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ABSTRACT: Running multiple instances of the MapReduce framework concurrently in a multicluster 

system or datacenter enables data, failure, and version isolation, which is attractive for many 

organizations. It may also provide some form of performance isolation, but in order to achieve this in the 

face of time-varying workloads submitted to the MapReduce instances, a mechanism for dynamic 

resource (re-)allocations to those instances is required. In this paper, we present such a mechanism called 

Fawkes that attempts to balance the allocations to MapReduce instances so that they experience similar 

service levels. Fawkes proposes a new abstraction for deploying MapReduce instances on physical 

resources, the MR-cluster, which represents a set of resources that can grow and shrink, and that has a 

core on which MapReduce is installed with the usual data locality assumptions but that relaxes those 

assumptions for nodes outside the core. Fawkes dynamically grows and shrinks the active MRcluster 

based on a family of weighting policies with weights derived from monitoring their operation. 

Implementing MapReduce in cloud requires creation of clusters, where the Map and Reduce operations 

can be performed. Optimizing the overall resource utilization without compromising with the efficiency 

of availing services is the need for the hour. Selecting right set of nodes to form cluster plays a major role 

in improving the performance of the cloud. As a huge amount of data transfer takes place during the data 

analysis phase, network latency becomes the defining factor in improving the QoS of the cloud. In this 

paper we propose a novel Cluster Configuration algorithm that selects optimal nodes in a dynamic cloud 

environment to configure a cluster for running MapReduce jobs. The algorithm is cost optimized, 

adheres to global resource utilization and provides high performance to the clients. The proposed 

Algorithm gives a performance benefit of 35% on all reconfiguration based cases and 45 % performance 

benefit on best cases. 

Index Terms— Mapreduce; Cloud Computing; Hadoop; Distributed Computing; 

I. INTRODUCTION 

In last decade, scientific research trend have 

become increasingly reliant on processing huge 

volume of data. The data inflow has come from 

various fields such as Social Media, Weather 

Service Centre and Organization such as Newyork 

Stock Exchange. People send large volume of 

unstructured data in the form of messages and 

photographs. People have started creating tools to 

use and analyze these data. The overall impact of 

all these can be seen in near future. Since the size 

of the data is growing at a much higher rate than 

the rate of accessing the data [18], it became very 

important to create new system which can handle 

huge volume of data without deteriorating the 

performance. New concepts like Cloud computing, 

MapReduce and its open source implementation 

Hadoop became widely accepted for doing large 

scale data analysis. While cloud computing offers 

raw computing power in the form of storage and 

other services, there is a requirement of distributed 

framework to harness the power of cloud easily and 

efficiently. Google in 2004 introduced a model 

known as MapReduce [19], which was capable of 

handling execution of large distributed jobs in 

cloud infrastructure. It has been found that 

operating cost of data centers have doubled in last 5 

years and 75% of investment has been on 

infrastructure and energy consumption [5]. 

Gartner's survey [8] shows that enterprises invest 

39% of their IT budget in Cloud. Improving the 

global resource utilization can reduce the overall 

infrastructure cost. Selecting the right set of nodes 

to form a cluster is one of the prime factors 

resulting in improved global resource utilization. 

Network Latency is one of the major factors of 

energy consumption in a cloud [17]. Hence we 

propose a Dynamic Cluster Configuration 

algorithm which reduces the network latency and 

can improve the utilization of the cloud resources 

without compromising with the efficiency of the 

cloud. 

To reduce network traffic for MapReduce 

workloads, we argue for improved data locality for 

both Map and Reduce phases of the job. The goal is 

to reduce the network distance between storage and 

compute nodes for both map and reduce processing 

– for map phase, the VM executing the map task 

should be close to the node that stores the input 

data (preferably local to that node) and for reduce 

phase, the VMs executing reduce tasks should be 

close to the map-task VMs which generate the 

intermediate data used as reduce input. Improved 

data locality in this manner is beneficial in two 

ways – (1) it reduces job execution times as 

network transfer times are big components of total 

execution time and (2) it reduces cumulative data 

center network traffic. While map locality is well 

understood and implemented in MapReduce 

systems, reduce locality has surprisingly received 

little attention in spite of its significant potential 

impact. As an example, Figure 1 shows the impact 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Innovative Technology and Research (IJITR)

https://core.ac.uk/display/228554422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


      Daggupati Saidamma * et al. 

(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH 

Volume No.5, Issue No.5, August - September 2017, 7339-7345.  

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 7340 

of improved reduce locality for a Sort workload. It 

shows the Hadoop task execution timelines for a 10 

GB dataset in a 2-rack 20-node physical cluster1 , 

where 20 Hadoop VMs were placed without and 

with reduce locality (top and bottom figures 

respectively). As seen from the graph, reduce 

locality resulted in a significantly shorter shuffle 

phase helping reduce total job runtime by 4x. In 

this paper, we present Purlieus – an intelligent 

MapReduce cloud resource allocation system. 

Purlieus improves data locality during both map 

and reduce phases of the MapReduce job by 

carefully coupling data and computation (VM) 

placement in the cloud. Purlieus categorizes 

MapReduce jobs based on how much data they 

access during the map and reduce phases and 

analyzes the network flows between sets of 

machines that store the input/intermediate data and 

those that process the data. It places data on those 

machines that can either be used to process the data 

themself or are close to the machines that can do 

the processing. This is in contrast to conventional 

MapReduce systems which place data independent 

of map and reduce computational placement – data 

is placed on any node in the cluster which has 

sufficient storage capacity [3, 23] and only map 

tasks are attempted to be scheduled local to the 

node storing the data block. Additionally, Purlieus 

is different from conventional MapReduce clouds 

(e.g., Amazon Elastic MapReduce [14]) that use a 

separate compute cloud for performing MapReduce 

computation and a separate storage cloud for 

storing the data persistently. Such an architecture 

delays job execution and duplicates data in the 

cloud. In contrast, Purlieus stores the data in a 

dedicated MapReduce cloud and jobs execute on 

the same machines that store the data without 

waiting to load data from a remote storage cloud. 

To the best of our knowledge, Purlieus is the first 

effort that attempts to improve data locality for 

MapReduce in a cloud. Secondly, Purlieus tackles 

the locality problem in a fundamental manner by 

coupling data placement with VM placement to 

provide both map and reduce locality. This leads to 

significant savings and can reduce job execution 

times by close to 50% while reducing up to 70% of 

cross-rack network traffic in some scenarios. 

II. BACKGROUND 

Scheduling in Hadoop In this section, we describe 

the mechanism used by Hadoop to distribute work 

across a cluster. We identify assumptions made by 

the scheduler that hurt its performance. These 

motivate our LATE scheduler, which can 

outperform Hadoop’s by a factor of 2. Hadoop’s 

implementation of MapReduce closely resembles 

Google’s [1]. There is a single master managing a 

number of slaves. The input file, which resides on a 

distributed filesystem throughout the cluster, is 

split into even-sized chunks replicated for fault-

tolerance. Hadoop divides each MapReduce job 

into a set of tasks. Each chunk of input is first 

processed by a map task, which outputs a list of 

key-value pairs generated by a userdefined map 

function. Map outputs are split into buckets based 

on key. When all maps have finished, reduce tasks 

apply a reduce function to the list of map outputs 

with each key. Figure 1 illustrates a MapReduce 

computation. Hadoop runs several maps and 

reduces concurrently on each slave – two of each 

by default – to overlap computation and I/O. Each 

slave tells the master when it has empty task slots. 

The scheduler then assigns it tasks. The goal of 

speculative execution is to minimize a job’s 

response time. Response time is most important for 

short jobs where a user wants an answer quickly, 

such as queries on log data for debugging, 

monitoring and business intelligence. Short jobs are 

a major use case for MapReduce. For example, the 

average MapReduce job at Google in September 

2007 took 395 seconds [1]. Systems designed for 

SQL-like queries on top of MapReduce, such as 

Sawzall [9] and Pig [10], underline the importance 

of MapReduce for ad-hoc queries. Response time is 

also clearly important in a pay-by-the-hour 

environment like EC2. Speculative execution is 

less useful in long jobs, because only the last wave 

of tasks is affected, and it may be inappropriate for 

batch jobs if throughput is the only metric of 

interest, because speculative tasks imply wasted 

work. However, even in pure throughput systems, 

speculation may be beneficial to prevent the 

prolonged life of many concurrent jobs all suffering 

from straggler tasks. Such nearly complete jobs 

occupy resources on the master and disk space for 

map outputs on the slaves until they terminate. 

Nonetheless, in our work, we focus on improving 

response time for short jobs. 

Based on these observations, we investigate 

intelligent data placement as a potential avenue to 

reduce remote accesses. We focus our investigation 

on the “map” phase of MapReduce jobs as initial 

data placement is immaterial thereafter. Hadoop’s 

scheduler is designed to assign map tasks to nodes 

such that they access data locally whenever 

possible. When a computation resource is assigned 

to a job, the scheduler scans the list of incomplete 

map tasks for that job to find any tasks that can 

access locally available data. Only if no such tasks 

are available will it schedule a task that must 

perform remote accesses. Hence, jobs with 

dedicated access to the entire cluster rarely incur 

remote accesses (remote accesses only arise at the 

end of the map phase, when few map tasks remain, 

or under substantial load imbalance, for example, 

due to server heterogeneity [4]). However, 

restrictions on task assignment, because of long-

running tasks, prioritization among competing jobs, 
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dedicated allocations, or other factors, can rapidly 

increase the number of remote accesses. We 

contrast Hadoop’s default random data placement 

policy against an extreme alternative, partitioned 

data placement, wherein a cluster is divided into 

partitions, each of which contains one replica of 

each data block. (Note that, since the number of 

replicas is unchanged and placement remains 

random within each partition, availability is, to 

first-order, unchanged). By segregating replicas, 

due simply to combinatorial effects, we increase 

the probability that a large fraction of distinct data 

blocks is available even within relatively small, 

randomly selected allocations of the cluster.  

We further consider the utility of adding additional 

replicas for frequently accessed blocks, to increase 

the probability that these blocks will be available 

locally in a busy cluster. Our evaluation, through a 

combination of simulation of the Hadoop 

scheduling algorithm and validation on a small-

scale test cluster, leads to mixed conclusions:  

• When scheduling is unconstrained and task 

lengths are well-chosen to balance load and avoid 

long-running tasks, Hadoop’s scheduler is highly 

effective in avoiding remote accesses regardless of 

data placement, as the job can migrate across nodes 

over time to process data blocks locally. Under an 

“Unconstrained” allocation scenario, Hadoop can 

achieve 98% local accesses.  

• However, when task allocation is constrained to a 

subset of the cluster (e.g., because of long-running 

tasks, reserved nodes, restrictions arising from job 

priorities, power management [16], or other node 

allocation constraints), partitioned data placement 

substantially reduces remote data accesses. For 

example, under a “Restricted” allocation scenario 

where a job may execute on only one-third of 

nodes (selected at random), partitioned data 

placement reduces remote accesses by 86% over 

random data placement.  

• We demonstrate that selective replication of 

frequently accessed blocks can further reduce 

remote accesses in restricted allocation scenarios 

III. RELATED WORK 

Data replication is widely used in distributed 

systems to improve performance when a system 

needs to scale in numbers and/or geographical area 

[23]. Replication can increase data availability, and 

helps achieve load balancing in the presence of 

scaling. For geographically dispersed systems, 

replication can reduce communication latencies. 

Hadoop leverages replication to provide both 

availability and scalability. Further, Hadoop places 

two replicas of a data block on the same rack to 

save inter-rack bandwidth. Caching is a special 

form of replication where a copy of the data under 

consideration is placed close to the client that is 

accessing the data. Caching has been used 

effectively in distributed file systems such as the 

Andrew File System (AFS) and Coda to minimize 

network traffic [12], [21].  

Gwertzman and Seltzer have proposed a technique 

of server-initiated caching called push caching 

[11]. Under this technique, a server places 

temporary replicas of data closer to geographical 

regions from which large fractions of requests are 

arriving. Since replication and caching imply 

multiple copies of a data resource, modification of 

one copy creates consistency issues. Much research 

in the distributed systems field has been devoted to 

efficient consistency maintenance [19], [23]. 

However, since Hadoop follows a write-once, read-

many model for data (i.e., data files are 

immutable), maintaining consistency is not a 

concern. In systems with distributed data replicas, 

achieving locality while maintaining fairness is a 

challenge. Isard and co-authors propose Quincy, a 

framework for scheduling concurrent distributed 

jobs with fine-grain resource sharing [13]. Quincy 

defines fairness in terms of disk-locality and can 

evict tasks to ensure fair distribution of disk-

locality across jobs. Overall, the system improves 

both fairness and locality, achieving a 3.9x 

reduction in the amount of data transferred and a 

throughput increase of up to 40%.  

Zaharia et al. create a fair-scheduler that maintains 

task locality and achieves almost 99% local 

accesses via delay scheduling [25]. Under delay 

scheduling, when a job that should be scheduled 

next under fair-scheduling cannot launch a data-

local task, it stalls a small amount of time while 

allowing tasks from other jobs to be scheduled. 

However, delay scheduling performs poorly in the 

presence of long tasks (nodes do not free up 

frequently enough for jobs to achieve locality) and 

hotspots (certain nodes are of interest to many jobs; 

for example, such nodes might contain a data block 

that many jobs require). The authors suggest long-

taskbalancing and hotspot replication as potential 

solutions, but do not implement either. In contrast 

to the authors’ approach, we focus on how 

intelligent data placement can be used to maximize 

MapReduce efficiency in scenarios where node 

allocations are restricted.  

Eltabakh and co-authors present CoHadoop [9], a 

lightweight extension of Hadoop that allows 

applications to control where data are stored. 

Applications give hints to CoHadoop that certain 

files are related and may be processed jointly; 

CoHadoop then tries to co-locate these files for 

improved efficiency. Ferguson and Fonseca [10] 

highlight the non-uniformity in data placement 

within Hadoop clusters, which can lead to 

performance degradation. They propose placing 
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data on nodes in a round-robin fashion instead of 

Hadoop’s default data placement, and demonstrate 

an 11.5% speedup for the sort benchmark. Ahmad 

et al. [4] observe that MapReduce’s built-in load 

balancing results in excessive and bursty network 

traffic, and that heterogeneity amplifies load 

imbalances. In response, the authors develop 

Tarazu, a set of optimizations to improve 

MapReduce performance on heterogeneous 

clusters.  

Xie et al. [24] study the effect of data placement in 

clusters of heterogeneous machines, and suggest 

placing more data on faster nodes to improve the 

percentage of local accesses. Zaharia et al. [26] 

also investigate MapReduce performance in 

heterogenous environments. The authors design a 

scheduling algorithm called Longest Approximate 

Time to End (LATE), that is robust to 

heterogeneity and can improve Hadoop response 

times by a factor of two. Ananthanarayanan et al. 

[5] observe that MapReduce frameworks use 

filesystems that replicate data uniformly to improve 

data availability and resilience. However, job logs 

from large production clusters show a wide 

disparity in data popularity.  

The authors observe that machines and racks 

storing popular content become bottlenecks, 

thereby increasing the completion times of jobs 

accessing these data even when there are machines 

with spare cycles in the cluster. To address this 

problem, the authors propose a system called 

Scarlett. Scarlett accurately predicts file popularity 

using learned trends, and then selectively replicates 

blocks based on their popularity. In trace driven 

simulations and experiments on Hadoop and Dryad 

clusters, Scarlett alleviates hotspots and speeds up 

jobs by up to 20.2%. We explore the utility of 

selective replication in combination with 

partitioned data placement in subsequent sections. 

IV. PURLIEUS: PLACEMENT 

TECHNIQUES 

Next, we describe Purlieus’s data and VM 

placement techniques for various classes of 

MapReduce jobs. The goal of these placements is 

to minimize the total Cost by reducing the dist 

function for map (when input data, Qi is large) 

and/or reduce (when intermediate data, mout is 

large).  

4.1 Map-input heavy jobs  

Map-input heavy jobs read large amounts of input 

data for map but generate only small map-outputs 

that is input to the reducers. For placement, 

mappers of these jobs should be placed close to 

input data blocks so that they can read data locally, 

while reducers can be scheduled farther since 

amount of map-output data is small.  

4.1.1 Placing Map-input heavy data  

As map-input heavy jobs do not require reducers to 

be executed close to each other, the VMs of the 

MapReduce cluster can be placed anywhere in the 

data center. Thus, physical machines to place the 

data are chosen only based on the storage 

utilization and the expected load, Ek on the 

machines. As discussed in the cost model, E k 

denotes the expected load on machine, Mk. E k = X 

i Wk i × CRes(Di) To store map-input heavy data 

chunks, Purlieus chooses machines that have the 

least expected load. This ensures that when 

MapReduce VMs are placed, there is likely to be 

capacity available on machines storing the input 

data. 4.1.2 VM placement for Map-input heavy 

jobs The VM placement algorithm attempts to 

place VMs on the physical machines that contain 

the input data chunks for the map phase. This 

results in lower MCost – the dominant component 

for map-input heavy jobs. Since data placement 

had placed blocks on machines that have lower 

expected computational load, it is less likely, 

though possible that at the time of job execution, 

some machine containing the data chunks does not 

have the available capacity. For such a case, the 

VM may be placed close to the node that stores the 

actual data chunk. Specifically, the VM placement 

algorithm iteratively searches for a physical 

machine having enough resources in increasing 

order of network distance from the physical 

machine storing the input data chunk. Among the 

physical machines at a given network distance, the 

one having the least load is chosen.  

4.2 Map-and-Reduce-input heavy jobs 

Map-and-reduce-input heavy jobs process large 

amounts of input data and also generate large 

intermediate data. Optimizing cost for such jobs 

requires reducing the dist function during both their 

map and reduce phases. 

4.2.1 Placing Map-and-Reduce-input heavy data 

To achieve high map-locality, data should be 

placed on physical machines that can host VMs 

locally. Additionally, this data placement should 

support reduce-locality – for which the VMs should 

be hosted on machines close to each other 

(preferably within the rack) so that reduce traffic 

does not significantly load the data center network. 

Ideally, a subgraph structure that is densely 

connected, similar to a clique, where every node is 

connected to every other node in 1-hop would be a 

good candidate for placing the VMs. However, it 

may not always be possible to find cliques of a 

given size as the physical network may not have a 

clique or even if it does, some of the machines may 

not have enough resources to hold the data or their 

expected computational load may be high to not 

allow VM placement later. An alternate approach 



      Daggupati Saidamma * et al. 

(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH 

Volume No.5, Issue No.5, August - September 2017, 7339-7345.  

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 7343 

would be to find subgraph structures similar to 

cliques. A number of clique relaxations have been 

proposed, one of which is k-club [27]. A k-club of 

a graph G is defined as a maximal subgraph of G of 

diameter k. While finding k-club is NP-Complete 

for a general graph, data center networks are 

typically hierarchical (e.g. fat-tree topologies) and 

this allows finding a k-club in polynomial time. In 

a data center tree topology, the leaf nodes represent 

the physical machines and the non-leaf nodes 

represent the network switches. To find a k-club 

containing n leaf nodes, the algorithm simply finds 

the sub-tree of height k 2 containing n or more leaf 

nodes. For map-and-reduce-input heavy jobs, data 

blocks get placed in a set of closely connected 

physical machines that form a k-club of least 

possible k (least possible height of the subtree) 

given the available storage resources in them. If 

several subtrees exists with the same height, then 

the one having the maximum available resource is 

chosen. As an illustration, in Figure 4(a), the input 

data blocks, I1, I2, and I3 are stored in a closely 

connected set of nodes M13, M14 and M15 that 

form a k-club of least possible k in the cluster.  

4.2.2 VM placement for Map and Reduce-input 

heavy jobs 

As data placement had done an optimized 

placement by placing data blocks in a set of closely 

connected nodes, VM placement algorithm only 

needs to ensure that VMs get placed on either the 

physical machines storing the input data or the 

close-by ones. This reduces the distance on the 

network that the reduce traffic needs to go over, 

speeding up job execution while simultaneously 

reducing cumulative data center network traffic. In 

the example shown 

 

(a) Map-phase 

 

(b) Reduce-phase 

Figure 4: Data and VM placement. Bottom squares 

show data blocks placed on each machine. Squares 

next to a machine (e.g. I1 near M13 for map-phase 

in figure 4(a) ) indicates reading of the block for 

map processing. F measure denotes available 

computational capacity – for simplicity, number of 

VMs that can be placed on that machine. In reduce 

phase (figure 4(b)) , circled Ri indicates map 

outputs and square Ri(j) indicates reading of 

intermediate data for reducer j from map task 

output, in Figure 4, VMs for job on dataset I get 

placed on the physical machines storing input data. 

As a result, map tasks use local reads (Figure 4(a)) 

and reduce tasks also read within the same rack, 

thereby maximizing reduce locality (Figure 4(b)). 

In case node M15 did not have available resources 

to host the VM, then the next candidates to host the 

VM would be M16, M17 and M18, all of which 

can access the input data block I3 by traversing one 

network switch and are close to the other reducers 

executing in M13 and M14. If any of M16, M17 

and M18 did not have available resources to host a 

new VM, then the algorithm would iteratively 

proceed to the next rack (M7, M8, M9, M10, M11 

and M12) and look for a physical machine to host 

the VM. Thus the algorithm tries to maximize 

locality even if the physical machines containing 

input data blocks are unavailable to host the VMs. 

V. CONCLUSION 

This paper presents Purlieus, a resource allocation 

system for MapReduce in a cloud. We present a 

system architecture for the MapReduce cloud 

service and describe how existing data and virtual 

machine placement techniques lead to longer job 

execution times and large amounts of network 

traffic in the data center. We identify data locality 

as the key principle which if exploited can alleviate 

these problems and develop a unique coupled data 

and VM placement technique that achieves high 

data locality. Uniquely, Purlieus’s proposed 

placement techniques optimize for data locality 

during both map and reduce phases of the job by 

considering VM placement, MapReduce job 

characteristics and load on the physical cloud 

infrastructure at the time of data placement. Our 

detailed evaluation shows significant performance 

gains with some scenarios showing close to 50% 

reduction in execution time and upto 70% 

reduction in the cross-rack network traffic. We plan 

to extend our work in two directions. First, for 

placement techniques we would like to capture 

relationships between datasets, e.g. if two datasets 

are accessed together (MapReduce job doing a join 

of two datasets), their data placement can be more 

intelligent while placing their blocks in relation to 

each other. Second, we plan to develop online 

techniques to handle dynamic scenarios like 
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changing job characteristics on a dataset. While 

core principles developed in this work will 

continue to apply, such scenarios may use other 

virtualization technologies like live data and VM 

migration. 
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