
 Daggupati Saidamma * et al.

(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.5, Issue No.5, August - September 2017, 7339-7345.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 7339

Allocation of The Large Cluster Setups In Mapreduce
DAGGUPATI SAIDAMMA

Assistant Professor, Dept of CSE, Geetanjali College of Engineering and Technology

ABSTRACT: Running multiple instances of the MapReduce framework concurrently in a multicluster

system or datacenter enables data, failure, and version isolation, which is attractive for many

organizations. It may also provide some form of performance isolation, but in order to achieve this in the

face of time-varying workloads submitted to the MapReduce instances, a mechanism for dynamic

resource (re-)allocations to those instances is required. In this paper, we present such a mechanism called

Fawkes that attempts to balance the allocations to MapReduce instances so that they experience similar

service levels. Fawkes proposes a new abstraction for deploying MapReduce instances on physical

resources, the MR-cluster, which represents a set of resources that can grow and shrink, and that has a

core on which MapReduce is installed with the usual data locality assumptions but that relaxes those

assumptions for nodes outside the core. Fawkes dynamically grows and shrinks the active MRcluster

based on a family of weighting policies with weights derived from monitoring their operation.

Implementing MapReduce in cloud requires creation of clusters, where the Map and Reduce operations

can be performed. Optimizing the overall resource utilization without compromising with the efficiency

of availing services is the need for the hour. Selecting right set of nodes to form cluster plays a major role

in improving the performance of the cloud. As a huge amount of data transfer takes place during the data

analysis phase, network latency becomes the defining factor in improving the QoS of the cloud. In this

paper we propose a novel Cluster Configuration algorithm that selects optimal nodes in a dynamic cloud

environment to configure a cluster for running MapReduce jobs. The algorithm is cost optimized,

adheres to global resource utilization and provides high performance to the clients. The proposed

Algorithm gives a performance benefit of 35% on all reconfiguration based cases and 45 % performance

benefit on best cases.

Index Terms— Mapreduce; Cloud Computing; Hadoop; Distributed Computing;

I. INTRODUCTION

In last decade, scientific research trend have

become increasingly reliant on processing huge

volume of data. The data inflow has come from

various fields such as Social Media, Weather

Service Centre and Organization such as Newyork

Stock Exchange. People send large volume of

unstructured data in the form of messages and

photographs. People have started creating tools to

use and analyze these data. The overall impact of

all these can be seen in near future. Since the size

of the data is growing at a much higher rate than

the rate of accessing the data [18], it became very

important to create new system which can handle

huge volume of data without deteriorating the

performance. New concepts like Cloud computing,

MapReduce and its open source implementation

Hadoop became widely accepted for doing large

scale data analysis. While cloud computing offers

raw computing power in the form of storage and

other services, there is a requirement of distributed

framework to harness the power of cloud easily and

efficiently. Google in 2004 introduced a model

known as MapReduce [19], which was capable of

handling execution of large distributed jobs in

cloud infrastructure. It has been found that

operating cost of data centers have doubled in last 5

years and 75% of investment has been on

infrastructure and energy consumption [5].

Gartner's survey [8] shows that enterprises invest

39% of their IT budget in Cloud. Improving the

global resource utilization can reduce the overall

infrastructure cost. Selecting the right set of nodes

to form a cluster is one of the prime factors

resulting in improved global resource utilization.

Network Latency is one of the major factors of

energy consumption in a cloud [17]. Hence we

propose a Dynamic Cluster Configuration

algorithm which reduces the network latency and

can improve the utilization of the cloud resources

without compromising with the efficiency of the

cloud.

To reduce network traffic for MapReduce

workloads, we argue for improved data locality for

both Map and Reduce phases of the job. The goal is

to reduce the network distance between storage and

compute nodes for both map and reduce processing

– for map phase, the VM executing the map task

should be close to the node that stores the input

data (preferably local to that node) and for reduce

phase, the VMs executing reduce tasks should be

close to the map-task VMs which generate the

intermediate data used as reduce input. Improved

data locality in this manner is beneficial in two

ways – (1) it reduces job execution times as

network transfer times are big components of total

execution time and (2) it reduces cumulative data

center network traffic. While map locality is well

understood and implemented in MapReduce

systems, reduce locality has surprisingly received

little attention in spite of its significant potential

impact. As an example, Figure 1 shows the impact

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Innovative Technology and Research (IJITR)

https://core.ac.uk/display/228554422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Daggupati Saidamma * et al.

(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.5, Issue No.5, August - September 2017, 7339-7345.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 7340

of improved reduce locality for a Sort workload. It

shows the Hadoop task execution timelines for a 10

GB dataset in a 2-rack 20-node physical cluster1 ,

where 20 Hadoop VMs were placed without and

with reduce locality (top and bottom figures

respectively). As seen from the graph, reduce

locality resulted in a significantly shorter shuffle

phase helping reduce total job runtime by 4x. In

this paper, we present Purlieus – an intelligent

MapReduce cloud resource allocation system.

Purlieus improves data locality during both map

and reduce phases of the MapReduce job by

carefully coupling data and computation (VM)

placement in the cloud. Purlieus categorizes

MapReduce jobs based on how much data they

access during the map and reduce phases and

analyzes the network flows between sets of

machines that store the input/intermediate data and

those that process the data. It places data on those

machines that can either be used to process the data

themself or are close to the machines that can do

the processing. This is in contrast to conventional

MapReduce systems which place data independent

of map and reduce computational placement – data

is placed on any node in the cluster which has

sufficient storage capacity [3, 23] and only map

tasks are attempted to be scheduled local to the

node storing the data block. Additionally, Purlieus

is different from conventional MapReduce clouds

(e.g., Amazon Elastic MapReduce [14]) that use a

separate compute cloud for performing MapReduce

computation and a separate storage cloud for

storing the data persistently. Such an architecture

delays job execution and duplicates data in the

cloud. In contrast, Purlieus stores the data in a

dedicated MapReduce cloud and jobs execute on

the same machines that store the data without

waiting to load data from a remote storage cloud.

To the best of our knowledge, Purlieus is the first

effort that attempts to improve data locality for

MapReduce in a cloud. Secondly, Purlieus tackles

the locality problem in a fundamental manner by

coupling data placement with VM placement to

provide both map and reduce locality. This leads to

significant savings and can reduce job execution

times by close to 50% while reducing up to 70% of

cross-rack network traffic in some scenarios.

II. BACKGROUND

Scheduling in Hadoop In this section, we describe

the mechanism used by Hadoop to distribute work

across a cluster. We identify assumptions made by

the scheduler that hurt its performance. These

motivate our LATE scheduler, which can

outperform Hadoop’s by a factor of 2. Hadoop’s

implementation of MapReduce closely resembles

Google’s [1]. There is a single master managing a

number of slaves. The input file, which resides on a

distributed filesystem throughout the cluster, is

split into even-sized chunks replicated for fault-

tolerance. Hadoop divides each MapReduce job

into a set of tasks. Each chunk of input is first

processed by a map task, which outputs a list of

key-value pairs generated by a userdefined map

function. Map outputs are split into buckets based

on key. When all maps have finished, reduce tasks

apply a reduce function to the list of map outputs

with each key. Figure 1 illustrates a MapReduce

computation. Hadoop runs several maps and

reduces concurrently on each slave – two of each

by default – to overlap computation and I/O. Each

slave tells the master when it has empty task slots.

The scheduler then assigns it tasks. The goal of

speculative execution is to minimize a job’s

response time. Response time is most important for

short jobs where a user wants an answer quickly,

such as queries on log data for debugging,

monitoring and business intelligence. Short jobs are

a major use case for MapReduce. For example, the

average MapReduce job at Google in September

2007 took 395 seconds [1]. Systems designed for

SQL-like queries on top of MapReduce, such as

Sawzall [9] and Pig [10], underline the importance

of MapReduce for ad-hoc queries. Response time is

also clearly important in a pay-by-the-hour

environment like EC2. Speculative execution is

less useful in long jobs, because only the last wave

of tasks is affected, and it may be inappropriate for

batch jobs if throughput is the only metric of

interest, because speculative tasks imply wasted

work. However, even in pure throughput systems,

speculation may be beneficial to prevent the

prolonged life of many concurrent jobs all suffering

from straggler tasks. Such nearly complete jobs

occupy resources on the master and disk space for

map outputs on the slaves until they terminate.

Nonetheless, in our work, we focus on improving

response time for short jobs.

Based on these observations, we investigate

intelligent data placement as a potential avenue to

reduce remote accesses. We focus our investigation

on the “map” phase of MapReduce jobs as initial

data placement is immaterial thereafter. Hadoop’s

scheduler is designed to assign map tasks to nodes

such that they access data locally whenever

possible. When a computation resource is assigned

to a job, the scheduler scans the list of incomplete

map tasks for that job to find any tasks that can

access locally available data. Only if no such tasks

are available will it schedule a task that must

perform remote accesses. Hence, jobs with

dedicated access to the entire cluster rarely incur

remote accesses (remote accesses only arise at the

end of the map phase, when few map tasks remain,

or under substantial load imbalance, for example,

due to server heterogeneity [4]). However,

restrictions on task assignment, because of long-

running tasks, prioritization among competing jobs,

 Daggupati Saidamma * et al.

(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.5, Issue No.5, August - September 2017, 7339-7345.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 7341

dedicated allocations, or other factors, can rapidly

increase the number of remote accesses. We

contrast Hadoop’s default random data placement

policy against an extreme alternative, partitioned

data placement, wherein a cluster is divided into

partitions, each of which contains one replica of

each data block. (Note that, since the number of

replicas is unchanged and placement remains

random within each partition, availability is, to

first-order, unchanged). By segregating replicas,

due simply to combinatorial effects, we increase

the probability that a large fraction of distinct data

blocks is available even within relatively small,

randomly selected allocations of the cluster.

We further consider the utility of adding additional

replicas for frequently accessed blocks, to increase

the probability that these blocks will be available

locally in a busy cluster. Our evaluation, through a

combination of simulation of the Hadoop

scheduling algorithm and validation on a small-

scale test cluster, leads to mixed conclusions:

• When scheduling is unconstrained and task

lengths are well-chosen to balance load and avoid

long-running tasks, Hadoop’s scheduler is highly

effective in avoiding remote accesses regardless of

data placement, as the job can migrate across nodes

over time to process data blocks locally. Under an

“Unconstrained” allocation scenario, Hadoop can

achieve 98% local accesses.

• However, when task allocation is constrained to a

subset of the cluster (e.g., because of long-running

tasks, reserved nodes, restrictions arising from job

priorities, power management [16], or other node

allocation constraints), partitioned data placement

substantially reduces remote data accesses. For

example, under a “Restricted” allocation scenario

where a job may execute on only one-third of

nodes (selected at random), partitioned data

placement reduces remote accesses by 86% over

random data placement.

• We demonstrate that selective replication of

frequently accessed blocks can further reduce

remote accesses in restricted allocation scenarios

III. RELATED WORK

Data replication is widely used in distributed

systems to improve performance when a system

needs to scale in numbers and/or geographical area

[23]. Replication can increase data availability, and

helps achieve load balancing in the presence of

scaling. For geographically dispersed systems,

replication can reduce communication latencies.

Hadoop leverages replication to provide both

availability and scalability. Further, Hadoop places

two replicas of a data block on the same rack to

save inter-rack bandwidth. Caching is a special

form of replication where a copy of the data under

consideration is placed close to the client that is

accessing the data. Caching has been used

effectively in distributed file systems such as the

Andrew File System (AFS) and Coda to minimize

network traffic [12], [21].

Gwertzman and Seltzer have proposed a technique

of server-initiated caching called push caching

[11]. Under this technique, a server places

temporary replicas of data closer to geographical

regions from which large fractions of requests are

arriving. Since replication and caching imply

multiple copies of a data resource, modification of

one copy creates consistency issues. Much research

in the distributed systems field has been devoted to

efficient consistency maintenance [19], [23].

However, since Hadoop follows a write-once, read-

many model for data (i.e., data files are

immutable), maintaining consistency is not a

concern. In systems with distributed data replicas,

achieving locality while maintaining fairness is a

challenge. Isard and co-authors propose Quincy, a

framework for scheduling concurrent distributed

jobs with fine-grain resource sharing [13]. Quincy

defines fairness in terms of disk-locality and can

evict tasks to ensure fair distribution of disk-

locality across jobs. Overall, the system improves

both fairness and locality, achieving a 3.9x

reduction in the amount of data transferred and a

throughput increase of up to 40%.

Zaharia et al. create a fair-scheduler that maintains

task locality and achieves almost 99% local

accesses via delay scheduling [25]. Under delay

scheduling, when a job that should be scheduled

next under fair-scheduling cannot launch a data-

local task, it stalls a small amount of time while

allowing tasks from other jobs to be scheduled.

However, delay scheduling performs poorly in the

presence of long tasks (nodes do not free up

frequently enough for jobs to achieve locality) and

hotspots (certain nodes are of interest to many jobs;

for example, such nodes might contain a data block

that many jobs require). The authors suggest long-

taskbalancing and hotspot replication as potential

solutions, but do not implement either. In contrast

to the authors’ approach, we focus on how

intelligent data placement can be used to maximize

MapReduce efficiency in scenarios where node

allocations are restricted.

Eltabakh and co-authors present CoHadoop [9], a

lightweight extension of Hadoop that allows

applications to control where data are stored.

Applications give hints to CoHadoop that certain

files are related and may be processed jointly;

CoHadoop then tries to co-locate these files for

improved efficiency. Ferguson and Fonseca [10]

highlight the non-uniformity in data placement

within Hadoop clusters, which can lead to

performance degradation. They propose placing

 Daggupati Saidamma * et al.

(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.5, Issue No.5, August - September 2017, 7339-7345.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 7342

data on nodes in a round-robin fashion instead of

Hadoop’s default data placement, and demonstrate

an 11.5% speedup for the sort benchmark. Ahmad

et al. [4] observe that MapReduce’s built-in load

balancing results in excessive and bursty network

traffic, and that heterogeneity amplifies load

imbalances. In response, the authors develop

Tarazu, a set of optimizations to improve

MapReduce performance on heterogeneous

clusters.

Xie et al. [24] study the effect of data placement in

clusters of heterogeneous machines, and suggest

placing more data on faster nodes to improve the

percentage of local accesses. Zaharia et al. [26]

also investigate MapReduce performance in

heterogenous environments. The authors design a

scheduling algorithm called Longest Approximate

Time to End (LATE), that is robust to

heterogeneity and can improve Hadoop response

times by a factor of two. Ananthanarayanan et al.

[5] observe that MapReduce frameworks use

filesystems that replicate data uniformly to improve

data availability and resilience. However, job logs

from large production clusters show a wide

disparity in data popularity.

The authors observe that machines and racks

storing popular content become bottlenecks,

thereby increasing the completion times of jobs

accessing these data even when there are machines

with spare cycles in the cluster. To address this

problem, the authors propose a system called

Scarlett. Scarlett accurately predicts file popularity

using learned trends, and then selectively replicates

blocks based on their popularity. In trace driven

simulations and experiments on Hadoop and Dryad

clusters, Scarlett alleviates hotspots and speeds up

jobs by up to 20.2%. We explore the utility of

selective replication in combination with

partitioned data placement in subsequent sections.

IV. PURLIEUS: PLACEMENT

TECHNIQUES

Next, we describe Purlieus’s data and VM

placement techniques for various classes of

MapReduce jobs. The goal of these placements is

to minimize the total Cost by reducing the dist

function for map (when input data, Qi is large)

and/or reduce (when intermediate data, mout is

large).

4.1 Map-input heavy jobs

Map-input heavy jobs read large amounts of input

data for map but generate only small map-outputs

that is input to the reducers. For placement,

mappers of these jobs should be placed close to

input data blocks so that they can read data locally,

while reducers can be scheduled farther since

amount of map-output data is small.

4.1.1 Placing Map-input heavy data

As map-input heavy jobs do not require reducers to

be executed close to each other, the VMs of the

MapReduce cluster can be placed anywhere in the

data center. Thus, physical machines to place the

data are chosen only based on the storage

utilization and the expected load, Ek on the

machines. As discussed in the cost model, E k

denotes the expected load on machine, Mk. E k = X

i Wk i × CRes(Di) To store map-input heavy data

chunks, Purlieus chooses machines that have the

least expected load. This ensures that when

MapReduce VMs are placed, there is likely to be

capacity available on machines storing the input

data. 4.1.2 VM placement for Map-input heavy

jobs The VM placement algorithm attempts to

place VMs on the physical machines that contain

the input data chunks for the map phase. This

results in lower MCost – the dominant component

for map-input heavy jobs. Since data placement

had placed blocks on machines that have lower

expected computational load, it is less likely,

though possible that at the time of job execution,

some machine containing the data chunks does not

have the available capacity. For such a case, the

VM may be placed close to the node that stores the

actual data chunk. Specifically, the VM placement

algorithm iteratively searches for a physical

machine having enough resources in increasing

order of network distance from the physical

machine storing the input data chunk. Among the

physical machines at a given network distance, the

one having the least load is chosen.

4.2 Map-and-Reduce-input heavy jobs

Map-and-reduce-input heavy jobs process large

amounts of input data and also generate large

intermediate data. Optimizing cost for such jobs

requires reducing the dist function during both their

map and reduce phases.

4.2.1 Placing Map-and-Reduce-input heavy data

To achieve high map-locality, data should be

placed on physical machines that can host VMs

locally. Additionally, this data placement should

support reduce-locality – for which the VMs should

be hosted on machines close to each other

(preferably within the rack) so that reduce traffic

does not significantly load the data center network.

Ideally, a subgraph structure that is densely

connected, similar to a clique, where every node is

connected to every other node in 1-hop would be a

good candidate for placing the VMs. However, it

may not always be possible to find cliques of a

given size as the physical network may not have a

clique or even if it does, some of the machines may

not have enough resources to hold the data or their

expected computational load may be high to not

allow VM placement later. An alternate approach

 Daggupati Saidamma * et al.

(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.5, Issue No.5, August - September 2017, 7339-7345.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 7343

would be to find subgraph structures similar to

cliques. A number of clique relaxations have been

proposed, one of which is k-club [27]. A k-club of

a graph G is defined as a maximal subgraph of G of

diameter k. While finding k-club is NP-Complete

for a general graph, data center networks are

typically hierarchical (e.g. fat-tree topologies) and

this allows finding a k-club in polynomial time. In

a data center tree topology, the leaf nodes represent

the physical machines and the non-leaf nodes

represent the network switches. To find a k-club

containing n leaf nodes, the algorithm simply finds

the sub-tree of height k 2 containing n or more leaf

nodes. For map-and-reduce-input heavy jobs, data

blocks get placed in a set of closely connected

physical machines that form a k-club of least

possible k (least possible height of the subtree)

given the available storage resources in them. If

several subtrees exists with the same height, then

the one having the maximum available resource is

chosen. As an illustration, in Figure 4(a), the input

data blocks, I1, I2, and I3 are stored in a closely

connected set of nodes M13, M14 and M15 that

form a k-club of least possible k in the cluster.

4.2.2 VM placement for Map and Reduce-input

heavy jobs

As data placement had done an optimized

placement by placing data blocks in a set of closely

connected nodes, VM placement algorithm only

needs to ensure that VMs get placed on either the

physical machines storing the input data or the

close-by ones. This reduces the distance on the

network that the reduce traffic needs to go over,

speeding up job execution while simultaneously

reducing cumulative data center network traffic. In

the example shown

(a) Map-phase

(b) Reduce-phase

Figure 4: Data and VM placement. Bottom squares

show data blocks placed on each machine. Squares

next to a machine (e.g. I1 near M13 for map-phase

in figure 4(a)) indicates reading of the block for

map processing. F measure denotes available

computational capacity – for simplicity, number of

VMs that can be placed on that machine. In reduce

phase (figure 4(b)) , circled Ri indicates map

outputs and square Ri(j) indicates reading of

intermediate data for reducer j from map task

output, in Figure 4, VMs for job on dataset I get

placed on the physical machines storing input data.

As a result, map tasks use local reads (Figure 4(a))

and reduce tasks also read within the same rack,

thereby maximizing reduce locality (Figure 4(b)).

In case node M15 did not have available resources

to host the VM, then the next candidates to host the

VM would be M16, M17 and M18, all of which

can access the input data block I3 by traversing one

network switch and are close to the other reducers

executing in M13 and M14. If any of M16, M17

and M18 did not have available resources to host a

new VM, then the algorithm would iteratively

proceed to the next rack (M7, M8, M9, M10, M11

and M12) and look for a physical machine to host

the VM. Thus the algorithm tries to maximize

locality even if the physical machines containing

input data blocks are unavailable to host the VMs.

V. CONCLUSION

This paper presents Purlieus, a resource allocation

system for MapReduce in a cloud. We present a

system architecture for the MapReduce cloud

service and describe how existing data and virtual

machine placement techniques lead to longer job

execution times and large amounts of network

traffic in the data center. We identify data locality

as the key principle which if exploited can alleviate

these problems and develop a unique coupled data

and VM placement technique that achieves high

data locality. Uniquely, Purlieus’s proposed

placement techniques optimize for data locality

during both map and reduce phases of the job by

considering VM placement, MapReduce job

characteristics and load on the physical cloud

infrastructure at the time of data placement. Our

detailed evaluation shows significant performance

gains with some scenarios showing close to 50%

reduction in execution time and upto 70%

reduction in the cross-rack network traffic. We plan

to extend our work in two directions. First, for

placement techniques we would like to capture

relationships between datasets, e.g. if two datasets

are accessed together (MapReduce job doing a join

of two datasets), their data placement can be more

intelligent while placing their blocks in relation to

each other. Second, we plan to develop online

techniques to handle dynamic scenarios like

 Daggupati Saidamma * et al.

(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.5, Issue No.5, August - September 2017, 7339-7345.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 7344

changing job characteristics on a dataset. While

core principles developed in this work will

continue to apply, such scenarios may use other

virtualization technologies like live data and VM

migration.

 Daggupati Saidamma * et al.

(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.5, Issue No.5, August - September 2017, 7339-7345.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 7345

VI. REFERENCES

[1] B. Igou “User Survey Analysis: Cloud-

Computing Budgets Are Growing and

Shifting; Traditional IT Services Providers

Must Prepare or Perish”. Gartner Report,

2010

[2] http://en.wikipedia.org/wiki/Loop_device

[3] J. Dean and S. Ghemawat. Mapreduce:

Simplified data processing on large clusters.

In OSDI, 2004.

[4] G. Ananthanarayanan, S. Kandula, A.

Greenberg, I. Stoica, Y. Lu, B. Saha and E.

Harris. Reining in the Outliers inMap-

Reduce Clusters using Mantri. In OSDI,

2010.

[5] http://en.wikipedia.org/wiki/Big-data

[6] S. Babu. Towards Automatic Optimization

of MapReduce Programs. In SOCC, 2010.

[7] http://en.wikipedia.org/wiki/Clickstream

[8] K. Kambatla, A. Pathak and H. Pucha.

Towards Optimizing Hadoop Provisioning

in the Cloud. In HotCloud, 2009.

[9] Cloudera.

http://www.cloudera.com/blog/2010/08/had

oopfor-fraud-detection-and-prevention/

[10] K. Morton, A. Friesen, M. Balazinska, D.

Grossman. Estimating the Progress of

MapReduce Pipelines. In ICDE, 2010.

[11] S. Ghemawat, H. Gobioff and S. Leung,

“The Google File System,” ACM SIGOPS

Operating Systems Review, vol. 37, no. 5,

pp. 29–43, 2003.

[12] J. Dean and S. Ghemawat, “MapReduce:

Simplified data processing on large clusters”

ACM Commun., vol. 51, pp. 107–113,

2008.

[13] J. Li, P. Roy, S. U. Khan, L. Wang and Y.

Bai, “Data mining using clouds: an

experimental implementation of apriori over

mapreduce,”

http://sameekhan.org/pub/L−K−2012−SCA

LCOM.pdf

[14] X. Lin, “MR-Apriori: association rules

algorithm based on mapreduce,” IEEE,

2014.

[15] X. Y. Yang, Z. Liu and Y. Fu, “MapReduce

as a programming model for association

rules algorithm on hadoop,” in Proceedings

3rd International Conference on Information

Sciences and Interaction Sciences (ICIS),

2010, vol. 99, no. 102, pp. 23–25.

[16] N. Li, L. Zeng, Q. He and Z. Shi, “Parallel

implementation of apriori algorithm based

on mapreduce,” in Proceedings 13th ACIS

International Conference on Software

Engineering, Artificial Intelligence,

Networking and Parallel & Distributed

Computing, IEEE, 2012, pp. 236–241.

[17] S. Oruganti, Q. Ding and N. Tabrizi,

“Exploring Hadoop as a platform for

distributed association rule mining,” in

FUTURE COMPUTING 2013 the Fifth

International Conference on Future

Computational Technologies and

Applications, pp. 62–67.

[18] M-Y. Lin, P-Y. Lee and S-C. Hsueh,

“Apriori-based frequent itemset mining

algorithms on mapreduce,” in Proceedings

6th International Conference on Ubiquitous

Information Management and

Communication (ICUIMC ’12), ACM, New

York, 2012, Article 76.

[19] F. Kovacs and J. Illes, “Frequent itemset

mining on Hadoop,” in Proceedings IEEE

9th International Conference on

Computational Cybernetics (ICCC),

Hungry, 2013, pp. 241–245.

[20] L. Li and M. Zhang, “The strategy of

mining association rule based on cloud

computing,” in Proceedings IEEE

International Conference on Business

Computing and Global Informatization

(BCGIN), 2011, pp. 29–31.

