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STRUCTURAL THEOREMS FOR (m,n)-QUASI-IDEAL SEMIGROUPS ∗

Petar V. Protić

Abstract. The definitions of (m,n)-ideal and (m,n)-quasi-ideal on a semigroup are given
in [5]. They have been studied in many papers, recently in papers [7], [8] and [9]. In
this paper we introduce the notion of an (m,n)-quasi-ideal semigroup and consider some
general properties of this class of semigroups. Also, we introduce the notion of an (m,n)-
duo quasi-ideal semigroup and give its structural description. In section 3 we describe a
class of (m,n)-quasi-ideal semigroups by matrix representation.
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1. Introduction and some general properties for
(m, n)-quasi ideal semigroups

Let S be a semigroup, a ∈ S, then by < a >we denote monogenic subsemiroup on S
generated by a. Either< a > is isomorphic to the natural numbers N under addition
or there exist positive integers r,m such that < a >= {a, a2, . . . , ar, . . . , ar+m−1} with
Ka = {ar, ar+1, . . . , ar+m−1} a cyclic group of order m. The integers r and m are called
index and period of < a >, respectively. A semigroup S is periodic if all its monogenic
subsemigroups are finite. By | < a > | we denote the cardinal of < a >.

By E(S) we denote a set of all idempotents on S.
For nondefined notions we refer to [2] and [3].
A subsemigroup A of a semigroup S is an (m, n)-ideal on S if AmSAn ⊆ A, where

m, n ∈ N ∪ {0} (A0SAn = SAn, AmSA0 = AmS), [5].
A semigroup S is an (m, n)-ideal semigroup if each subsemigroup of S is an

(m, n)-ideal on S, [11, 13].

Definition 1.1. A subsemigroup Q of a semigroup S is an (m, n)-quasi-ideal on S
if QmS ∩ SQn ⊆ Q, where m, n ∈N ∪ {0} (Q0S ∩ SQn = SQn, QmS ∩ SQ0 = QmS).
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Remark 1.1. Let Q be an (m,n)-quasi-ideal on S, then

QmSQn = QmSQn ∩QmSQn ⊆ QmS ∩ SQn ⊆ Q

and so Q is an (m,n) ideal on S.

Definition 1.2. A semigroup S is an (m, n)-quasi-ideal semigroup if each subsemi-
group of S is an (m, n)-quasi-ideal on S.

For m = 1, n = 0 (m = 0, n = 1) we have right (left) ideal semigroups considered
in [4] and [5]. For m = n = 1 we have quasi-ideal semigroups.

It is clear that if S is an (m, n)-quasi-ideal semigroup, then each subsemigroup
of S is an (m, n)-quasi-ideal semigroup as well.

Remark 1.2. By Remark 1 we conclude that a class of (m,n)-quasi-ideal semigroups is a
subclass of the class of (m,n)-ideal semigroups.

Remark 1.3. Let S be an (m,n)-quasi-ideal semigroup, a ∈ S, then

amS ∩ San ⊆< a >m S ∩ S < a >n⊆< a > .

The following proposition is proved in [11].

Proposition 1.1. Let S be an (m, n)-ideal semigroup. Then the following statements are
true:

(i) S is periodic, Ka = {e}, e is zero in < a > for every a ∈ S and | < a > | � 2m+2n+1;
(ii) The set E(S) is a rectangular band and an ideal of S;
(iii) S is a disjoint union of the maximal unipotent subsemigroups Se = {x ∈ S | (∃p ∈

N) xp = e, e ∈ E(S)} and e is zero in Se.

Remark 1.4. By Remark 2 the above proposition is valid for (m,n)-quasi-ideal semigroups.

Theorem 1.1. Let S be an (m, n)-quasi-ideal semigroup, then for every a ∈ S is | < a >
| � 2 max{m, n} + 1.

Proof. By Proposition 1 < a >= {a, a2, a3, . . . , ap = e} and | < a > | = p. Suppose that
p > 2m+ 2k+ 1 = 2n+ 2s+ 1 where k, s ∈N∪{0} are minimal such that m+ k = n+ s.
Let B = {a2, a4, . . . , ap}, then B is a subsemigroup and (m, n)-quasi-ideal of < a >. So

Bma ∩ aBn ⊆ Bm < a > ∩ < a > Bn ⊆ B

and
{a2m+1, . . . , a2m+2k+1, . . . , ap} ∩ {a2n+1, . . . , a2n+2s+1, . . . , ap} ⊆ B.

Now a2m+2k+1 = a2m+2s+1 ∈ B where k, s ∈N∪ {0} are minimal such that m+ k = n+ s
and a2m+2k+1 � ap which is a contradiction.

Hence, p � 2m + 2k + 1 = 2m + 2s + 1 or p � max{m, n} + 1.
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2. A structural theorems for (m, n)-quasi-ideal semigroup

Let P be a partial semigroup, then Q ⊆ P is a partial subsemigroup of P if for
x, y ∈ Q and xy ∈ P it follows that xy ∈ Q. Then if QmP ∩ PQn ⊆ Q we say that Q is
a partial (m, n)-quasi-ideal of P.

A partial semigroup P is a partial (m, n)-quasi-ideal semigroup if each partial
subsemigroup of P is an (m, n)-quasi-ideal.

A partial semigroup P is called a power breaking partial semigroup if for every
a ∈ P there exists some k ∈N such that ak � P.

Example 2.1. Let semigroup S = {i, j, k,m,n, p, q, e, f , �, h} be a given by the following table:

i j k m n p q e f � h

i j k m n p q e e � � e

j k m n p q e e e � � e

k m n p q e e e e � � e
m n p q e e e e e � � e
n p q e e e e e e � � e
p q e e e e e e e � � e
q e e e e e e e e � � e
e e e e e e e e e � � e

f h h h h h h h h f f h
� e e e e e e e e � � e

h h h h h h h h h f f h .

Then S is a (4, 1)-quasi-ideal semigroup, E(S) = {e, f , �, h} is a rectangular band and an ideal
of S and set P = {i, j, k,m,n, p, q} is a power breaking partial (4, 1)-quasi-ideal semigroup.

Theorem 2.1. Let S be an (m, n)-quasi-ideal semigroup, then S = P ∪ E(S) where P is a
partial power breaking (m, n)-quasi-ideal semigroup and E(S) is a rectangular band and an
ideal of S, i.e. S is a retractive extension of the rectangular band E(S) by the partial power
breaking (m, n)-quasi-ideal semigroup P.

Proof. Let S be an (m, n)-quasi-ideal semigroup, then by Remark 1.2 and Proposition
1.1 we have that S is a periodic semigroup, E(S) is a rectangular band and an ideal
of S and P = S \ E(S) is a power breaking partial semigroup.

Let Q be a subsemigroup of P. We denote by R =< Q > a subsemigroup of S
generated by Q. Then R is an (m, n)-quasi-ideal of S, and so

QmP ∩ PQn ⊆ RmS ∩ SRn ⊆ R,

whence
QmP ∩ PQn ⊆ R \ E(S) = Q.
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Hence, Q is a partial (m, n)-quasi-ideal of P and so P is an (m, n)-quasi-ideal semi-
group.

By Proposition 1 the mapping ϕ : S→ E(S) defined by ϕ(a) = ea, where ea is a
zero in < a >, is a retraction.

Next, we give the following construction.

Construction 1. Let P be a power breaking partial (m, n)-quasi-ideal semigroup, E
be a rectangular band, P ∩ E � Ø and ϕ be a partial homomorphism from P into
E. Let us put ϕ(e) = e for each e ∈ E. Then the mapping ϕ : S = P ∪ E −→ E is a
surjective.

Let us define an operation · on S by

x · y =
{

xy, if x, y ∈ P and xy is defined in P,
ϕ(x)ϕ(y) otherwise.

Then (S, ·) is a semigroup which will be denoted by [P,E, ϕ].

Theorem 2.2. The semigroup S = [P,E, ϕ] given by the above construction is an (m, n)-
quasi-ideal semigroup.

Proof. Let Q be a subsemigroup of S and Q∗ = Q\E. Let s ∈ QmS∩SQn. Then it is s =
pd = tq where p = x1x2 . . . xm ∈ Qm, q = y1y2 . . . yn ∈ Qn, x1, x2, . . . , xm, y1, y2, . . . , yn ∈
Q and d, t ∈ S. It is enough to consider the following cases:

1. p, q ∈ Q∗, d, t ∈ P

1.1. s = pd = tq ∈ P, then s ∈ (Q∗)mP ∩ P(Q∗)n ⊆ Q∗ since P is an (m, n)-quasi-
ideal partial semigroup.

1.2. s = pd = tq ∈ E, then

s = s2 = pdtq = ϕ(p)ϕ(d)ϕ(t)ϕ(q) = ϕ(p)ϕ(q)
= ϕ(pmax{m,n}+1)ϕ(q) = ϕ(pmax{m,n}+1q) = pmax{m,n}+1q ∈ Q.

Other cases can be considered analogously. Hence, Q is an (m, n)-quasi-ideal of S
and so S is an (m, n)-quasi-ideal semigroup.

Definition 2.1. A subsemigroup Q of a semigroup S is an (m, n)-duo quasi-ideal
of S if

QmS ∩ SQn ⊆ Q and QnS ∩ SQm ⊆ Q

where m, n ∈N∪{0}. A semigroup S is an (m, n)-duo quasi-ideal semigroup if each
subsemigroup of S is an (m, n)-duo quasi-ideal of S.
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It is clear that a class of (m, n)-duo quasi-ideal semigroups is a subclass of a class
of (m, n)-quasi-ideal semigroups. Putting n = 1, we have (m, 1)-duo quasi-ideal
semigroups.

If P is a partial semigroup then the notions of (m, n)-duo quasi-ideal and (m, n)-
duo quasi-ideal partial semigroup are defined analogously by the above.

The semigroup S given in Example 1 is an (4, 1)-duo quasi-ideal semigroup and
P = S \ E(S) is an (4, 1)-duo quasi-ideal partial semigroup.

Let in Construction 1 P be an (m, 1)-duo quasi-ideal power breaking partial
semigroup. Then we prove the following

Theorem 2.3. A semigroup S is an (m, 1)-duo quasi-ideal semigroup if and only if S �
[P,E, ϕ].

Proof. Let S be an (m, 1)-duo quasi-ideal semigroup. The proof that S = P ∪ E(S)
where P is a partial power breaking (m, 1)-duo quasi-ideal semigroup and E(S) is a
rectangular band and an ideal of S is analogous with the proof in Theorem 1.

Let ϕ : S = P ∪ E(S) −→ E(S) be a mapping defined by ϕ(x) = ex such that
ex is the idempotent in < x >. Since a class of (m, 1)-duo quasi-ideal semigroups
is a subclass of a class of (m, 1)-duo ideal semigroup, we have that mapping ϕ is
epimorphism [9].

The operation on S is defined in the following way:

xy =
{

xy, as in P if x, y ∈ P and xy is defined in P,
z = ϕ(z) = ϕ(xy) = ϕ(x)ϕ(y) otherwise.

It follows that the operation on S is defined in the same way as Construction 1, and
so S � [S,P, ϕ].

Conversely, suppose that S � [P,E, ϕ] = T where P is an (m, 1)-duo quasi-ideal
power breaking partial semigroup. The proof that T is an (m, 1)-duo quasi-ideal
semigroup is analogous with the proof of Theorem 2. Consequently, S is an (m, 1)-
duo quasi-ideal semigroup.

3. The matrix representation for (m, n)-quasi ideal semigroups

In this section we describe the class of (m, n)-quasi-ideal semigroups by matrix
representation.
Construction 2. Let E = I × Y be a rectangular band and let Q be a partial (m, n)-
qusi-ideal power breaking semigroup such that E ∩ Q = Ø. Let ξ : p −→ ξp be
a mapping from Q into the semigroup T(I) of all mappings from I into itself and
η : p → ηp be a mapping from Q into T(J).

For all p, q ∈ Q let:

(i) pq ∈ Q =⇒ ξpq = ξpξq, ηpq = ηpηq,
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(ii) pq � Q =⇒ ξpξq = cons., ηpηq = cons.,

Let us define a multiplication on S = E ∪Q with:

(a) (i, j)(k, l) = (i, l),

(b) p(i, j) = (iξp, j),

(c) (i, j)p = (i jηp),

(d) pq = r ∈ Q =⇒ pq = r ∈ S,

(e) pq � Q =⇒ pq = (iξqξp, jηpηq).

Then S with this multiplication is a semigroup, [1], [6] and [12, 14].
A subsemigroup B of S is of the form B = EB ∪ QB, where EB = IB × JB, (IB ⊆

I, JB ⊆ J) is a rectangular band and QB is a partial subsemigroup of Q.
If for p, q ∈ QB, p ∈ Qm

B , q ∈ Qn
B the following condition holds:

(iii) ξp : I −→ IB, ηq : J −→ JB

then a semigroup which is constructed in this way will be denoted by M(I, J,Q, ξ, η).

Theorem 3.1. Semigroup S is an (m, n)-quasi-ideal semigroup if and only if S is isomor-
phic to some M(I, J,Q, ξ, η).

Proof. Let S be an (m, n)-quasi-ideal semigroup, then S is an (m, n)-ideal semigroup.
By Theorem, [1], we have that S is isomorphic to a semigroup M(I, J,Q, ξ, η).

Conversely, let S = M(I, J,Q, ξ, η) and let B be a subsemigroup of S. Then
B = EB ∪ QB, where EB = IB × JB, (IB ⊆ I, JB ⊆ J) is a rectangular band and Q is a
partial subsemigroup of Q.

We will prove that B is an (m, n)-quasi-ideal of S.
Since EB is an ideal in B, we have

B2 = (EB ∪QB)(EB ∪QB) = E2
B ∪ EBQB ∪QBEB ∪Q2

B = EB ∪Q2
B,

and so, by induction, we conclude that Bp = (EB ∪QB)p = EB ∪Qp
B for every p ∈N.

Now

BmS ∩ SBn = (EB ∪QB)mS ∩ S(EB ∪QB)n

= (EB ∪Qm
B )S ∩ S(EB ∪Qn

B)
= (EBS ∩ SEB) ∪ (EBS ∩ SQn

B) ∪ (Qm
B ∩ SEB) ∪ (Qm

B ∩ SQn
B).

Now we will consider the set

EBS ∩ SEB = {ea = be|e, f ∈ EB, a, b ∈ S}.
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Since E = I × J is a rectangular band and ideal on S we have

ea = e2a = eea = eb f = e(eb) f = e f ∈ EB.

Hence

(3.1) EBS ∩ SEB ⊆ EB.

We will consider the set

EBS ∩ SQn
B = {ea = bq | e ∈ EB, a, b ∈ S, q ∈ Qn

B}.
Then ea = bq ∈ E. Let this be e = (i, j) ∈ EB = IB × JB. We have the following cases:

(2.1) If a, b ∈ Q, q ∈ Qn
B ⊆ QB then (i, j)a = bq and

(i, j)a = (i, j)2a = (i, j)bq = (i, jηb)q = (i, jηbηq),

so by (iii) it follows that

(i, jηa) = (i, jηbηq) ∈ EB ⊆ B.

(2.2) If a, b ∈ Q, q ∈ EB, then it is case (1).

(2.3) Let a ∈ E, b ∈ Q, q ∈ QB, then a = (k, l) and (i, l) = (i, j)(k, l) = bq. Now

(i, l)2 = (i, l)bq = (i, lηbηq) ∈ EB.

(2.4) Let a ∈ Q, b ∈ E, q ∈ QB, then b = (k, l) and (i, j)a = (k, l)q. Now

(i, jηa) = (i, jηa)2 = (i, jηa)(k, lηq) = (i, lηq) ∈ EB.

(2.5) Let a, b ∈ E, q ∈ QB, then a = (k, l), b = (k′, l′), (i, j)(k, l) = (k′, l′)q and

(i, l) = (k′, l′ηq) =⇒ (i, l′ηq) ∈ EB.

(2.6) If a ∈ E, b ∈ Q, q ∈ EB, then it is case (1).

(2.7) If a ∈ Q, b ∈ E, q ∈ EB, then it is case (1).

(2.8) If a, b ∈ E, q ∈ EB, then it is case (1).

By the above it follows that

(3.2) EBS ∩ SQn
B ⊆ EQ ⊆ B.
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Similarly we have that

(3.3) Qm
B S ∩ SEB ⊆ B.

Finally, we will consider the set

Qm
B S ∩ SQn

B = {pa = bq | p ∈ Qm
B , q ∈ Qn

B, a, b ∈ S}
Then we have the following cases:

(4.1) If p, q ∈ QB, a, b ∈ Q then

pa = bq ∈ Qm
B Q ∩QQn

B ⊆ QB ⊆ B.

(4.2) If p, q ∈ QB, a, b ∈ Q and pa = bq ∈ E, then by (e) it follows

pa = (iξaξp, jηpηa) = bq = (iξqξb, jηbηq)

and so by (iii) we have

pa = bq = pabq = (iξaξp, jηbηq) ∈ EB ⊆ B.

(4.3) If p ∈ EB, a, b ∈ Q, b ∈ QB then it is case (2).

(4.4) From p, q ∈ QB, a ∈ E, b ∈ Q follows bq ∈ E and, for a = (i, j) and (e), it
follows that pa = (iξp, j), bq = (iξqξb, jηbηq). So

pa = bq = pabq = (iξp, jηbηq) ∈ EB ⊆ B.

(4.5) If p, q ∈ QB, a ∈ Q, b = (i, j) ∈ E then pa = (iξaξp, jηpηa) = bq = (i, jηq) and
so (iξaξp, jηq) ∈ EB.

(4.6) If p = (i, j) ∈ EB, a = (k, l) ∈ E, b ∈ Q, q ∈ QB then it is case (2).

(4.7) If p = (i, j) ∈ EB, a ∈ Q, b ∈ E, q ∈ QB then it is case (2).

(4.8) If p = (i, j) ∈ EB, a, b ∈ Q, q = (k, l) ∈ EB then it is case (1).

(4.9) If p ∈ QB, a = (k, l) ∈ E, b ∈ Q, q ∈ EB then it is case (3).

(4.10) If p ∈ QB, a =∈ Q, b ∈ E, q ∈ EB then it is case (3).

(4.11) If p ∈ QB, a = (i, j) ∈ E, b = (k, l) ∈ E, q ∈ EB then pa = p(i, j) = (iξp, j) =
bq = (k, l)q = (k, lηq) and so

pa = bq = (iξp, lηq) ∈ EB ⊆ B.

(4.12) If p ∈ EB, a, b ∈ E, q ∈ QB then it is case (2).
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(4.13) If p, q ∈ EB, a ∈ E, b ∈ Q then it is case (1).

(4.14) If p, q ∈ EB, a ∈ Q, b ∈ E then it is case (1).

(4.15) If p ∈ QB, a, b ∈ E, q ∈ EB then it is case (3).

(4.16) If p, q ∈ EB, a, b ∈ E then it is case (1).

There are no other cases. Hence

(3.4) Qm
B S ∩ SQn

B ⊆ B.

By (1), (2), (3) and (4) we have that BmS ∩ SBn ⊆ B, B is an (m, n)-ideal of S and
S is an (m, n)-quasi-ideal semigroup.
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