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COMMON FIXED POINTS OF A PAIR OF SELFMAPS

SATISFYING CERTAIN WEAKLY CONTRACTIVE INEQUALITY

INVOLVING RATIONAL TYPE EXPRESSIONS

VIA TWO AUXILIARY FUNCTIONS

IN PARTIALLY ORDERED METRIC SPACES
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Padala Hari Krishna, Vallabhapurapu Asunee Kumari,

Gedala Satyanarayana and Pathina Sudheer Kumar

Abstract. In this paper, we prove the existence of coincidence and common fixed points
of a pair of selfmaps satisfying a certain weakly contractive inequality with two aux-
iliary functions involving rational type expressions in partially ordered metric spaces.
These results extend some of the known existing results in the literature from a single
selfmap to a pair of selfmaps. Examples are provided in support of our results.
Keywords: common fixed points, partially ordered metric spaces, rational type con-
traction mappings, auxiliary functions

1. Introduction

The Banach contraction principle is one of the pivotal results in fixed point theory.
It is a very popular tool for solving existence problems in many different fields of
mathematics. Ran and Reurings [15] extended the Banach contraction principle in
partially ordered sets. For more work on the existence of fixed points in partially
ordered metric spaces, we refer the reader to [1, 3, 7, 8, 9, 13, 16].

In 1975, Dass and Gupta [6] extended the Banach contraction principle through
rational expression as follows.

Theorem 1.1. (Dass and Gupta [6]). Let (X, d) be a complete metric space and
T : X → X be a mapping such that there exist α, β ≥ 0 with α+ β < 1 satisfying

(1.1) d(Tx, T y) ≤ α
d(y, T y)[1 + d(x, Tx)]

1 + d(x, y)
+ βd(x, y)

for all x, y ∈ X .
Then T has a unique fixed point.
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Definition 1.1. Let (X,�) be a partially ordered set. A mapping T : X → X is
said to be non-decreasing if for any x, y ∈ X , x � y implies that Tx � Ty.

In 2013, Cabrera, Harjani and Sadarangani [4] proved the above theorem in the
context of partially ordered metric spaces as follows.

Theorem 1.2. (Cabrera, Harjani and Sadarangani [4]) Let (X,�) be a partially
ordered set and suppose that there exists a metric d on X such that (X, d) is
a complete metric space. Let T : X → X be a continuous and non-decreasing
mapping such that (1.1) is satisfied for all x, y ∈ X with x � y. If there exists
x0 ∈ X with x0 � Tx0, then T has a fixed point.

Theorem 1.3. (Cabrera, Harjani and Sadarangani [4]) Let (X,�) be a partially
ordered set and suppose that there exists a metric d on X such that (X, d) is a
complete metric space. Assume that if {xn} is a non-decreasing sequence in X such
that xn → x then xn � x for all n ∈ N . Let T : X → X be a non-decreasing
mapping such that (1.1) is satisfied for all x, y ∈ X with x � y. If there exists
x0 ∈ X with x0 � Tx0 then T has a fixed point.

Theorem 1.4. (Cabrera, Harjani and Sadarangani [4]) In addition to the hy-
potheses of Theorem 1.2 (Theorem 1.3), suppose that for every x, y ∈ X , there
exists u ∈ X such that u � x and u � y. Then T has a unique fixed point.

We write
Φ = {ϕ : [0, ∞) → [0, ∞) : ϕ is monotonic non-decreasing, continuous and

ϕ(t) = 0 ⇔ t = 0}.
Ψ = {ψ : [0, ∞) → [0, ∞) : for any sequence {tn} in [0,∞)

with tn → t > 0 implies that limψ(tn) > 0}.

Remark 1.1. If ψ ∈ Ψ then ψ(t) > 0 for t > 0.

Remark 1.2. If tn → t and ψ(tn) → 0 implies that t = 0.

In 2014, Chandok, Choudhury and Metiya [5] improved Theorem 1.2 and The-
orem 1.3 by using the functions of Φ and Ψ.

Theorem 1.5. (Chandok, Choudhury and Metiya [5]) Let (X,�) be a partially
ordered set and suppose that there exists a metric d on X such that (X, d) is
a complete metric space. Let T : X → X be a continuous and non-decreasing
mapping such that for all x, y ∈ X with x � y,

(1.2) ϕ(d(Tx, T y)) ≤ ϕ(M(x, y))− ψ(N(x, y))

for some ϕ ∈ Φ and ψ ∈ Ψ, where

M(x, y) = max{ d(y,Ty)[1+d(x,Tx)]
1+d(x,y) ,

d(y,Tx)[1+d(x,Ty})]
1+d(x,y) , d(x, y)} and

N(x, y)= max{ d(y,Ty)[1+d(x,Tx)]
1+d(x,y) , d(x, y)}.

If there exists x0 ∈ X with x0 � Tx0, then T has a fixed point.
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Theorem 1.6. (Chandok, Choudhury and Metiya [5]) Let (X,�) be a partially
ordered set and suppose that there exists a metric d on X such that (X, d) is a
complete metric space. Assume that if {xn} is a non-decreasing sequence in X such
that xn → x then xn � x for all n ∈ N . Let T : X → X be a non-decreasing
mapping. Suppose that (1.2) holds, where M(x, y), N(x, y) and the conditions
upon ϕ and ψ are the same as in Theorem 1.5. If there exists x0 ∈ X with x0 �
Tx0 then T has a fixed point.

Theorem 1.7. (Chandok, Choudhury and Metiya [5]) In addition to the hypothe-
ses of Theorem 1.5 (Theorem 1.6), suppose that for every x, y ∈ X , there exists
u ∈ X such that u � x and u � y. Then T has a unique fixed point.

Recently, Sastry, Babu, Sarma and Krishna [17] improved Theorem 1.5, Theorem
1.6 and Theorem 1.7 by relaxing the continuity of ϕ and replacing M(x, y) by
M1(x, y) and N(x, y) by N1(x, y).

Theorem 1.8. (Sastry, Babu, Sarma and Krishna [17]) Let (X,�) be a partially
ordered set and (X, d) be a complete metric space. Let T : X → X be a non-
decreasing mapping. Suppose there exists ϕ : [0,∞) → [0,∞) satisfying ϕ is non-
decreasing and ϕ(t) = 0 ⇐⇒ t = 0, and ψ ∈ Ψ such that
ϕ(d(Tx, T y)) ≤ ϕ(M1(x, y))− ψ(N1(x, y)), where

M1(x, y) = max{ d(y,Ty)[1+d(x,Tx)]
1+d(x,y) ,

d(x,Tx)[1+d(y,Ty})]
1+d(x,y) ,

d(y,Tx)[1+d(x,Ty})]
1+d(x,y) , d(x, y)}

and
N1(x, y)= max{ d(y,Ty)[1+d(x,Tx)]

1+d(x,y) ,
d(x,Tx)[1+d(y,Ty})]

1+d(x,y) , d(x, y)}, for all x, y ∈ X with
x � y.

i.e. M1(x, y)= max{N1(x, y),
d(y,Tx)[1+d(x,Ty})]

1+d(x,y) }.

If there exists x0 ∈ X with x0 � Tx0, then the sequence {xn} defined by xn+1 = Txn
for n = 0, 1, 2, ... is a Cauchy sequence.

Theorem 1.9. (Sastry, Babu, Sarma and Krishna [17]) In addition to the hy-
potheses of Theorem 1.8, suppose that T is continuous. Then T has a fixed point.

Theorem 1.10. (Sastry, Babu, Sarma and Krishna [17]) In addition to the hy-
potheses of Theorem 1.8, assume the following:

(i) x, y, z ∈ X , such that x < y < z ⇒ d(x, y) < d(x, z), and d(y, z) < d(x, z)

(ii) if {xn} is an increasing sequence in X such that xn → z, then xn � z for all
n ∈ N.

Further “ for every u, v ∈ X , there exists z ∈ X which is comparable to both u and
v”.
Then T has a unique fixed point in X .

In 1986, Jungck [11] defined the concept of compatible mappings.
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Definition 1.2. [11] A pair (S, T ) of self-mappings of a metric space (X, d) is said
to be compatible if lim

n→∞
d(STxn, TSxn) = 0, whenever {xn} is a sequence in X

such that lim
n→∞

Sxn = lim
n→∞

Txn = z for some z ∈ X .

In 1998, Pant introduced a new continuity condition, known as reciprocal continuity
and obtained a common fixed point theorem by using the compatibility in a metric
space. The notion of reciprocal continuity is weaker than the continuity of one of
the mappings.

Definition 1.3. [14] Two self-mappings S and T of a metric space (X, d) are called
reciprocally continuous if lim

n→∞
STxn = Sz and lim

n→∞
TSxn = Tz whenever {xn} is

a sequence in X such that lim
n→∞

Sxn = lim
n→∞

Txn = z for some z in X .

Definition 1.4. [12] Two self-maps S and T of a metric space (X, d) are said to
be weakly compatible if they commute at their coincidence points. i.e. if for any x
in X with Sx = Tx then STx = TSx.

Definition 1.5. [10] Let (X,�) be a partially ordered set and T and S : X → X

be two selfmaps. T is said to be S-non-decreasing if for all x, y ∈ X , Sx � Sy

implies Tx � Ty.

In this paper, (X,�, d) denotes a partially ordered metric space, where (X,�)
is a partially ordered set, and d is a metric on X . If X is complete with respect to
the metric d then we call (X,�, d) a partially ordered complete metric space.

The following lemma is useful in our subsequent discussion.

Lemma 1.1. [2]. Let (X, d) be a metric space. Let {xn} be a sequence in X

such that d(xn+1, xn) → 0 as n → ∞. If {xn} is not a Cauchy sequence then
there exist an ǫ > 0 and sequences of positive integers {m(k)} and {n(k)} with
m(k) > n(k) > k and d(xm(k), xn(k)) ≥ ǫ. For each k > 0, corresponding to n(k),
we can choose m(k) to be the smallest integer with m(k) > n(k) > k satisfying
d(xm(k), xn(k)) ≥ ǫ. Hence for such m(k) and n(k), we have d(xm(k), xn(k)) ≥ ǫ and
d(xm(k)−1, xn(k)) < ǫ.

It can be shown that the following identities are satisfied.

(i) lim
k→∞

d(xm(k)−1, xn(k)+1) = ǫ, (ii) lim
k→∞

d(xm(k), xn(k)) = ǫ,

(iii) lim
k→∞

d(xm(k)−1, xn(k)) = ǫ, and (iv) lim
k→∞

d(xm(k), xn(k)+1) = ǫ.

In Section 2, we prove the existence of coincidence and common fixed points of
a pair of maps satisfying certain generalized contractive mappings with auxiliary
functions ϕ ∈ Φ and ψ ∈ Ψ involving rational type expressions in partially ordered
metric spaces. In Section 3, we draw some corollaries from our main results and
give examples in support of our results.
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2. Main Results

Theorem 2.1. Let (X,�, d) be a partially ordered complete metric space. Let
S, T : X → X be self maps of X , and T is S non-decreasing. Suppose that there
exist ϕ ∈ Φ and ψ ∈ Ψ such that

(2.1) ϕ(d(Tx, T y)) ≤ ϕ(M(x, y))− ψ(N(x, y))

where

M(x, y) = max{
d(Sy, T y)[1 + d(Sx, Tx)]

1 + d(Sx, Sy)
,
d(Sx, Tx)[1 + d(Sy, T y})]

1 + d(Sx, Sy)
,

d(Sy, Tx)[1 + d(Sx, T y})]

1 + d(Sx, Sy)
, d(Sx, Sy)}

and
N(x, y)= max{ d(Sy,Ty)[1+d(Sx,Tx)]

1+d(Sx,Sy) ,
d(Sx,Tx)[1+d(Sy,Ty})]

1+d(Sx,Sy) , d(Sx, Sy)}

for all x, y ∈ X with Sx � Sy.
Furthermore, assume that

(i) T (X) ⊆ S(X);

(ii) there exists x0 ∈ X such that Sx0 � Tx0;

(iii) S(X) is a closed subset of X ; and

(iv) if any non-decreasing sequence {xn} in X converges to x then xn � x for all
n = 0, 1, 2, ....

Then S and T have a coincident point in X .

Proof. By (ii), let x0 ∈ X be such that Sx0 � Tx0. Since T (X) ⊆ S(X), we
choose x1 ∈ X such that Tx0 = Sx1. Since Sx0 � Tx0 = Sx1, and T is S non-
decreasing, we have Tx0 � Tx1. Again, using T (X) ⊆ S(X), we have Tx1 = Sx2
for some x2 ∈ X so that Tx0 � Sx2 i.e.Sx1 � Sx2. By using a similar argument
we choose a sequence {xn} in X with Txn = Sxn+1 and Sxn � Sxn+1 for each
n = 0, 1, 2, ... .
If Sxn = Sxn+1 for some n ≥ 0 then Sxn = Txn so that xn is a coincidence point
of S and T .
Hence, with out loss of generality, we assume that Sxn 6= Sxn+1 for each n ≥ 0.
Since Sxn−1 � Sxn, by (2.1) we have,

ϕ(d(Sxn, Sxn+1)) = ϕ(d(Txn−1, T xn))

(2.2) ≤ ϕ(M(xn−1, xn))− ψ(N(xn−1, xn)),

where
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M(xn−1, xn)

= max{
d(Sxn, T xn)[1 + d(Sxn−1, T xn−1)]

1 + d(Sxn−1, Sxn)
,
d(Sxn−1, T xn−1)[1 + d(Sxn, T xn)]

1 + d(Sxn−1, Sxn)
,

d(Sxn, T xn−1)[1 + d(Sxn−1, T xn)]

1 + d(Sxn−1, Sxn)
, d(Sxn−1, Sxn)}

= max{
d(Sxn, Sxn+1)[1 + d(Sxn−1, Sxn)]

1 + d(Sxn−1, Sxn)
,
d(Sxn−1, Sxn)[1 + d(Sxn, Sxn+1)]

1 + d(Sxn−1, Sxn)
,

d(Sxn, Sxn)[1 + d(Sxn−1, Sxn+1)]

1 + d(Sxn−1, Sxn)
, d(Sxn−1, Sxn)}

= max{d(Sxn, Sxn+1),
d(Sxn−1, Sxn)[1 + d(Sxn, Sxn+1)]

1 + d(Sxn−1, Sxn)
, d(Sxn−1, Sxn)}

and

N(xn−1, xn)

= max{
d(Sxn, T xn)[1 + d(Sxn−1, T xn−1)]

1 + d(Sxn−1, Sxn)
,

d(Sxn−1, T xn−1)[1 + d(Sxn, T xn)]

1 + d(Sxn−1, Sxn)
, d(Sxn−1, Sxn)}

= max{
d(Sxn, Sxn+1)[1 + d(Sxn−1, Sxn)]

1 + d(Sxn−1, Sxn)
,

d(Sxn−1, Sxn)[1 + d(Sxn, Sxn+1)]

1 + d(Sxn−1, Sxn)
, d(Sxn−1, Sxn)}

= max{d(Sxn, Sxn+1),
d(Sxn−1, Sxn)[1 + d(Sxn, Sxn+1)]

1 + d(Sxn−1, Sxn)
, d(Sxn−1, Sxn)}.

If max{d(Sxn, Sxn+1), d(Sxn−1, Sxn)} = d(Sxn, Sxn+1), then

M(xn−1, xn) = max{d(Sxn, Sxn+1),
d(Sxn−1, Sxn)[1 + d(Sxn, Sxn+1)]

1 + d(Sxn−1, Sxn)
}

= d(Sxn, Sxn+1)

and N(xn−1, xn) = d(Sxn, Sxn+1).
Now from (2.1), we have

ϕ(d(Sxn, Sxn+1)) ≤ ϕ(d(Sxn, Sxn+1))− ψ(d(Sxn, Sxn+1))

< ϕ(d(Sxn, Sxn+1)),

a contradiction.
Hence max{d(Sxn, Sxn+1), d(Sxn−1, Sxn)} = d(Sxn−1, Sxn). In this case

M(xn−1, xn) = max{
d(Sxn−1, Sxn)[1 + d(Sxn, Sxn+1)]

1 + d(Sxn−1, Sxn)
, d(Sxn−1, Sxn)}

= d(Sxn−1, Sxn)
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and N(xn−1, xn) = d(Sxn−1, Sxn).
Therefore from (2.2), we have

(2.3) ϕ(d(Sxn, Sxn+1)) ≤ ϕ(d(Sxn−1, Sxn))− ψ(d(Sxn−1, Sxn))

(2.4) < ϕ(d(Sxn−1, Sxn)).

Thus it follows that {ϕ(d(Sxn, Sxn+1))} is a strictly decreasing sequence of positive
real numbers and so lim

n→∞
ϕ(d(Sxn, Sxn+1)) exists and it is r (say).

i.e. lim
n→∞

ϕ(d(Sxn, Sxn+1)) = r ≥ 0.

From (2.4), since ϕ is non-decreasing, it follows that {d(Sxn, Sxn+1)} is a strictly
decreasing sequence of positive real numbers and so lim

n→∞
d(Sxn, Sxn+1) exists and

it is r
′

(say). i.e. lim
n→∞

d(Sxn, Sxn+1) = r
′

≥ 0.

Suppose that r
′

> 0.
From (2.3), we have
0 ≤ ψ(d(Sxn−1, Sxn)) ≤ ϕ(d(Sxn−1, Sxn))− ϕ(d(Sxn, Sxn+1)).
On taking limit supremum as n→ ∞ on both sides, we have

0 ≤ limψ(d(Sxn−1, Sxn)) ≤ limϕ(d(Sxn−1, Sxn))− limϕ(d(Sxn, Sxn+1))

= r − r = 0 as n→ ∞

so that limψ(d(Sxn−1, Sxn)) = 0. Hence limψ(d(Sxn−1, Sxn)) = 0.
Therefore lim

n→∞
ψ(d(Sxn−1, Sxn)) = 0, which is a contradiction.

Therefore, r
′

= 0. i.e. lim
n→∞

d(Sxn, Sxn+1) = 0.

We now show that {Sxn} is Cauchy.
Suppose that {Sxn} is not a Cauchy sequence. Then by Lemma 1.1 there exists an
ǫ > 0 for which we can find sequences of positive integers {m(k)} and {n(k)} with
m(k) > n(k) > k such that d(Sxm(k), Sxn(k)) ≥ ǫ and d(Sxm(k)−1, Sxn(k)) < ǫ and
the following identities satisfied.

(i) lim
k→∞

d(Sxm(k), Sxn(k)) = ǫ (ii) lim
k→∞

d(Sxm(k)−1, Sxn(k)−1) = ǫ

(iii) lim
k→∞

d(Sxm(k)−1, Sxn(k)) = ǫ and (iv) lim
k→∞

d(Sxn(k)−1, Sxm(k)) = ǫ.

By (2.1), we have

ϕ(d(Sxn(k) , Sxm(k))) = ϕ(d(Txn(k)−1, T xm(k)−1))

(2.5) ≤ ϕ(M(xn(k)−1, xm(k)−1))− ψ(N(xn(k)−1, xm(k)−1)),
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where

M(xn(k)−1, xm(k)−1)

= max{
d(Sxm(k)−1, T xm(k)−1)[1 + d(Sxn(k)−1, T xn(k)−1)]

1 + d(Sxn(k)−1, Sxm(k)−1)
,

d(Sxn(k)−1, T xn(k)−1)[1 + d(Sxm(k)−1, T xm(k)−1)]

1 + d(Sxn(k)−1, Sxm(k)−1)
,

d(Sxm(k)−1, T xn(k)−1)[1 + d(Sxn(k)−1, T xm(k)−1)]

1 + d(Sxn(k)−1, Sxm(k)−1)
, d(Sxn(k)−1, Sxm(k)−1)}

= max{
d(Sxm(k)−1, Sxm(k))[1 + d(Sxn(k)−1, Sxn(k))]

1 + d(Sxn(k)−1, Sxm(k)−1)
,

d(Sxn(k)−1, Sxn(k))[1 + d(Sxm(k)−1, Sxm(k))]

1 + d(Sxn(k)−1, Sxm(k)−1)
,

d(Sxm(k)−1, Sxn(k))[1 + d(Sxn(k)−1, Sxm(k))]

1 + d(Sxn(k)−1, Sxm(k)−1)
, d(Sxn(k)−1, Sxm(k)−1)},

and

N(xn(k)−1, xm(k)−1)

= max{
d(Sxm(k)−1, T xm(k)−1)[1 + d(Sxn(k)−1, T xn(k)−1)]

1 + d(Sxn(k)−1, Sxm(k)−1)
,

d(Sxn(k)−1, T xn(k)−1)[1 + d(Sxm(k)−1, T xm(k)−1)]

1 + d(Sxn(k)−1, Sxm(k)−1)
, d(Sxn(k)−1, Sxm(k)−1)}

= max{
d(Sxm(k)−1, Sxm(k))[1 + d(Sxn(k)−1, Sxn(k))]

1 + d(Sxn(k)−1, Sxm(k)−1)
,

d(Sxn(k)−1, Sxn(k))[1 + d(Sxm(k)−1, Sxm(k))]

1 + d(Sxn(k)−1, Sxm(k)−1)
, d(Sxn(k)−1, Sxm(k)−1)}.

Hence lim
k→∞

M(xn(k)−1, xm(k)−1) = max{0, 0, ǫ(1+ǫ)
1+ǫ) , ǫ} = ǫ,

lim
k→∞

N(xn(k)−1, xm(k)−1) = max{0, 0, ǫ} = ǫ.

Since ϕ is continuous, we have lim ϕ(d(Sxn(k), Sxm(k))) = ϕ(ǫ).
From (2.5) and taking limit supremum as n→ ∞, we have
ϕ(ǫ) ≤ ϕ(ǫ)− limψ(N(xn(k)−1, xm(k)−1)), and it implies that
limψ(N(xn(k)−1, xm(k)−1)) ≤ 0,
a contradiction.
Therefore {Sxn} is a Cauchy sequence in X .
Since S(X) is complete, there exists y ∈ X such that lim

n→∞
Sxn = Sy.

(2.6) Hence lim
n→∞

Txn = lim
n→∞

Sxn+1 = Sy for some y ∈ X.

Now we show that Sy = Ty.

Suppose that Sy 6= Ty. i.e. d(Sy, T y) > 0.



Common Fixed Points of a Pair of Selfmaps 337

Since {Sxn} is a non-decreasing sequence, Sxn → Sy for some y ∈ X and by
condition (iv), we have Sxn � Sy for all n ≥ 0.
Now, from (2.1), we have

(2.7) ϕ(d(Txn, T y)) ≤ ϕ(M(xn, y))− ψ(N(xn, y)),

where

M(xn, y)

= max{
d(Sy, T y)[1 + d(Sxn, T xn)]

1 + d(Sxn, Sy)
,
d(Sxn, T xn)[1 + d(Sy, T y)]

1 + d(Sxn, Sy)
,

d(Sy, Txn)[1 + d(Sxn, T y)]

1 + d(Sxn, Sy)
, d(Sxn, Sy)}

= max{
d(Sy, T y)[1 + d(Sxn, Sxn+1)]

1 + d(Sxn, Sy)
,
d(Sxn, Sxn+1)[1 + d(Sy, T y)]

1 + d(Sxn, Sy)
,

d(Sy, Sxn+1)[1 + d(Sxn, T y)]

1 + d(Sxn, Sy)
, d(Sxn, Sy)}

and

N(xn, y)

= max{
d(Sy, T y)[1 + d(Sxn, T xn)]

1 + d(Sxn, Sy)
,
d(Sxn, T xn)[1 + d(Sy, T y)]

1 + d(Sxn, Sy)
, d(Sxn, Sy)}

= max{
d(Sy, T y)[1 + d(Sxn, Sxn+1)]

1 + d(Sxn, Sy)
,
d(Sxn, Sxn+1)[1 + d(Sy, Sy)]

1 + d(Sxn, Sy)
,

d(Sxn, Sy)}.

Also, lim
n→∞

M(xn, y) = d(Sy, T y) and lim
n→∞

N(xn, y) = d(Sy, T y).

Now on taking limit supremum as n→ ∞ on both sides of (2.7) we have
limϕ(d(Txn, T y)) ≤ limϕ(M(xn, y))− limψ(N(xn, y)),
which implies that ϕ(d(Sy, T y)) ≤ ϕ(d(Sy, T y))− limψ(N(xn, y))
so that limψ(N(xn, y)) ≤ 0,
a contradiction.
Hence Ty = Sy so that S and T have a coincidence point y. .

Theorem 2.2. In addition to the hypotheses of Theorem 2.1, assume that

(i) S and T are weakly compatible,

(ii) Sx = Tx implies Sx � SSx for any x ∈ X .

Then T and S have common fixed point in X .

Furthermore, assume the following: Condition(H): there exists u ∈ X such that
Su � Tu and Tu is comparable to Tx and Ty, for all x, y ∈ X .
Then S and T have a unique common fixed point in X .
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Proof. From the proof of Theorem 2.1, we have {Sxn} is a non-decreasing
sequence that converges to Sy for some y ∈ X with Sy = Ty.
Let w = Ty = Sy.
Since S and T are weakly compatible, Tw = TSy = STy = Sw.

Suppose that w 6= Tw.
By hypothesis (ii) we have Sy � SSy = STy.
Therefore, from (2.1), we have

ϕ(d(w, Tw)) = ϕ(d(Ty, TTy))

(2.8) ≤ ϕ(M(y, T y))− ψ(N(y, T y))

where

M(y, T y)

= max{
d(STy, TTy)[1+ d(Sy, T y)]

1 + d(Sy, STy)
,
d(Sy, T y)[1 + d(STy, TTy)]

1 + d(Sy, STy)
,

d(STy, T y)[1 + d(Sy, TTy)]

1 + d(Sy, STy)
, d(Sy, STy)}

= max{
d(Sw, TTy)

1 + d(Sy, Sw)
, 0,

d(Sw, Ty)[1 + d(Sy, TTy)]

1 + d(Sy, Sw)
, d(Sy, Sw)}

= max{
d(Tw, TTy)

1 + d(w, Tw)
, 0,

d(Tw,w)[1 + d(w, TTy)]

1 + d(w, Tw)
, d(w, Tw)}

= max{
d(Tw, Tw)

1 + d(w, Tw)
, 0,

d(Tw,w)[1 + d(w, Tw)]

1 + d(w, Tw)
, d(w, Tw)}

= d(w, Tw),

and

N(y, T y)

= max{
d(STy, TTy)[1 + d(Sy, T y)]

1 + d(Sy, STy)
,
d(Sy, T y)[1 + d(STy, TTy)]

1 + d(Sy, STy)
, d(Sy, STy)}

= max{
d(Sw, TTy)

1 + d(Sy, Sw)
, 0, d(Sy, Sw)}

= max{
d(Tw, TTy)

1 + d(w, Tw)
, 0, d(w, Tw)}

= max{
d(Tw, Tw)

1 + d(w, Tw)
, 0, d(w, Tw)}

= d(w, Tw).

Hence, from (2.8),

ϕ(d(w, Tw)) ≤ ϕ(d(w, Tw)) − ψ(d(w, Tw))

< ϕ(d(w, Tw))
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is a contradiction.
Therefore w = Tw. Hence w = Tw = Sw.
Therefore w is a common fixed point of S and T .
We now prove the uniqueness of common fixed point of S and T .
Let z and w be two common fixed points of S and T . i.e. Sz = Tz = z and
Sw = Tw = w with z 6= w.
Case (I): z and w are comparable. With out loss of generality we assume that
z � w. i.e. Sz � Sw

From (2.1), we have

ϕ(d(z, w)) = ϕ(d(Tz, Tw))

(2.9) ≤ ϕ(M(z, w))− ψ(N(z, w))

where

M(z, w)

= max{
d(Sw, Tw)[1 + d(Sz, T z)]

1 + d(Sz, Sw)
,
d(Sz, T z)[1 + d(Sw, Tw)]

1 + d(Sz, Sw)
,

d(Sw, T z)[1 + d(Sz, Tw)]

1 + d(Sz, Sw)
, d(Sz, Sw)}

= max{
d(w,w)

1 + d(z, w)
, 0,

d(w, z)[1 + d(z, w)]

1 + d(z, w)
, d(z, w)}

= max{0, 0, d(z, w), d(z, w)}

= d(z, w).

N(z, w) = max{
d(Sw, Tw)[1 + d(Sz, T z)]

1 + d(Sz, Sw)
,
d(Sz, T z)[1 + d(Sw, Tw)]

1 + d(Sz, Sw)
, d(Sz, Sw)}

= max{
d(w,w)

1 + d(z, w)
, 0, d(z, w)}

= max{0, 0, , d(z, w)}

= d(z, w).

Hence, from (2.9), we have

ϕ(d(z, w)) ≤ ϕ(d(z, w)) − ψ(d(z, w))

< ϕ(d(z, w)),

a contradiction.
Therefore z = w. This shows that S and T have a unique common fixed point in
X .

Case (II) : z and w are not comparable.

In this case, by assumption, there exists u ∈ X such that Su � Tu and Tu is
comparable to Tz and Tw.
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Subcase (i) : We assume that Tz � Tu, Tw � Tu and Su � Tu. Now we set
u = u0. Since T (X) ⊆ S(X), there exists u1 ∈ X such that

(2.10) Tu0 = Su1.

Since Tz � Tu, Tz = Sz and Tu = Tu0 = Su1, we have

(2.11) Sz � Su1.

Since Su0 � Tu0 = Su1, we have

(2.12) Su0 � Su1.

Since T is S non-decreasing, from (2.11) and (2.12) we get

(2.13) Tz � Tu1 and

(2.14) Tu0 � Tu1.

Since T (X) ⊆ S(X), there exists u2 ∈ X such that

(2.15) Tu1 = Su2.

From (2.10), (2.14) and (2.15) we have

(2.16) Su1 � Su2.

From (2.13)and (2.15), it follows that

(2.17) Sz � Su2, since Tz = Sz.

Since T is S non-decreasing, from (2.16) and (2.17) we get

(2.18) Tu1 � Tu2 and

(2.19) Tz � Tu2.

On continuing this process, we can construct a sequence{un} in X such that

(2.20) Sun+1 = Tun, Sz � Sun+1 and Sun � Sun+1 for n = 0, 1, 2....

(2.21) Also, we can easily see that Sw � Sun+1 for n = 0, 1, 2....

Since Sun � Sun+1, by using the inequality (2.1), it is easy to see that {Sun} is
Cauchy as in the proof of Theorem 2.1. Since S(X) is complete, there exists v ∈ X

such that Sun → Sv as n→ ∞.
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We now show that Sz = Sv. Suppose that Sz 6= Sv.
Since Sz � Sun, from (2.1) we have

(2.22) ϕ(d(Sz, Sun+1)) = ϕ(d(Tz, Tun)) ≤ ϕ(M(z, un))− ψ(N(z, un))

where

M(z, un) = max{
d(Sun, T un)[1 + d(Sz, T z)]

1 + d(Sz, Sun)
,
d(Sz, T z)[1 + d(Sun, T un)]

1 + d(Sz, Sun)
,

d(Sun, T z)[1 + d(Sz, Tun)]

1 + d(Sz, Sun)
, d(Sz, Sun)}

and

N(z, un)=max{
d(Sun, T un)[1 + d(Sz, T z)]

1 + d(Sz, Sun)
,
d(Sz, T z)[1 + d(Sun, T un)]

1 + d(Sz, Sun)
, d(Sz, Sun)}.

Hence lim
n→∞

M(z, un) = max{0, 0, d(Sv, T z), d(Sz, Sv)} = d(Sv, Sz) and

lim
n→∞

N(z, un) = max{0, 0, d(Sz, Sv)} = d(Sv, Sz).

Taking limit supremum on (2.22), we have

(2.23) ϕ(d(Sz, Sv)) ≤ ϕ(d(Sz, Sv))− limψ(N(z, un))

so that limψ(N(z, un)) ≤ 0,
a contradiction.
Therefore, Sz = Sv.
Similarly we can prove that Sw = Sv. Hence Sz = Sw, which implies that z = w.

Subcase (ii) : We assume that Tu � Tz, Tu � Tw and Su � Tu. Now we set
u = u0. Since T (X) ⊆ S(X), there exists u1 ∈ X such that

(2.24) Tu0 = Su1.

Since Tu � Tz, Tz = Sz and Tu = Tu0 = Su1, we have

(2.25) Su1 � Sz.

Since Su0 � Tu0 = Su1, we have

(2.26) Su0 � Su1.

Since T is S non-decreasing, from (2.25) and (2.26) we get

(2.27) Tu1 � Tz and

(2.28) Tu0 � Tu1.
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Since T (X) ⊆ S(X), there exists u2 ∈ X such that

(2.29) Tu1 = Su2.

From (2.24), (2.28) and (2.29) we have

(2.30) Su1 � Su2.

From (2.27)and (2.29), it follows that

(2.31) Su2 � Sz, since Tz = Sz.

Since T is S non-decreasing, from (2.30) and (2.31) we get

(2.32) Tu1 � Tu2 and

(2.33) Tu2 � Tz.

On continuing this process, we can construct a sequence{un} in X such that

(2.34) Sun+1 = Tun, Sun � Sz and Sun � Sun+1 for n = 0, 1, 2....

(2.35) Also we can easily see that Sun � Sw for n = 0, 1, 2....

Since Sun � Sun+1, by using the inequality (2.1), it is easy to see that {Sun} is
Cauchy as in the proof of Theorem 2.1. Since S(X) is complete, there exists v ∈ X

such that Sun → Sv as n→ ∞.

We now show that Sz = Sv. Suppose that Sz 6= Sv.
Since Sun � Sz, from (2.1) we have

(2.36) ϕ(d(Sun+1, Sz)) = ϕ(d(Tun, T z)) ≤ ϕ(M(un, z))− ψ(N(un, z))

where

M(un, z) = max{
d(Sz, T z)[1 + d(Sun, T un)]

1 + d(Sun, Sz)
,
d(Sun, T un)[1 + d(Sz, T z)]

1 + d(Sun, Sz)
,

d(Sz, Tun)[1 + d(Sun, T z)]

1 + d(Sun, Sz)
, d(Sun, Sz)}

and

N(un, z)=max{
d(Sz, T z)[1+d(Sun, T un)]

1 + d(Sun, Sz)
,
d(Sun, T un)[1+d(Sz, T z)]

1 + d(Sun, Sz)
,d(Sun, Sz)}.

Hence lim
n→∞

M(un, z) = max{0, 0, d(Sz, Sv), d(Sv, Sz)} = d(Sv, Sz) and

lim
n→∞

N(un, z) = max{0, 0, d(Sv, Sz)} = d(Sv, Sz).

On taking limit supremum as n→ ∞ on (2.36), we have

(2.37) ϕ(d(Sv, Sz)) ≤ ϕ(d(Sv, Sz))− limψ(N(un, z))
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so that limψ(N(un, z)) ≤ 0,
a contradiction.
Therefore, Sz = Sv.
Similarly we can prove that Sw = Sv. Hence Sz = Sw, which implies that z = w.
Subcase (iii) : We assume that Tu � Tz, Tw � Tu and Su � Tu.

In this case, Tw � Tz i.e., w � z. By case(i)the uniqueness follows.

Subcase (iv) : We assume that Tz � Tu, Tu � Tw and Su � Tu.

In this case, Tz � Tw i.e. z � w. By case(i) the uniqueness follows.
Hence in either of the two cases S and T have a unique common fixed point.

Now we relax the closedness of S(X) and condition (iv) of Theorem 2.1, but by
imposing the compatible property and reciprocal continuity of a pair of maps and
prove the following.

Theorem 2.3. Let (X,�, d) be a partially ordered complete metric space. Let
S, T : X → X be self maps of X and T is S non-decreasing. Suppose that there
exist ϕ ∈ Φ, ψ ∈ Ψ and satisfying the inequality (2.1). Assume that

(i) T (X) ⊆ S(X);

(ii) there exists x0 ∈ X such that Sx0 � Tx0;

(iii) S and T are reciprocally continuous;

(iv) the pair (S, T ) is compatible;

(v) Sz = Tz implies Sz � SSz for any z ∈ X .

Then S and T have a common fixed point.

Furthermore, assume that Condition(H) of Theorem 2.2, then S and T have a
unique common fixed point in X .

Proof. The sequence {xn} is constructed such that Sxn+1 = Txn for all n ≥ 0
and the proof of the Cauchy part of the sequence {Sxn} is the same as that one
mentioned in the proof of Theorem 2.1.
Since (X, d) is complete, there exists z ∈ X such that lim

n→∞
Sxn = z and conse-

quently we have lim
n→∞

Txn = lim
n→∞

Sxn+1 = z.

Since S and T are reciprocally continuous, we have
lim
n→∞

STxn = Sz and lim
n→∞

TSxn = Tz.

Again, since S and T are compatible, it follows that
lim
n→∞

d(STxn, TSxn) = 0, i.e., d(Sz, T z) = 0 so that Sz = Tz.

Now, since every compatible pair is weakly compatible, by using the compatibility
of S and T we have STz = TSz = TTz.
Suppose that Tz 6= TTz. Now
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ϕ(d(Tz, TT z)) ≤ ϕ(M(z, T z))− ψ(N(z, T z))
where

M(z, T z) = max{
d(STz, TT z)[1+ d(Sz, T z)]

1 + d(Sz, STz)
,
d(Sz, T z)[1 + d(STz, TT z)]

1 + d(Sz, STz)
,

d(STz, T z)[1 + d(Sz, TTz)]

1 + d(Sz, STz)
, d(Sz, STz)}

= max{0, 0, d(Tz, TT z), d(Tz, TTz)}

= d(Tz, TT z), and in a similar way it is easy to see that N(z, T z) = d(Tz, TT z).

Therefore

ϕ(d(Tz, TT z)) ≤ ϕ(d(Tz, TT z))− ψ(d(Tz, TT z))

< ϕ(d(Tz, TT z)),

a contradiction.
Hence Tz = TTz so that Tz is a fixed point of T .
Therefore, Tz is a common fixed point of S and T .
We now prove the uniqueness of the common fixed point of S and T .
Let z and w be two common fixed points of S and T . i.e. Sz = Tz = z and
Sw = Tw = w, with z 6= w.
If z and w are comparable then by Case (I) of the proof of Theorem 2.2, the
conclusion follows.

We now suppose z and w are not comparable. In this case, by following the line
of the Subcase (i) of Case (II) of Theorem 2.2, we reach at (2.20) and (2.21). i.e.,
there exists a sequence {un} in X such that
Sun+1 = Tun, Sz � Sun+1, Sw � Sun+1 and Sun � Sun+1,
for all n = 0, 1, 2, ....
Since Sun � Sun+1, by using the inequality (2.1), it is easy to see that {Sun} is
Cauchy as in the proof of Theorem 2.1.
Since X is complete, there exists v ∈ X such that Sun → v as n→ ∞.

We now show that Sz = v. Suppose that Sz 6= v.
Since Sz � Sun, from (2.1) we have

(2.38) ϕ(d(Sz, Sun+1)) = ϕ(d(Tz, Tun)) ≤ ϕ(M(z, un))− ψ(N(z, un))

where

M(z, un)=max{
d(Sun, T un)[1+d(Sz, T z)]

1+d(Sz, Sun)
,
d(Sz, T z)[1 + d(Sun, T un)]

1+d(Sz, Sun)
,

d(Sun, T z)[1 + d(Sz, Tun)]

1 + d(Sz, Sun)
, d(Sz, Sun)}

and

N(z, un)=max{
d(Sun, T un)[1+d(Sz, T z)]

1 + d(Sz, Sun)
,
d(Sz, T z)[1+d(Sun, T un)]

1 + d(Sz, Sun)
,d(Sz, Sun)}.
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Hence lim
n→∞

M(z, un) = max{0, 0, d(v, Sz), d(Sz, v)} = d(v, Sz) and

lim
n→∞

N(z, un) = max{0, 0, d(Sz, v)} = d(v, Sz).

On taking limit supremum as n→ ∞ on (2.38), we have

(2.39) ϕ(d(Sz, v)) ≤ ϕ(d(Sz, v))− limψ(N(z, un))

so that limψ(N(z, un)) ≤ 0,
a contradiction.
Therefore, Sz = v.
Similarly, we can prove that Sw = v. Hence Sz = Sw, which implies that z = w.
In all other cases we prove the uniqueness of the theorem as in the proof of Theorem
2.2.

3. Corollaries and Examples

By choosing S = IX in Theorem 2.1, we have the following corollary.

Corollary 3.1. Let (X,�, d) be a partially ordered complete metric space. Let
T : X → X be a self map of X and T is non-decreasing. Suppose that there exist
ϕ ∈ Φ and ψ ∈ Ψ such that

(3.1) ϕ(d(Tx, T y)) ≤ ϕ(M(x, y)) − ψ(N(x, y)),

where
M(x, y) = max{ d(y,Ty)[1+d(x,Tx)]

1+d(x,y) ,
d(x,Tx)[1+d(y,Ty})]

1+d(x,y) ,
d(y,Tx)[1+d(x,Ty})]

1+d(x,y) , d(x, y)}

and
N(x, y)= max{ d(y,Ty)[1+d(x,Tx)]

1+d(x,y) ,
d(x,Tx)[1+d(y,Ty})]

1+d(x,y) , d(x, y)}

for all x, y ∈ X with x � y.
Furthermore, assume that

(i) there exists x0 ∈ X such that x0 � Tx0;

(ii) if any non-decreasing sequence {xn} in X converges to x then xn � x for all
n = 0, 1, 2, ....

Then T has a fixed point.

We now consider the following examples in support of our main results.

Example 3.1. Let X = [0, 3] with the usual metric. We define partial order � on X as
follows:
�:= {(x, y) ∈ X × X : x = y} ∪ {(0, 1

2
), (0, 3

4
), ( 1

2
, 3
4
)}, where x � y means x ≤ y in the

usual sense.
Then (X,�, d) is a partially ordered complete metric space. We define

T : X → X by T (x) =







x+ 1
2

if x ∈ [0, 1)− { 1
2
, 3
4
}

3
4

if x = 3
4

2 otherwise, and
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S : X → X by S(x) =















2x if x ∈ [0, 1]− { 3
4
, 3
8
}

3
2

if x = 3
8

3
4

if x = 3
4

2 otherwise.
Clearly T (X) ⊆ S(X), SX is closed and T is S non-decreasing.
We choose x0 = 0 ∈ X then Sx0 � Tx0. We define
ϕ : R+ → R+ by ϕ(t) = 2t2, t ≥ 0, and ψ : R+ → R+ by ψ(t) = t

4
, t ≥ 0.

We now verify the inequality (2.1).
Case (i) : Let (x, y) = (0, 1

4
) such that S(0) � S( 1

4
).

In this case, ϕ(d(T (0), T ( 1
4
))) = ϕ(d( 1

2
, 3
4
)) = ϕ( 1

4
) = 1

8
,

M(0, 1
4
) = 1

2
and N(0, 1

4
) = 1

2
;

Now ϕ(M(0, 1
4
)) = ϕ( 1

2
) = 1

2
, ψ(N(0, 1

4
)) = ψ( 1

2
) = 1

8
.

Therefore
ϕ(d(T (0), T ( 1

4
))) = 1

8
≤ 1

2
− 1

8
= ϕ(M(0, 1

4
))− ψ(N(0, 1

4
)).

Case (ii) : Let (x, y) = (0, 3
4
) such that S(0) � S( 3

4
).

In this case, ϕ(d(T (0), T ( 3
4
))) = ϕ(d( 1

2
, 3
4
)) = ϕ( 1

4
) = 1

8
,

M(0, 3
4
) = 3

4
and N(0, 3

4
) = 3

4
;

Now ϕ(M(0, 3
4
)) = ϕ( 3

4
) = 9

8
, ψ(N(0, 3

4
)) = ψ( 3

4
) = 3

16
.

Therefore
ϕ(d(T (0), T ( 3

4
))) = 1

8
≤ 9

8
− 3

16
= ϕ(M(0, 3

4
))− ψ(N(0, 3

4
)).

Case (iii) : Let (x, y) = ( 1
4
, 3
4
) such that S( 1

4
) � S( 3

4
).

In this case, ϕ(d(T ( 1
4
), T ( 3

4
))) = ϕ(d( 3

4
, 3
4
)) = ϕ(0) = 0,

M( 1
4
, 3
4
) = 1

4
and N( 1

4
, 3
4
) = 1

4
;

Now ϕ(M( 1
4
, 3
4
)) = ϕ( 1

4
) = 1

8
, ψ(N( 1

4
, 3
4
)) = ψ( 1

4
) = 1

16
.

Therefore
ϕ(d(T ( 1

4
), T ( 3

4
))) = 0 ≤ 1

8
− 1

16
= ϕ(M( 1

4
, 3
4
))− ψ(N( 1

4
, 3
4
)).

In the remaining cases, the inequality (2.1) holds trivially.
Therefore S and T satisfy all the hypotheses of Theorem 2.1 and
S and T have infinitely many coincident points.
Furthermore, we note that clearly S and T are weakly compatible, and
Sx = Tx ⇒ Sx � SSx ∀x ∈ X, so that (i)and (ii) of Theorem 2.2 hold and 3

4
and 2 are

common fixed points of S and T .
Further, we observe that S and T do not satisfy ‘Condition H’.
For
Case (i) : If u = 0 then Su = 0, Tu = 1

2
, clearly Su � Tu.

In this case, for any x, y ∈ [0, 3)−{0, 1
4
, 3
4
}, neither Tx nor Ty is comparable to 1

2
= Tu.

Case (ii) : If u = 1
4
then Su = 1

2
, Tu = 3

4
, clearly Su � Tu.

In this case, for any x, y ∈ [0, 3)−{0, 1
4
, 3
4
}, neither Tx nor Ty is comparable to 3

4
= Tu.

Case (iii) : If u = 3
4
then Su = 3

4
, Tu = 3

4
, clearly Su � Tu.

In this case, for any x, y ∈ [0, 3)−{0, 1
4
, 3
4
}, neither Tx nor Ty is comparable to 3

4
= Tu.

Case (iv) : If u = [1, 3) then Su = 2 = Tu, clearly Su � Tu.

In this case, for any x, y ∈ [0, 1)− { 1
2
}, neither Tx nor Ty is comparable to 2 = Tu.

Case (v) : If u ∈ [0, 3)− {0, 1
4
, 3
4
} then clearly Su � Tu.

Hence ‘Condition(H)’ fails to hold.

The following is an example in support of Theorem 2.2.
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Example 3.2. Let X = {0, 1, 2, 5} with the usual metric. We define partial order � on
X as follows:
�:= {(0, 0), (1, 1), (2, 2), (5, 5), (0, 1), (0, 2), (0, 5), (1, 2), (1, 5), (2, 5)}, where
x � y means x ≤ y in the usual sense.
Then (X,�, d) is a partially ordered metric space. We define
S, T : X → X by S0 = 0, S1 = 1, S2 = 5, S5 = 2 and

T0 = T1 = T5 = 1, T2 = 2.
Clearly, T (X) ⊆ S(X), and T is S non-decreasing.
We choose x0 = 0 ∈ X. Then Sx0 � Tx0. We define

ϕ : R+ → R+ by ϕ(t) = t3, t ≥ 0, and

ψ : R+ → R+ by ψ(t) =

{

4
5
t if t ∈ Q+

1 otherwise.
We now verify the inequality (2.1).
Case (i): Let (x, y) = (1, 2) such that S1 � S2.

In this case, ϕ(d(T1, T2)) = ϕ(d(1, 2)) = ϕ(1) = 1, M(1, 2) = 4 and N(1, 2) = 4.
Now ϕ(M(1, 2)) = ϕ(4) = 64, ψ(N(1, 2)) = ψ(4) = 16

5
.

Therefore
ϕ(d(T1, T2)) = 1 ≤ 64− 16

5
= ϕ(M(1, 2))− ψ(N(1, 2)).

Case (ii) : Let (x, y) = (0, 2) such that S0 � S2.

In this case, ϕ(d(T0, T2)) = ϕ(d(1, 2)) = ϕ(1) = 1, M(0, 2) = 5 and N(0, 2) = 5.
Now ϕ(M(0, 2)) = ϕ(5) = 125, ψ(N(0, 2)) = ψ(5) = 4.
Therefore
ϕ(d(T0, T2)) = 1 ≤ 125 − 4 = ϕ(M(0, 2))− ψ(N(0, 2)).
Case (iii) : Let (x, y) = (5, 2) such that S5 � S2.

In this case, ϕ(d(T5, T2)) = ϕ(d(1, 2)) = ϕ(1) = 1, M(5, 2) = 3 and N(5, 2) = 3.
Now ϕ(M(5, 2)) = ϕ(3) = 27, ψ(N(5, 2)) = ψ(3) = 12

5
.

Therefore
ϕ(d(T5, T2)) = 1 ≤ 27− 12

5
= ϕ(M(5, 2))− ψ(N(5, 2)).

In the remaining cases the inequality (2.1) holds trivially.
Also, S and T are weakly compatible, and (ii) of Theorem 2.2 hold. Further, by choosing
u = 0 with S0 � T0 and T0 is comparable with Tx and Ty for all x, y ∈ X so that
‘Condition (H)’ holds.
Therefore, S and T satisfy all the hypotheses of Theorem 2.2 and S and T have a unique
common fixed point 1.

The following is an example in support of Theorem 2.3.

Example 3.3. Let X = [0, 2] with the usual metric. We define partial order � on X as
follows:
�:= {(x, y) ∈ X ×X : x = y} ∪ {( 1

22n
, 0) : n ≥ 1}, where x � y means x ≥ y in the usual

sense.
Then (X,�, d) is a partially ordered complete metric space. We define

T : X → X by T (x) =

{

x2

4
if x ∈ [0, 1)

2 if x ∈ [1, 2], and

S : X → X by S(x) =

{

x2 if x ∈ [0, 1)
2 if x ∈ [1, 2].

Clearly T (X) ⊆ S(X), and T is S non-decreasing.
We choose x0 = 0 ∈ X. Then Sx0 � Tx0 and clearly S and T are reciprocally continuous
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and the pair (S,T ) is compatible.
We define ϕ : R+ → R+ by ϕ(t) = t2, t ≥ 0, and

ψ : R+ → R+ by ψ(t) = 3
4
t2 if t ≥ 0.

We now verify the inequality (2.1).
Case (i) : Let (x, y) = ( 1

2n
, 0) such that S( 1

2n
) � S(0), for n= 1,2,3, . . . .

In this case, ϕ(d(T ( 1
2n

)), T (0)) = ϕ(d( 1
22n+2 ), 0) = ϕ( 1

22n+2 ) = ( 1
22n+2 )

2,
M( 1

2n
, 0) = 1

22n
and N( 1

2n
, 0) = 1

22n
.

Now ϕ(M( 1
2n
, 0)) = ϕ( 1

22n
) = ( 1

22n
)2, ψ(N( 1

2n
, 0)) = ψ( 1

22n
) = 3

4
1

(22n)2
.

Therefore
ϕ(d(T ( 1

2n
), T (0))) = ( 1

22n+2 )
2 ≤ ( 1

22n
)2 − 3

4
1

(22n)2
= ϕ(M( 1

2n
, 0))− ψ(N( 1

2n
, 0)), for

n = 1, 2, 3, ... .
In the remaining cases, the inequality (2.1) holds trivially.
Therefore, S and T satisfy all the hypotheses of Theorem 2.3, and S and T have two
common fixed points 0 and 2.
Further, we observe that S and T do not satisfy ‘Condition H’.
For,
Case (i) : If u = 0 then Su = 0 = Tu so that Su � Tu.

In this case for any x, y ∈ (0, 2], neither Tx nor Ty is comparable to 0 = Tu.
Case (ii) : If u ∈ [1, 2] then Su = 2 = Tu so that Su � Tu.

In this case for any x, y ∈ [0, 2), neither Tx nor Ty is comparable to 2 = Tu.
Case (iii) : If u ∈ (0, 1) then Su � Tu.
Hence ‘Condition(H)’ fails to hold.

Example 3.4. Let X = {1, 2, 4, 5} with the usual metric. We define partial order � on
X as follows:
�:= {(1, 1), (2, 2), (4, 4)(5, 5), (1, 2), (1, 4), (1, 5), (2, 4), (2, 5)}, where
x � y means x ≤ y in the usual sense.
Then (X,�, d) is a partially ordered metric space. We define
S, T : X → X by S1 = 1, S2 = 2, S4 = 5, S5 = 4 and

T1 = T2 = 1, T4 = T5 = 2.
Clearly T (X) ⊆ S(X), and T is S non-decreasing.
We choose x0 = 1 ∈ X. Then Sx0 � Tx0 and clearly S and T are compatible and
reciprocally continuous.
We define ϕ : R+ → R+ by ϕ(t) = t2, t ≥ 0, and

ψ : R+ → R+ by ψ(t) =

{

t if t ∈ [0, 1]
2 otherwise.

We now verify the inequality (2.1).
Case (i) :Let (x, y) = (1, 5) such that S1 � S5.

In this case, ϕ(d(T1, T5)) = ϕ(d(1, 2)) = ϕ(1) = 1, M(1, 5) = 3 and N(1, 5) = 3.
Now ϕ(M(1, 5)) = ϕ(3) = 9, ψ(N(1, 5)) = ψ(3) = 2.
Therefore
ϕ(d(T1, T2)) = 1 ≤ 9− 2 = ϕ(M(1, 5))− ψ(N(1, 5)).
Case (ii) : Let (x, y) = (1, 4) such that S1 � S4.

In this case, ϕ(d(T1, T4)) = ϕ(d(1, 2)) = ϕ(1) = 1, M(1, 4) = 4 and N(1, 4) = 4.
Now ϕ(M(1, 4)) = ϕ(4) = 16, ψ(N(1, 4)) = ψ(4) = 2.
Therefore
ϕ(d(T1, T4)) = 1 ≤ 16− 2 = ϕ(M(1, 4))− ψ(N(1, 4)).
Case (iii) : Let (x, y) = (2, 5) such that S2 � S5.
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In this case, ϕ(d(T2, T5)) = ϕ(d(1, 2)) = ϕ(1) = 1, M(2, 5) = 2 and N(2, 5) = 2.
Now ϕ(M(2, 5)) = ϕ(2) = 4, ψ(N(2, 5)) = ψ(2) = 2.
Therefore
ϕ(d(T2, T5)) = 1 ≤ 4− 2 = ϕ(M(2, 5))− ψ(N(2, 5)).
Case (iv) : Let (x, y) = (2, 4) such that S2 � S4.

In this case, ϕ(d(T2, T4)) = ϕ(d(1, 2)) = ϕ(1) = 1, M(2, 4) = 3 and N(2, 4) = 3.
Now ϕ(M(2, 4)) = ϕ(3) = 9, ψ(N(2, 4)) = ψ(3) = 2.
Therefore
ϕ(d(T2, T4)) = 1 ≤ 9− 2 = ϕ(M(2, 4))− ψ(N(2, 4)).
In the remaining cases the inequality (2.1) holds trivially.

Further, by choosing u = 1 with S1 � T1 and T1 is comparable with Tx and Ty for
all x, y ∈ X so that ‘Condition (H)’ holds.
Therefore, S and T satisfy all the hypotheses of Theorem 2.3 and S and T have a unique
common fixed point 1.

Example 3.5. Let X = [0, 1] with usual metric. We define partial order � on X as
follows:
�:= {( 1

2n
, 1
2n+k

)/n = 0, 1, 2, ..., k = 1, 2, 3, ....} ∪ {(0, x)/x ∈ X} ∪ ∆, where x � y means
x ≥ y in the usual sense.
Then (X,�, d) is a partially ordered complete metric space. We define

S : X → X by Sx =







x if x ∈ [0, 1
4
] ∪ { 1

2
, 1}

2x if x ∈ ( 1
4
, 1
2
)

x

2
if ( 1

2
, 1) and

T : X → X by Tx = x2

4
for all x ∈ [0, 1].

Clearly T (X) ⊆ S(X), and T is S non-decreasing.
We choose x0 = 1

2
∈ X. Then Sx0 � Tx0

We define ϕ, ψ : R+ → R+ by ϕ(t) = t, t ≥ 0, and ψ(t) = t

4
, t ≥ 0.

We now verify the inequality (2.1).
Case (I) : Let (x, y) = ( 1

2n
, 1
2n+k

) such that Sx � Sy for n ≥ 0 and k ≥ 1.
In this case, we have
M( 1

2n
, 1
2n+k

) = max{a, b, c, d} and N( 1
2n
, 1
2n+k

) = max{a, b, d},
where

a = (
d(S( 1

2n+k
),T ( 1

n+k
))[1+d(S( 1

2n
),T ( 1

2n
)]

1+d(S( 1
2n

),S( 1

2n+k
)

), b = (
d(S( 1

2n
),T ( 1

2n
))[1+d(S( 1

2n+k
),T ( 1

n+k
))]

1+d(S( 1
2n

),S( 1

2n+k
)

),

c = (
d(S( 1

2n+k
),T ( 1

2n
)[1+d(S( 1

2n
),T ( 1

2n+k
)]

1+d(S( 1
2n

),S( 1

2n+k
)

), d = d(S( 1
2n

), S( 1
2n+k

)).

We observe the following:

1. a ≤ b for all k ≥ 1 and for all n ≥ 0,

2. c ≤ b for all k ≤ n+ 2,

3. c ≤ d for all k ≥ n+ 2.

Hence M(x, y) = N(x, y) = b or d.
Subcase (i) : M(x, y) = N(x, y) = b.

In this case, we have ( 1
22n+2 − 1

22n+2k+2 ) ≤
3
4
( 1
2n

−
1

22n+2
)(1+ 1

2n+k
−

1

22n+2k+2
)

(1+ 1
2n

−
1

2n+k
)

for all n ≥ 0

and k ≥ 1, which implies that
ϕ(d(Tx, Ty)) ≤ b− b

4
= ϕ(b)− ψ(b) = ϕ(M(x, y))− ψ(N(x, y)).

Subcase (ii) : M(x, y) = N(x, y) = d.
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In this case, we have ( 1
22n+2 − 1

22n+2k+2 ) ≤
3
4
( 1
2n

− 1
2n+k

) which implies that

ϕ(d(Tx, Ty)) ≤ b− d

4
= ϕ(d)− ψ(d) = ϕ(M(x, y))− ψ(N(x, y)).

In either case, the inequality (2.1) holds.
Case (II) : Let (x, y) = (0, x) such that S0 � Sx.

In this case, M(0, x) = N(0, x) =







x if x ∈ [0, 1
4
] ∪ { 1

2
, 1}

2x if x ∈ ( 1
4
, 1
2
)

x

2
if x ∈ ( 1

2
, 1).

If x ∈ [0, 1
4
] ∪ { 1

2
, 1} then

ϕ(d(T0, Tx)) = x2

4
≤ 3x

4
= x− x

4
= ϕ(M(0, x))− ψ(N(0, x)).

Similarly, it is easy to see that the inequality (2.1) holds in all other cases.
Case (III) : Let (x, y) ∈ ∆ such that x = y.
In this case, we note that
M(x, x) = N(x, x) = d(Sx, Tx)(1 + d(Sx, Tx)) for all x ∈ X.

Now ϕ(d(Tx, Tx)) = ϕ(0) ≤ 3
4
M(x, x) =M(x, x)− N(x,x)

4

= ϕ(M(x, y))− ψ(N(x, x)) for all x ∈ X.
Hence S and T satisfy the inequality (2.1).
Also, S, T are reciprocally continuous and compatible.
So let {xn} be a sequence in X such that lim

n→∞

Sxn = lim
n→∞

Txn = z for some z ∈ X.

Therefore, xn → 0 and z = 0. There exists N ∈ Z+ such that n ≥ N implies xn 6
1
4
.

Therefore Sxn = xn and Txn =
x2
n

4
for all n ≥ N . Now TSxn = Txn =

x2
n

4
and

STxn = S(
x2
n

4
) =

x2
n

4
for all n ≥ N .

Therefore TSxn = STxn for all n ≥ N . There is d(TSxn, STxn) = 0 for all n ≥ N .
Hence lim

n→∞

d(TSxn, STxn) = 0. Therefore, the pair (S, T ) is compatible.

Also, lim
n→∞

STxn = lim
n→∞

x2
n

4
= 0 = S0 and lim

n→∞

TSxn = lim
n→∞

x2
n

4
= 0 = T0. Therefore,

S, T are reciprocally continuous. We observe that ‘condition (H)’ holds, because by choos-
ing 0 ∈ X we have S0 � T0 and T0 = 0 is comparable with Tx and Ty for all x, y ∈ X.
Hence all the hypotheses of Theorem 2.3 hold and S and T have a unique common fixed
point 0.
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