STRUCTURAL THEOREMS FOR (m,n)-QUASI-IDEAL SEMIGROUPS *

Petar V. Protić

Abstract

The definitions of (m, n)-ideal and (m, n)-quasi-ideal on a semigroup are given in [5]. They have been studied in many papers, recently in papers [7], [8] and [9]. In this paper we introduce the notion of an (m, n)-quasi-ideal semigroup and consider some general properties of this class of semigroups. Also, we introduce the notion of an (m, n) duo quasi-ideal semigroup and give its structural description. In section 3 we describe a class of (m, n)-quasi-ideal semigroups by matrix representation.

Keywords: (m, n)-quasi-ideal, periodic semigroup, rectangular band, power breaking partial semigroup

1. Introduction and some general properties for (m, n)-quasi ideal semigroups

Let S be a semigroup, $a \in S$, then by $<a>$ we denote monogenic subsemiroup on S generated by a. Either $<a>$ is isomorphic to the natural numbers N under addition or there exist positive integers r, m such that $\langle a\rangle=\left\{a, a^{2}, \ldots, a^{r}, \ldots, a^{r+m-1}\right\}$ with $K_{a}=\left\{a^{r}, a^{r+1}, \ldots, a^{r+m-1}\right\}$ a cyclic group of order m. The integers r and m are called index and period of $\langle a\rangle$, respectively. A semigroup S is periodic if all its monogenic subsemigroups are finite. By $|\langle a\rangle|$ we denote the cardinal of $\langle a\rangle$.

By $E(S)$ we denote a set of all idempotents on S.
For nondefined notions we refer to [2] and [3].
A subsemigroup A of a semigroup S is an (m, n)-ideal on S if $A^{m} S A^{n} \subseteq A$, where $m, n \in N \cup\{0\}\left(A^{0} S A^{n}=S A^{n}, A^{m} S A^{0}=A^{m} S\right)$, [5].

A semigroup S is an (m, n)-ideal semigroup if each subsemigroup of S is an (m, n)-ideal on $S,[11,13]$.

Definition 1.1. A subsemigroup Q of a semigroup S is an (m, n)-quasi-ideal on S if $Q^{m} S \cap S Q^{n} \subseteq Q$, where $m, n \in \mathbb{N} \cup\{0\}\left(Q^{0} S \cap S Q^{n}=S Q^{n}, Q^{m} S \cap S Q^{0}=Q^{m} S\right)$.

Received July 04, 2014.; Accepted February 25, 2015.
2010 Mathematics Subject Classification. Primary 20M10; Secondary 16A21
*The author was supported in part by Grant ON 174026 of Ministry of science through Math. Inst. SANU

Remark 1.1. Let Q be an (m, n)-quasi-ideal on S, then

$$
Q^{m} S Q^{n}=Q^{m} S Q^{n} \cap Q^{m} S Q^{n} \subseteq Q^{m} S \cap S Q^{n} \subseteq Q
$$

and so Q is an (m, n) ideal on S.
Definition 1.2. A semigroup S is an (m, n)-quasi-ideal semigroup if each subsemigroup of S is an (m, n)-quasi-ideal on S.

For $m=1, n=0(m=0, n=1)$ we have right (left) ideal semigroups considered in [4] and [5]. For $m=n=1$ we have quasi-ideal semigroups.

It is clear that if S is an (m, n)-quasi-ideal semigroup, then each subsemigroup of S is an (m, n)-quasi-ideal semigroup as well.

Remark 1.2. By Remark 1 we conclude that a class of (m, n)-quasi-ideal semigroups is a subclass of the class of (m, n)-ideal semigroups.

Remark 1.3. Let S be an (m, n)-quasi-ideal semigroup, $a \in S$, then

$$
a^{m} S \cap S a^{n} \subseteq<a>^{m} S \cap S<a>^{n} \subseteq<a>
$$

The following proposition is proved in [11].
Proposition 1.1. Let S be an (m, n)-ideal semigroup. Then the following statements are true:
(i) S is periodic, $K_{a}=\{e\}$, e is zero in $<a>$ for every $a \in S$ and $|<a\rangle \mid \leqslant 2 m+2 n+1$;
(ii) The set $E(S)$ is a rectangular band and an ideal of S;
(iii) S is a disjoint union of the maximal unipotent subsemigroups $S_{e}=\{x \in S \mid(\exists p \in$ N) $\left.x^{p}=e, e \in E(S)\right\}$ and e is zero in S_{e}.

Remark 1.4. By Remark 2 the above proposition is valid for (m, n)-quasi-ideal semigroups.
Theorem 1.1. Let S be an (m, n)-quasi-ideal semigroup, then for every $a \in S$ is $|<a\rangle$ $\mid \leqslant 2 \max \{m, n\}+1$.

Proof. By Proposition $1<a>=\left\{a, a^{2}, a^{3}, \ldots, a^{p}=e\right\}$ and $|<a>|=p$. Suppose that $p>2 m+2 k+1=2 n+2 s+1$ where $k, s \in \mathbb{N} \cup\{0\}$ are minimal such that $m+k=n+s$. Let $B=\left\{a^{2}, a^{4}, \ldots, a^{p}\right\}$, then B is a subsemigroup and (m, n)-quasi-ideal of $\langle a\rangle$. So

$$
B^{m} a \cap a B^{n} \subseteq B^{m}<a>\cap<a>B^{n} \subseteq B
$$

and

$$
\left\{a^{2 m+1}, \ldots, a^{2 m+2 k+1}, \ldots, a^{p}\right\} \cap\left\{a^{2 n+1}, \ldots, a^{2 n+2 s+1}, \ldots, a^{p}\right\} \subseteq B
$$

Now $a^{2 m+2 k+1}=a^{2 m+2 s+1} \in B$ where $k, s \in \mathbb{N} \cup\{0\}$ are minimal such that $m+k=n+s$ and $a^{2 m+2 k+1} \neq a^{p}$ which is a contradiction.

Hence, $p \leqslant 2 m+2 k+1=2 m+2 s+1$ or $p \leqslant \max \{m, n\}+1$.

2. A structural theorems for (m, n)-quasi-ideal semigroup

Let P be a partial semigroup, then $Q \subseteq P$ is a partial subsemigroup of P if for $x, y \in Q$ and $x y \in P$ it follows that $x y \in Q$. Then if $Q^{m} P \cap P Q^{n} \subseteq Q$ we say that Q is a partial (m, n)-quasi-ideal of P.

A partial semigroup P is a partial (m, n)-quasi-ideal semigroup if each partial subsemigroup of P is an (m, n)-quasi-ideal.

A partial semigroup P is called a power breaking partial semigroup if for every $a \in P$ there exists some $k \in \mathbb{N}$ such that $a^{k} \notin P$.

Example 2.1. Let semigroup $S=\{i, j, k, m, n, p, q, e, f, g, h\}$ be a given by the following table:

	$i j k m n p q e f g h$
i	jkmnpqeegge
j	$k m n p q e e e g g e$
k	$m n p q e e e e g g e$
m	$n p q e e e e e g g e$
n	$p q e e e e e e g g e$
p	q e e e e e e e g ge
q	$e \mathrm{e} e \mathrm{e} e \mathrm{e} e \mathrm{e}$ g ge
e	e e e e e e e e g ge
f	$h h h h h h h h f f h$
g	e e e e e e e g ge
h	$h h h h h h h h f f h$

Then S is a (4,1)-quasi-ideal semigroup, $E(S)=\{e, f, g, h\}$ is a rectangular band and an ideal of S and set $P=\{i, j, k, m, n, p, q\}$ is a power breaking partial (4,1)-quasi-ideal semigroup.

Theorem 2.1. Let S be an (m, n)-quasi-ideal semigroup, then $S=P \cup E(S)$ where P is a partial power breaking (m, n)-quasi-ideal semigroup and $E(S)$ is a rectangular band and an ideal of S, i.e. S is a retractive extension of the rectangular band $E(S)$ by the partial power breaking (m, n)-quasi-ideal semigroup P.

Proof. Let S be an (m, n)-quasi-ideal semigroup, then by Remark 1.2 and Proposition 1.1 we have that S is a periodic semigroup, $E(S)$ is a rectangular band and an ideal of S and $P=S \backslash E(S)$ is a power breaking partial semigroup.

Let Q be a subsemigroup of P. We denote by $R=<Q>$ a subsemigroup of S generated by Q. Then R is an (m, n)-quasi-ideal of S, and so

$$
Q^{m} P \cap P Q^{n} \subseteq R^{m} S \cap S R^{n} \subseteq R,
$$

whence

$$
Q^{m} P \cap P Q^{n} \subseteq R \backslash E(S)=Q
$$

Hence, Q is a partial (m, n)-quasi-ideal of P and so P is an (m, n)-quasi-ideal semigroup.

By Proposition 1 the mapping $\varphi: S \rightarrow E(S)$ defined by $\varphi(a)=e_{a}$, where e_{a} is a zero in $\langle a\rangle$, is a retraction.

Next, we give the following construction.
Construction 1. Let P be a power breaking partial (m, n)-quasi-ideal semigroup, E be a rectangular band, $P \cap E \neq \varnothing$ and φ be a partial homomorphism from P into E. Let us put $\varphi(e)=e$ for each $e \in E$. Then the mapping $\varphi: S=P \cup E \longrightarrow E$ is a surjective.

Let us define an operation \cdot on S by

$$
x \cdot y=\left\{\begin{array}{l}
x y, \quad \text { if } x, y \in P \text { and } x y \text { is defined in } P \\
\varphi(x) \varphi(y) \text { otherwise }
\end{array}\right.
$$

Then (S, \cdot) is a semigroup which will be denoted by $[P, E, \varphi]$.

Theorem 2.2. The semigroup $S=[P, E, \varphi]$ given by the above construction is an $(m, n)-$ quasi-ideal semigroup.

Proof. Let Q be a subsemigroup of S and $Q^{*}=Q \backslash E$. Let $s \in Q^{m} S \cap S Q^{n}$. Then it is $s=$ $p d=t q$ where $p=x_{1} x_{2} \ldots x_{m} \in Q^{m}, q=y_{1} y_{2} \ldots y_{n} \in Q^{n}, x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n} \in$ Q and $d, t \in S$. It is enough to consider the following cases:

1. $p, q \in Q^{*}, d, t \in P$
1.1. $s=p d=t q \in P$, then $s \in\left(Q^{*}\right)^{m} P \cap P\left(Q^{*}\right)^{n} \subseteq Q^{*}$ since P is an (m, n)-quasiideal partial semigroup.
1.2. $s=p d=t q \in E$, then

$$
\begin{aligned}
s & =s^{2}=p d t q=\varphi(p) \varphi(d) \varphi(t) \varphi(q)=\varphi(p) \varphi(q) \\
& =\varphi\left(p^{\max \{m, n\}+1}\right) \varphi(q)=\varphi\left(p^{\max \{m, n\}+1} q\right)=p^{\max \{m, n\}+1} q \in Q
\end{aligned}
$$

Other cases can be considered analogously. Hence, Q is an (m, n)-quasi-ideal of S and so S is an (m, n)-quasi-ideal semigroup.

Definition 2.1. A subsemigroup Q of a semigroup S is an (m, n)-duo quasi-ideal of S if

$$
Q^{m} S \cap S Q^{n} \subseteq Q \quad \text { and } \quad Q^{n} S \cap S Q^{m} \subseteq Q
$$

where $m, n \in \mathbb{N} \cup\{0\}$. A semigroup S is an (m, n)-duo quasi-ideal semigroup if each subsemigroup of S is an (m, n)-duo quasi-ideal of S.

It is clear that a class of (m, n)-duo quasi-ideal semigroups is a subclass of a class of (m, n)-quasi-ideal semigroups. Putting $n=1$, we have $(m, 1)$-duo quasi-ideal semigroups.

If P is a partial semigroup then the notions of (m, n)-duo quasi-ideal and (m, n) duo quasi-ideal partial semigroup are defined analogously by the above.

The semigroup S given in Example 1 is an $(4,1)$-duo quasi-ideal semigroup and $P=S \backslash E(S)$ is an $(4,1)$-duo quasi-ideal partial semigroup.

Let in Construction $1 P$ be an $(m, 1)$-duo quasi-ideal power breaking partial semigroup. Then we prove the following

Theorem 2.3. A semigroup S is an $(m, 1)$-duo quasi-ideal semigroup if and only if $S \cong$ $[P, E, \varphi]$.

Proof. Let S be an ($m, 1$)-duo quasi-ideal semigroup. The proof that $S=P \cup E(S)$ where P is a partial power breaking $(m, 1)$-duo quasi-ideal semigroup and $E(S)$ is a rectangular band and an ideal of S is analogous with the proof in Theorem 1.

Let $\varphi: S=P \cup E(S) \longrightarrow E(S)$ be a mapping defined by $\varphi(x)=e_{x}$ such that e_{x} is the idempotent in $\langle x\rangle$. Since a class of ($m, 1$)-duo quasi-ideal semigroups is a subclass of a class of $(m, 1)$-duo ideal semigroup, we have that mapping φ is epimorphism [9].

The operation on S is defined in the following way:

$$
x y=\left\{\begin{array}{l}
x y, \quad \text { as in } P \text { if } x, y \in P \text { and } x y \text { is defined in } P \\
z=\varphi(z)=\varphi(x y)=\varphi(x) \varphi(y) \text { otherwise }
\end{array}\right.
$$

It follows that the operation on S is defined in the same way as Construction 1, and so $S \cong[S, P, \varphi]$.

Conversely, suppose that $S \cong[P, E, \varphi]=T$ where P is an $(m, 1)$-duo quasi-ideal power breaking partial semigroup. The proof that T is an $(m, 1)$-duo quasi-ideal semigroup is analogous with the proof of Theorem 2 . Consequently, S is an $(m, 1)$ duo quasi-ideal semigroup.

3. The matrix representation for (m, n)-quasi ideal semigroups

In this section we describe the class of (m, n)-quasi-ideal semigroups by matrix representation.
Construction 2. Let $E=I \times Y$ be a rectangular band and let Q be a partial (m, n) -qusi-ideal power breaking semigroup such that $E \cap Q=\varnothing$. Let $\xi: p \longrightarrow \xi_{p}$ be a mapping from Q into the semigroup $T(I)$ of all mappings from I into itself and $\eta: p \rightarrow \eta_{p}$ be a mapping from Q into $T(J)$.

For all $p, q \in Q$ let:
(i) $p q \in Q \Longrightarrow \xi_{p q}=\xi_{p} \xi_{q}, \eta_{p q}=\eta_{p} \eta_{q}$,
(ii) $p q \notin Q \Longrightarrow \xi_{p} \xi_{q}=$ cons., $\eta_{p} \eta_{q}=$ cons.,

Let us define a multiplication on $S=E \cup Q$ with:
(a) $(i, j)(k, l)=(i, l)$,
(b) $\quad p(i, j)=\left(i \xi_{p}, j\right)$,
(c) $(i, j) p=\left(i j \eta_{p}\right)$,
(d) $p q=r \in Q \Longrightarrow p q=r \in S$,
(e) $\quad p q \notin Q \Longrightarrow p q=\left(i \xi_{q} \xi_{p}, j \eta_{p} \eta_{q}\right)$.

Then S with this multiplication is a semigroup, [1], [6] and $[12,14]$.
A subsemigroup B of S is of the form $B=E_{B} \cup Q_{B}$, where $E_{B}=I_{B} \times J_{B},\left(I_{B} \subseteq\right.$ $\left.I, J_{B} \subseteq J\right)$ is a rectangular band and Q_{B} is a partial subsemigroup of Q.

If for $p, q \in Q_{B}, p \in Q_{B}^{m}, q \in Q_{B}^{n}$ the following condition holds:
(iii) $\xi_{p}: I \longrightarrow I_{B}, \eta_{q}: J \longrightarrow J_{B}$
then a semigroup which is constructed in this way will be denoted by $M(I, J, Q, \xi, \eta)$.
Theorem 3.1. Semigroup S is an (m, n)-quasi-ideal semigroup if and only if S is isomorphic to some $M(I, J, Q, \xi, \eta)$.

Proof. Let S be an (m, n)-quasi-ideal semigroup, then S is an (m, n)-ideal semigroup. By Theorem, [1], we have that S is isomorphic to a semigroup $M(I, J, Q, \xi, \eta)$.

Conversely, let $S=M(I, J, Q, \xi, \eta)$ and let B be a subsemigroup of S. Then $B=E_{B} \cup Q_{B}$, where $E_{B}=I_{B} \times J_{B},\left(\mathrm{I}_{\mathrm{B}} \subseteq \mathrm{I}, \mathrm{J}_{\mathrm{B}} \subseteq \mathrm{J}\right)$ is a rectangular band and Q is a partial subsemigroup of Q.

We will prove that B is an (m, n)-quasi-ideal of S.
Since E_{B} is an ideal in B, we have

$$
B^{2}=\left(E_{B} \cup Q_{B}\right)\left(E_{B} \cup Q_{B}\right)=E_{B}^{2} \cup E_{B} Q_{B} \cup Q_{B} E_{B} \cup Q_{B}^{2}=E_{B} \cup Q_{B^{\prime}}^{2}
$$

and so, by induction, we conclude that $B^{p}=\left(E_{B} \cup Q_{B}\right)^{p}=E_{B} \cup Q_{B}^{p}$ for every $p \in \mathbb{N}$. Now

$$
\begin{aligned}
& B^{m} S \cap S B^{n}=\left(E_{B} \cup Q_{B}\right)^{m} S \cap S\left(E_{B} \cup Q_{B}\right)^{n} \\
& =\left(E_{B} \cup Q_{B}^{m}\right) S \cap S\left(E_{B} \cup Q_{B}^{n}\right) \\
& =\left(E_{B} S \cap S E_{B}\right) \cup\left(E_{B} S \cap S Q_{B}^{n}\right) \cup\left(Q_{B}^{m} \cap S E_{B}\right) \cup\left(Q_{B}^{m} \cap S Q_{B}^{n}\right)
\end{aligned}
$$

Now we will consider the set

$$
E_{B} S \cap S E_{B}=\left\{e a=b e \mid e, f \in E_{B}, a, b \in S\right\} .
$$

Since $E=I \times J$ is a rectangular band and ideal on S we have

$$
e a=e^{2} a=e e a=e b f=e(e b) f=e f \in E_{B}
$$

Hence

$$
\begin{equation*}
E_{B} S \cap S E_{B} \subseteq E_{B} \tag{3.1}
\end{equation*}
$$

We will consider the set

$$
E_{B} S \cap S Q_{B}^{n}=\left\{e a=b q \mid e \in E_{B}, a, b \in S, q \in Q_{B}^{n}\right\}
$$

Then $e a=b q \in E$. Let this be $e=(i, j) \in E_{B}=I_{B} \times J_{B}$. We have the following cases:
(2.1) If $a, b \in Q, q \in Q_{B}^{n} \subseteq Q_{B}$ then $(i, j) a=b q$ and

$$
(i, j) a=(i, j)^{2} a=(i, j) b q=\left(i, j \eta_{b}\right) q=\left(i, j \eta_{b} \eta_{q}\right)
$$

so by (iii) it follows that

$$
\left(i, j \eta_{a}\right)=\left(i, j \eta_{b} \eta_{q}\right) \in E_{B} \subseteq B
$$

(2.2) If $a, b \in Q, q \in E_{B}$, then it is case (1).
(2.3) Let $a \in E, b \in Q, q \in Q_{B}$, then $a=(k, l)$ and $(i, l)=(i, j)(k, l)=b q$. Now

$$
(i, l)^{2}=(i, l) b q=\left(i, l \eta_{b} \eta_{q}\right) \in E_{B}
$$

(2.4) Let $a \in Q, b \in E, q \in Q_{B}$, then $b=(k, l)$ and $(i, j) a=(k, l) q$. Now

$$
\left(i, j \eta_{a}\right)=\left(i, j \eta_{a}\right)^{2}=\left(i, j \eta_{a}\right)\left(k, l \eta_{q}\right)=\left(i, l \eta_{q}\right) \in E_{B}
$$

(2.5) Let $a, b \in E, q \in Q_{B}$, then $a=(k, l), b=\left(k^{\prime}, l^{\prime}\right),(i, j)(k, l)=\left(k^{\prime}, l^{\prime}\right) q$ and

$$
(i, l)=\left(k^{\prime}, l^{\prime} \eta_{q}\right) \quad \Longrightarrow \quad\left(i, l^{\prime} \eta_{q}\right) \in E_{B}
$$

(2.6) If $a \in E, b \in Q, q \in E_{B}$, then it is case (1).
(2.7) If $a \in Q, b \in E, q \in E_{B}$, then it is case (1).
(2.8) If $a, b \in E, q \in E_{B}$, then it is case (1).

By the above it follows that

$$
\begin{equation*}
E_{B} S \cap S Q_{B}^{n} \subseteq E_{Q} \subseteq B \tag{3.2}
\end{equation*}
$$

Similarly we have that

$$
\begin{equation*}
Q_{B}^{m} S \cap S E_{B} \subseteq B \tag{3.3}
\end{equation*}
$$

Finally, we will consider the set

$$
Q_{B}^{m} S \cap S Q_{B}^{n}=\left\{p a=b q \mid p \in Q_{B}^{m}, q \in Q_{B}^{n}, a, b \in S\right\}
$$

Then we have the following cases:
(4.1) If $p, q \in Q_{B}, a, b \in Q$ then

$$
p a=b q \in Q_{B}^{m} Q \cap Q Q_{B}^{n} \subseteq Q_{B} \subseteq B
$$

(4.2) If $p, q \in Q_{B}, a, b \in Q$ and $p a=b q \in E$, then by (e) it follows

$$
p a=\left(i \xi_{a} \xi_{p}, j \eta_{p} \eta_{a}\right)=b q=\left(i \xi_{q} \xi_{b}, j \eta_{b} \eta_{q}\right)
$$

and so by (iii) we have

$$
p a=b q=p a b q=\left(i \xi_{a} \xi_{p}, j \eta_{b} \eta_{q}\right) \in E_{B} \subseteq B
$$

(4.3) If $p \in E_{B}, a, b \in Q, b \in Q_{B}$ then it is case (2).
(4.4) From $p, q \in Q_{B}, a \in E, b \in Q$ follows $b q \in E$ and, for $a=(i, j)$ and (e), it follows that $p a=\left(i \xi_{p}, j\right), b q=\left(i \xi_{q} \xi_{b}, j \eta_{b} \eta_{q}\right)$. So

$$
p a=b q=p a b q=\left(i \xi_{p}, j \eta_{b} \eta_{q}\right) \in E_{B} \subseteq B
$$

(4.5) If $p, q \in Q_{B}, a \in Q, b=(i, j) \in E$ then $p a=\left(i \xi_{a} \xi_{p}, j \eta_{p} \eta_{a}\right)=b q=\left(i, j \eta_{q}\right)$ and so $\left(i \xi_{a} \xi_{p}, j \eta_{q}\right) \in E_{B}$.
(4.6) If $p=(i, j) \in E_{B}, a=(k, l) \in E, b \in Q, q \in Q_{B}$ then it is case (2).
(4.7) If $p=(i, j) \in E_{B}, a \in Q, b \in E, q \in Q_{B}$ then it is case (2).
(4.8) If $p=(i, j) \in E_{B}, a, b \in Q, q=(k, l) \in E_{B}$ then it is case (1).
(4.9) If $p \in Q_{B}, a=(k, l) \in E, b \in Q, q \in E_{B}$ then it is case (3).
(4.10) If $p \in Q_{B}, a=\in Q, b \in E, q \in E_{B}$ then it is case (3).
(4.11) If $p \in Q_{B}, a=(i, j) \in E, b=(k, l) \in E, q \in E_{B}$ then $p a=p(i, j)=\left(i \xi_{p}, j\right)=$ $b q=(k, l) q=\left(k, l \eta_{q}\right)$ and so

$$
p a=b q=\left(i \xi_{p}, l \eta_{q}\right) \in E_{B} \subseteq B
$$

(4.12) If $p \in E_{B}, a, b \in E, q \in Q_{B}$ then it is case (2).
(4.13) If $p, q \in E_{B}, a \in E, b \in Q$ then it is case (1).
(4.14) If $p, q \in E_{B}, a \in Q, b \in E$ then it is case (1).
(4.15) If $p \in Q_{B}, a, b \in E, q \in E_{B}$ then it is case (3).
(4.16) If $p, q \in E_{B}, a, b \in E$ then it is case (1).

There are no other cases. Hence

$$
\begin{equation*}
Q_{B}^{m} S \cap S Q_{B}^{n} \subseteq B \tag{3.4}
\end{equation*}
$$

By (1), (2), (3) and (4) we have that $B^{m} S \cap S B^{n} \subseteq B, B$ is an (m, n)-ideal of S and S is an (m, n)-quasi-ideal semigroup.

REFERENCES

1. S. Bogdanović and S. Milić: (m, n)-ideal semigroups. Proc. of Third Agebraic conf. Beograd, 1982, pp. 35-39.
2. S. Bogdanović, M. Ćirić and Ž. Popović: Semilattice Decompositions of Semigroups, Faculty of Ekonomics, University of Niš, 2011.
3. P. M. Higgins: Technicues of Semigroup Theory, Oxford University Press, 1992.
4. N. Kimura and T. Tamura: Semigroups in which all Subsemigroups are left Ideals, Canada J. Math. XVII (1965), 52-62.
5. S. Lajos: Generalized Ideals in Semigroups, Acta Sci. Math. Szeged, 22 (1961), 217-222.
6. S. Milić and V. Pavlović: Semigroups in which some ideal is a completely simple semigroup, Publ. Inst. Math. 30(44) (1981), 123-130.
7. Moin A. Ansari, M. Rais Khan and J. P. Kaushic: Notes on Generalized (m, n) BiIdeals in Semigroups with Involution, International Journal of Algebra, 3(19) (2009), 945-952.
8. Moin A. Ansari, M. Rais Khan and J. P. Kaushic: A note on (m, n) Quasi-Ideals in Semigroups, Int. Journal of Math. Analysis, 3(38) (2009), 1853-1858.
9. Moin A. Ansari and M. Rais Khan: Notes on (m, n) bi-Г-ideals in Гsemigroups, Rend. Circ. Mat. Palermo, 60 (2011), 31-42.
10. B. Trpenovski: Bi-Ideal Semigroups, Algebraic Conference, Skopje, 1980, pp. 109-114.
11. P. Protić and S. Bogdanović: On a class of Semigroups, In: Proceedings of a Algebraic Conference Novi Sad, 1981, pp. 113-119.
12. P. Protić and S. Bogdanović: A Structural Theorem for (m, n)-Ideal Semigroups, In: Proceedings of a Symposium n-ary Structures, Skopje, 1982, pp. 135-139.
13. P. V. Protic: Some Congruences on a π-Regular Semigroup, Facta Universitatis (Nis), Ser. Math. Inform. 5 (1990), 19-24.
14. P. V. Protic: Some Remarks of Medial Groupoids, Facta Universitatis (Nis), Ser. Math. Inform. 26 (2011), 65-73.

Petar V. Protić
University of Niš
Faculty of Civil Engieenering
Aleksandra Medvedeva 14
18000 Niš, Serbia
pvprotic@yahoo.com

