ε) [r1r2]v2

ρf }
(v2σg + ε)

) 1
v2
ρg

]

i.e., M−1g Mf (r1, r2) ≥
[

(v2σf − ε)
(v2σg + ε)

] 1
v2ρg

· [r1r2]
v2
ρf

v2
ρg

i.e.,
M−1g Mf (r1, r2)

[r1r2]
v2ρf

v2
ρg

≥
[

(v2σf − ε)
(v2σg + ε)

] 1
v2ρg

.

As ε (> 0) is arbitrary, it follows from the above and Lemma 2.1 that

lim inf
r1,r2→∞

M−1g Mf (r1, r2)

[r1r2]
v2ρg(f)

≥
[
v2σf

v2σg

] 1
v2
ρg

i.e., v2σg (f) ≥
[
v2σf

v2σg

] 1
v2ρg

.(3.12)

Also in view of (3.7) , we get from (3.1) for a sequence of values of r1, r2 tending to
infinity that

M−1g Mf (r1, r2) ≤M−1g [exp {(v2σf + ε) [r1r2]v2
ρf }]

i.e., M−1g Mf (r1, r2) ≤

[(
log exp {(v2σf + ε) [r1r2]v2

ρf }
(v2σg − ε)

) 1
v2ρg

]

i.e., M−1g Mf (r1, r2) ≤
[

(v2σf + ε)

(v2σg − ε)

] 1
v2
ρg

· [r1r2]
v2ρf

v2ρg

i.e.,
M−1g Mf (r1, r2)

[r1r2]
v2
ρf

v2
ρg

≤
[

(v2σf + ε)

(v2σg − ε)

] 1
v2
ρg

.
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Since ε (> 0) is arbitrary, we get from Lemma 2.1 and above that

lim inf
r1,r2→∞

M−1g Mf (r1, r2)

[r1r2]
v2ρg(f)

≤
[
v2σf

v2σg

] 1
v2
ρg

i.e., v2σg (f) ≤
[
v2σf

v2σg

] 1
v2ρg

.(3.13)

Similarly, from (3.4) and in view of (3.6) , it follows for a sequence of values of r1, r2
tending to infinity we get that

M−1g Mf (r1, r2) ≤M−1g [exp {(v2σf + ε) [r1r2]v2
ρf }]

i.e., M−1g Mf (r1, r2) ≤

[(
log exp {(v2σf + ε) [r1r2]v2

ρf }
(v2σg − ε)

) 1
v2
ρg

]

i.e., M−1g Mf (r1, r2) ≤
[

(v2σf + ε)

(v2σg − ε)

] 1
v2
ρg

· [r1r2]
v2ρf

v2ρg

i.e.,
M−1g Mf (r1, r2)

[r1r2]
v2
ρf

v2
ρg

≤
[

(v2σf + ε)

(v2σg − ε)

] 1
v2ρg

.

As ε (> 0) is arbitrary, we obtain from Lemma 2.1 and above that

lim inf
r1,r2→∞

M−1g Mf (r1, r2)

[r1r2]
ρg(f)
v2

≤
[
v2σf

v2σg

] 1
v2
ρg

i.e., v2σg (f) ≤
[
v2σf

v2σg

] 1
v2ρg

.(3.14)

Thus the theorem follows from (3.9) , (3.10) , (3.11) , (3.12) , (3.13) and (3.14) .

In view of Theorem 3.1, one can easily verify the following corollaries :

Corollary 3.1. Let f(z1, z2) be an entire function such that v2σf = v2σf and
g(z1, z2) be an entire function of regular growth. Then

v2σg (f) =

[
v2σf

v2σg

] 1
v2
ρg

and v2σg (f) =

[
v2σf

v2σg

] 1
v2
ρg

.

Corollary 3.2. Let f(z1, z2) be an entire function with non zero finite order and
g(z1, z2) be entire of regular growth with v2σg = v2σg. Then

v2σg (f) =

[
v2σf

v2σg

] 1
v2
ρg

and v2σg (f) =

[
v2σf

v2σg

] 1
v2
ρg

.
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In addition, if v2σf = v2σf then

v2σg (f) = v2σg (f) =

[
v2σf

v2σg

] 1
v2ρg

.

Corollary 3.3. Let f(z1, z2) be an entire function with non zero finite order. Then
for any entire function g(z1, z2),

(i) v2σg (f) = ∞ when v2σg = 0 ,

(ii) v2σg (f) = ∞ when v2σg = 0 ,

(iii) v2σg (f) = 0 when v2σg =∞

and
(iv) v2σg (f) =∞ when v2σg =∞,

where g(z1, z2) is of regular growth.

Corollary 3.4. Let g(z1, z2) be an entire function with regular growth . Then for
any entire function f(z1, z2),

(i) v2σg (f) = 0 when v2σf = 0 ,

(ii) v2σg (f) = 0 when v2σf = 0 ,

(iii) v2σg (f) = ∞ when v2σf =∞

and
(iv) v2σg (f) =∞ when v2σf =∞ .

In the line of Theorem 3.1 and with the help of Lemma 2.2 one can prove
the following theorem and therefore its proof is omitted:

Theorem 3.2. Let f(z1, z2) and g(z1, z2) be any two entire functions with finite
non-zero order. Also let f(z1, z2) be of regular growth. Then[

v2σf

v2σg

] 1
v2ρg

≤ v2τg (f) ≤ min

{[
v2σf

v2σg

] 1
v2ρg

,

[
v2σf

v2σg

] 1
v2ρg

}

≤ max

{[
v2σf

v2σg

] 1
v2
ρg

,

[
v2σf

v2σg

] 1
v2
ρg

}
≤ v2τg (f) ≤

[
v2σf

v2σg

] 1
v2
ρg

.

In view of Theorem 3.2 one can easily verify the following corollaries :

Corollary 3.5. Let f(z1, z2) be an entire function with regular growth and v2σf =

v2σf and g(z1, z2) be an entire function of non zero finite order. Then

v2τg (f) =

[
v2σf

v2σg

] 1
v2
ρg

and v2τg (f) =

[
v2σf

v2σg

] 1
v2
ρg

.
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Corollary 3.6. Let f(z1, z2) be an entire function with regular growth and g(z1, z2)
be an entire function with v2σg = v2σg. Then

v2τg (f) =

[
v2σf

v2σg

] 1
v2
ρg

and v2τg (f) =

[
v2σf

v2σg

] 1
v2
ρg

.

In addition, if v2σf = v2σf then

v2τg (f) = v2τg (f) =

[
v2σf

v2σg

] 1
v2ρg

.

Corollary 3.7. Let g(z1, z2) be an entire function with non zero finite order. Then
for any entire function f(z1, z2),

(i) v2τg (f) = ∞ when v2σg = 0 ,

(ii) v2τg (f) = ∞ when v2σg = 0 ,

(iii) v2τg (f) = 0 when v2σg =∞

and
(iv) v2τg (f) =∞ when v2σg =∞,

where f(z1, z2) is of regular growth.

Corollary 3.8. Let f(z1, z2) be an entire function with regular growth . Then for
any entire function g(z1, z2),

(i) v2τg (f) = 0 when v2σf = 0 ,

(ii) v2τg (f) = 0 when v2σf = 0 ,

(iii) v2τg (f) = ∞ when v2σf =∞

and
(iv) v2τg (f) =∞ when v2σf =∞ .

Similarly, in the line of Theorem 3.1 and Theorem 3.2 and with the help of
Lemma 2.1 and Lemma 2.2, one may easily prove the following two theorems and
therefore their proofs are omitted:

Theorem 3.3. Let f(z1, z2) and g(z1, z2) be any two entire functions with finite
non-zero lower order. Also let g(z1, z2) be of regular growth. Then[
v2τf

v2τg

] 1
v2
λg

≤ v2τg (f) ≤ min

{[
v2τf

v2τg

] 1
v2
λg

,

[
v2τf

v2τg

] 1
v2
λg

}

≤ max

{[
v2τf

v2τg

] 1
v2
λg

,

[
v2τf

v2τg

] 1
v2
λg

}
≤ v2τg (f) ≤

[
v2τf

v2τg

] 1
v2
λg

.
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In view of Theorem 3.3, one can easily verify the following corollaries :

Corollary 3.9. Let f(z1, z2) be an entire function such that v2τf = v2τf and
g(z1, z2) be an entire function of regular growth. Then

v2τg (f) =

[
v2τf

v2τg

] 1
v2λg

and v2τg (f) =

[
v2τf

v2τg

] 1
v2λg

.

Corollary 3.10. Let f(z1, z2) be an entire function with non-zero finite lower or-
der and g(z1, z2) be entire of regular growth with v2τg = v2τg. Then

v2τg (f) =

[
v2τf

v2τg

] 1
v2λg

and τg (f) =

[
v2τf

v2τg

] 1
v2λg

.

In addition, if v2τf = v2τf then

v2τg (f) = v2τg (f) =

[
v2τf

v2τg

] 1
v2
λg

.

Corollary 3.11. Let f(z1, z2) be an entire function with non-zero finite lower
order. Then for any entire function g(z1, z2),

(i) v2τg (f) = ∞ when v2τg = 0 ,

(ii) v2τg (f) = ∞ when v2τg = 0 ,

(iii) v2τg (f) = 0 when v2τg =∞

and
(iv) v2τg (f) =∞ when v2τg =∞,

where g(z1, z2) is of regular growth.

Corollary 3.12. Let g(z1, z2) be an entire function with regular growth . Then for
any entire function f(z1, z2),

(i) v2τg (f) = 0 when v2τf = 0 ,

(ii) v2τg (f) = 0 when v2τf = 0 ,

(iii) v2τg (f) = ∞ when v2τf =∞

and
(iv) v2τg (f) =∞ when v2τf =∞ .

Theorem 3.4. Let f(z1, z2) and g(z1, z2) be any two entire functions with finite
non-zero order. Also let f(z1, z2) be of regular growth. Then[
v2τf

v2τg

] 1
v2λg

≤ v2σg (f) ≤ min

{[
v2τf

v2τg

] 1
v2λg

,

[
v2τf

v2τg

] 1
v2λg

}

≤ max

{[
v2τf

v2τg

] 1
v2
λg

,

[
v2τf

v2τg

] 1
v2
λg

}
≤ v2σg (f) ≤

[
v2τf

v2τg

] 1
v2
λg

.



678 S.K. Datta, T. Biswas and S. Bhattacharyya

In view of Theorem 3.4, one can easily verify the following corollaries :

Corollary 3.13. Let f(z1, z2) be an entire function with regular growth and v2τf =

v2τf and g(z1, z2) be an entire function of non zero finite lower order. Then

v2σg (f) =

[
v2τf

v2τg

] 1
v2λg

and v2σg (f) =

[
v2τf

v2τg

] 1
v2λg

.

Corollary 3.14. Let f(z1, z2) be an entire function with regular growth and g(z1, z2)
be an entire function with v2τg = v2τg. Then

v2σg (f) =

[
v2τf

v2τg

] 1
v2
λg

and v2σg (f) =

[
v2τf

v2τg

] 1
v2
λg

.

In addition, if v2τf = v2τf then

v2σg (f) = v2σg (f) =

[
v2τf

v2τg

] 1
v2λg

.

Corollary 3.15. Let g(z1, z2) be an entire function with non zero finite lower
order. Then for any entire function f(z1, z2),

(i) v2σg (f) = ∞ when v2τg = 0 ,

(ii) v2σg (f) = ∞ when v2τg = 0 ,

(iii) v2σg (f) = 0 when v2τg =∞

and

(iv) v2σg (f) =∞ when v2τg =∞,

where f(z1, z2) is of regular growth.

Corollary 3.16. Let f(z1, z2) be an entire function with regular growth . Then for
any entire function g(z1, z2),

(i) v2σg (f) = 0 when v2τf = 0 ,

(ii) v2σg (f) = 0 when v2τf = 0 ,

(iii) v2σg (f) = ∞ when v2τf =∞

and

(iv) v2σg (f) =∞ when v2τf =∞ .
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