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Abstract:  K-nearest neighbor's classification and regression is broadly utilized as a part of data mining 

because of its easiness and precision. At the point when a prediction is required for an inconspicuous data 

case, the KNN algorithm will search through the preparation dataset for the k most comparable 

occasions. Finding the esteem k is application subordinate, thus a nearby esteem is set which expands the 

exactness of the issue. Grouping the question the lion's share class of its k neighbors is called K-nearest 

neighbors classification. In this paper the occurrence or question be grouped is known as the issue protest 

or venture in short. Worldwide KNN approach utilizes the entire data for searching the k-nearest 

neighbors of the venture. For data KNN approach is utilized where test objects are arbitrarily chosen 

from the preparation data space. Keeping in mind the end goal to enhance the exactness of finding the 

correct k-neighbors of nearby KNN, among various ANN approaches proposed in the current years, the 

ones in light of vector quantization emerge, accomplishing best in class comes about. Product 

quantization (PQ) decays vectors into subspaces for independent handling, taking into account quick 

query based separation estimations. This postulation work intends to lessen the intricacy of AQ by 

changing a solitary most costly stride in the process – that of vector encoding. Both the remarkable search 

execution and high expenses of AQ originated from its all-inclusive statement, along these lines by forcing 

some novel outside imperatives it is conceivable to accomplish a superior trade off: lessen many-sided 

quality while holding the precision advantage over other ANN strategies.  
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I. INTRODUCTION 

Approximate nearest neighbor (ANN) search in 

high dimensional spaces is a repeating issue in 

computer vision, as well as experiencing 

noteworthy advance. A vast group of techniques 

keep up all data focuses in memory and depend on 

effective data structures to figure just a set number 

of correct separations that is in a perfect world 

settled. At the other extraordinary, mapping data 

focuses to smaller paired codes is proficient in 

space as well as may accomplish quick thorough 

search in hamming space. Product quantization 

(PQ) is an option conservative encoding strategy 

that is discrete however not parallel and can be 

utilized for comprehensive or non-thorough search 

through transformed ordering or multi-ordering. As 

is valid for most hashing techniques, better fitting 

to the hidden conveyance is basic in search 

execution, and one such approach for PQ is 

upgraded product quantization (OPQ) and its 

proportional Cartesian k-means. How are such 

preparing techniques gainful? Distinctive criteria 

are pertinent, however the basic rule is that all bits 

dispensed to data focuses ought to be utilized 

sparingly. Since search can be made quickly, such 

strategies ought to be eventually (a) k-means (b) 

PQ (c) OPQ (d) LOPQ. Thusly, k-means, By 

compelling centroids on a pivot adjusted, m-

dimensional lattice, PQ accomplishes k m centroids 

keeping search at O(dk), a considerable lot of these 

centroids stay without data bolster e.g. on the off 

chance that the appropriations on m subspaces are 

not autonomous. OPQ enables the network to 

experience discretionary revolution and reordering 

of measurements to better adjust to data and adjust 

their change crosswise over subspaces to 

coordinate piece portion that is additionally 

adjusted. The nearest neighbor (NN) search, or the 

issue of coordinating the offered protest the most 

comparable one from the given gathering, is to a 

great degree normal; it is particular to science or 

building, as well as penetrates the regular daily 

existence in many structures, for example, 

acknowledgment. Its specialized definition can 

fluctuate in light of the idea of the products and 

how their likeness is built up. The last is generally 

characterized as a capacity, giving a numeric yield 

esteem. The objects of search are usually vectors, 

taking into account an assortment of similitude 

measures to be utilized, both metric and nonmetric. 

While the search issue is paltry when the quantity 

of articles to consider is little, the advances in 

software engineering and innovation prompt a 

reliable development of data sizes. Hence the data 

structures permitting productive search were 

widely contemplated since 1970s. Branch-and-

bound approach specifically brought about various 

sorts of search trees, taking into account inquiries 

to be of logarithmic many-sided quality concerning 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Innovative Technology and Research (IJITR)

https://core.ac.uk/display/228553746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Kornana Manasa* et al. 

(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH 

Volume No.5, Issue No.3, April – May 2017, 6505-6510.  

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved.  Page | 6506 

data estimate. Space parceling would stay 

overwhelming for a considerable length of time 

from that point. The development of Big Data has 

prompted reexamination of many already settled 

arrangements. This new condition displays various 

difficulties, one of which is the sheer volume of the 

databases. Conventional algorithms and techniques 

generally turn out to be computationally infeasible 

in such situations, once in a while to the point of 

finish inapplicability. The nearest neighbor search 

procedures were no special case from this; some 

settled data structures were found to lose their 

points of interest totally in higher-dimensional 

spaces, getting to be noticeably substandard 

compared to comprehensive figurings. Numerous 

flow down to earth applications including the 

search don't require superbly precise outcomes. For 

example, when data recovery is played out, the 

returned records or pictures are regularly regarded 

satisfactory in the event that they are significant; 

the correct meaning of pertinence fluctuates on 

case by case premise, however can by and large be 

interpreted as meaning "sufficiently comparative to 

the ideal result". This variable, joined with already 

specified computational costs issue, prompts the 

idea of the rough nearest neighbor (ANN) search, 

which has been the concentration of much late 

research.  

II. RELATED WORK 

To empower KNN coordinating effective on 

enormous data, the researchers of KNN were 

settled to locate the estimated nearest neighbors 

instead of the correct neighbors. Can Ozan et al. [1] 

proposed a novel vector quantization technique for 

surmised nearest neighbors (ANN) search which 

empowers quicker and more precise recovery on 

freely accessible huge datasets. They characterized 

vector quantization as a various relative subspace 

learning issue and investigated the quantization 

centroids on different relative subspaces. An 

iterative approach to limit the quantization blunder 

is utilized. The computational cost of this strategy 

is practically identical to that of the contending 

strategies. Preceding the procedure of KNN C/R, 

large portions of the proposed techniques changed 

or anticipated the data into another subspace, where 

vector measurements are decreased, reordered or 

pivoted utilizing COMPUTERA [3]. Decorrelating 

the data utilizing a solitary computer step may not 

bring the coveted factual independency among 

measurements, particularly if the data don't take 

after a Gaussian dissemination, which is the center 

innate supposition of computer [2]. Highlight 

choice is required in preprocessing stage as it 

diminishes algorithm overhead. Dawen et. al. [2] 

proposed a nearest neighbor approach utilizing 

connection investigation under a MapReduce 

system on a Hadoop stage, to address the 

troublesome issue of continuous prediction with 

substantial preparing data. It was executed by an 

ongoing prediction framework (RPS) including 

disconnected circulated preparing (ODT) and 

online parallel prediction (OPP), in view of a 

parallel k-nearest neighbors streamlining 

(ParKNNO) classifier. Parceling trees like the kd-

tree [6], [7] is one of the best known nearest 

neighbors algorithms. While exceptionally 

powerful in low dimensionality spaces, its 

execution rapidly diminishes for high dimensional 

data. Trees are regularly utilized for nearest 

neighbors search as the search multifaceted nature 

is logarithmic. Most KNN strategies utilize k-d 

trees to store k-nearest neighbors and various hash 

tables are utilized for ordering. Muja et al. [8] 

proposed algorithms for surmised nearest neighbor 

coordinating to defeat the restriction of finding 

nearest neighbors matches to high dimensional 

vectors that speak to the preparation data. For 

coordinating high dimensional elements the 

randomized k-d timberland and the need search k-

means tree were assembled and discharged as open 

source library called Fast Library for Approximate 

Nearest Neighbors (FLANN). Arya et al. [9] 

proposed a variety of the k-d tree to be utilized for 

rough search by considering (1+ Ɛ)- surmised 

nearest neighbors, focuses for which dist(i, p-

question) ≤ (1+ɛ)dist(i*, p-protest) where i* is the 

correct nearest neighbor. The creators additionally 

proposed the utilization of a need line to support 

search speed. This strategy is otherwise called 

"mistake bound" Approximate search. The KNN 

technique, albeit basic beats more advanced and 

complex strategies as far as speculation mistake. 

Be that as it may, the key test with this classifier is 

settling the fitting estimation of k. García et al. [10] 

introduced a basic approach to set a nearby 

estimation of k. A possibly extraordinary k to each 

model is related to acquire the best estimation of k 

by enhancing a standard comprising of the nearby 

and worldwide impacts of the distinctive k esteems 

in the neighborhood of the model. Twofold 

implanting of highlight vectors for speedier 

separation computations has turned into a 

profoundly prominent research theme lately and the 

basic approach is to encode the vectors as parallel 

strings and pack vast datasets in significantly littler 

sizes, diminishing the capacity cost [9]. Moreover, 

the guess of the separation between two vectors by 

utilizing pre-figured separation esteems gives a 

noteworthy lift as far as the search speed. Can 

Ozan et al. [1] actualized an aggressive 

quantization for surmised nearest neighbors search 

in [10]. 

III. PRODUCT QUANTIZATION (PQ) 

Product quantization (PQ) is one of the most 

important methods in the vector quantization 

family. To allow for more powerful representations 

with small number of codevectors, PQ splits the 
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data space into 𝑀 subspaces, each of 𝐷⁄𝑀 

dimensions. Vector quantization (learned with 

Lloyd’s algorithm) is then separately applied on 

eachsubspace, resulting in 𝑀 codebooks. Every 

database vector can be subsequently reconstructed 

by concatenating 𝑀 corresponding codevectors. 

Assuming that each codebook has 𝐾 codevectors, 

the total number of possible representations is 𝐾𝑀. 

Any quantized database vector is stored as a 

sequence of 𝑀 codes, indexing into 𝐾 elements 

each, resulting in a total code length of 𝑀 log2 𝐾 

bits. The amount of memory required for codebook 

storage (in terms of scalar values) is 𝑀 ∙ 𝐾 ∙ 𝐷𝑀 = 

𝐾𝐷, which is small in practice, as 𝐾≪𝑁. Figure 7 

shows an example of a product quantizer applied to 

128-dimensional vector. It is typical to use 

parameter values which are powers of 2, as indices 

are stored in a binary computer memory. In this 

case 𝑀 = 8 codebooks are used, and each 16-

dimensional subspace is quantized to 𝐾 = 256 

centroids (codevectors). A single subspace can then 

be indexed with an 8-bit (log2 256 = 8) code. The 

whole vector is subsequently stored as a 

concatenation of sixteen 8-bit codes for a total of 

64 bits. 

 

Figure 1. Product quantizer for 128-dimensional 

vectors. 

IV. OPTIMIZED PRODUCT 

QUANTIZATION (OPQ) 

Optimized product quantization (OPQ), also known 

as Cartesian k-means (CKM), is a variant of 

product quantization that makes an attempt to 

optimize the allocations of dimensions to 

subspaces. In the original PQ paper it was noted 

that the search performance varies greatly based on 

the contents (semantics) of the data. Product 

quantization considers all the subspaces to be equal 

in terms of information content, which is quite 

likely to be incorrect for the real sets of vectors. In 

fact, the choice of dimensions for a particular 

subspace has been shown to have a major effect on 

the quantization performance. Since the domain 

knowledge is not always available, the quantization 

algorithm can benefit from an internal subspace 

optimization. Rotation is a linear transformation 

that preserves vector norms and pairwise Euclidean 

distances; for any orthogonal 𝐷 × 𝐷 matrix 𝑅 and 

𝐷-dimensional vectors 𝑥 and 𝑦 the following 

expression holds: ‖𝑥 − 𝑦‖2 2 = ‖𝑅𝑥 − 𝑅𝑦‖2 2 . (10) 

Due to (10) any centroid assignments (codes) of a 

vector quantizer with codebook 𝐶 on dataset 𝑋 

remain valid, if both code vectors and data vectors 

are transformed with the same matrix 𝑅. This 

property naturally generalizes to PQ. The benefit of 

rotation lies in the fact that it can represent any 

reordering of the vector dimensions. Optimizing 

rotation of PQ quantizer is thus equivalent to 

finding better allocation of dimensions to 

subspaces. Random rotation has been explored and 

found to improve the quantization error and search 

performance. Further gains can be expected if the 

matrix 𝑅 is fine-tuned with respect to the data. 

OPQ differs from PQ in that it learns not only 

codebooks and codes, but also an orthogonal 

transformation matrix 𝑅. Any data to be encoded is 

first rotated via multiplication by 𝑅, and then the 

product quantizer is applied. Computational 

complexity of encoding a single vector thus 

increases by the multiplication cost, resulting in a 

total estimate of 𝑂(𝐾𝐷 + 𝐷 2 ). Two formulations 

of OPQ exist. Parametric formulation is derived 

from the assumption that the data is generated by 

Gaussian distribution. If the assumption holds, the 

solution is provably optimal and achieves the 

theoretical lower bound of quantization error, 

which is derived to be 𝐸 ≥ 𝐷𝑀𝐾 − 2𝑀𝐷 ∑ |Σ̂𝑚| 

𝑀𝑀𝐷𝑚=1 , (11) where Σ̂𝑚 is the covariance sub 

matrix of 𝑚-th subspace of rotated data 𝑅𝑥. Further 

theoretical analysis shows that for a parametric 

solution to achieve optimality, two conditions must 

hold: subspace independence and balance of 

subspace variance. These conclusions exactly 

correspond to the ones drawn in ITQ – a hashing-

based method described earlier. To construct a 

matrix R satisfying the above requirements for 

subspaces, a simple greedy algorithm – eigenvalue 

allocation – was proposed. The database is first 

processed with PCA, which takes 𝑂(𝑁𝐷 2 + 𝐷 3 ) 

operations. The eigenvalues are then sorted in a 

descending order and sequentially allocated to 𝑀 

bins of capacity 𝐷⁄𝑀, such that the product of 

values inside each bin would be roughly equal 

(thus balancing the variance). When the 

eigenvectors are reordered according to allocation 

of their respective eigenvalues, the matrix 𝑅 is 

formed. Then the database is rotated and PQ is 

applied on the result. Total training complexity of 

parametric OPQ is thus 𝑂(𝑁𝐷 2 + 𝐷 3 + 𝑁𝐿𝐾𝐷). 

Naturally, the Gaussian assumption rarely holds in 

practice. Nonparametric OPQ does not construct a 

single rotation matrix, but instead optimizes it 

during the training phase. At the beginning of each 

iteration the data is rotated with the current 

estimate of 𝑅. Then the codebook adaptation and 

encoding are performed on the rotated data, with no 

differences from PQ. Finally, the current estimate 

of 𝑅 is updated so as to minimize the quantization 

error criterion: 2 min , F R RX Y (12) where 𝑋 
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and 𝑌 are matrices composed of original (not 

rotated) data vectors and their reconstructions, 

respectively, and ‖∙‖𝐹 is the Frobenius norm: ‖𝐴‖𝐹 = 

√𝑡𝑟𝑎𝑐𝑒(𝐴∗𝐴). To solve this optimization problem, 

first the singular value decomposition (SVD) of 

𝑋𝑌𝑇 is calculated: 𝑋𝑌𝑇 = 𝑈𝑆𝑉𝑇 . The matrix 𝑅 is 

then calculated as follows: 𝑅 = 𝑉𝑈𝑇 . (13) The 

complexities of this procedure are as follows: 𝑋𝑌𝑇 

multiplication is 𝑂(𝑁𝐷 2 ), SVD is 𝑂(𝐷 3 ), and 

𝑉𝑈𝑇 multiplication is also 𝑂(𝐷 3 ). Since rotation 

is adapted in each iteration, the total cost of non-

parametric OPQ training becomes 𝑂(𝐿(𝑁𝐾𝐷 + 𝑁𝐷 

2 + 𝐷 3 )). Nonparametric OPQ typically performs 

better on real datasets, as it does not rely on 

Gaussian assumption. OPQ training can be 

initialized similarly to PQ, with an identity matrix 

as a first estimate of 𝑅. Better results are attained if 

parametric solution is used for initialization, 

although that increases the amount of computation 

required. 

V. VECTOR QUANTIZATION FOR 

APPROXIMATE SEARCH 

Vector quantization (VQ) is a technique that 

represents a given set of dimensional vectors 

with another set of centroids of the same 

dimensionality  

(𝐾<𝑁). The set of centroids  is called a codebook, 

while centroids themselves are alternatively called 

code vectors. Each vector from the original set is 

represented by one and only one code vector. 

Needless to say, VQ representation of the data is 

loss. The quantization loss is typically measured by 

mean squared error (MSE) between the data 

vectors and their reproductions:  

 ,  (5)  

Where  is the data vector and 𝑞(𝑥) is the 

corresponding code vector.  

Any optimal (having minimal quantization loss) 

VQ quantizer is subject to two necessary optimality 

conditions, known as Lloyd conditions [17]. First 

condition states that each vector must be assigned 

to a centroid which is the closest in Euclidean 

distance terms:  

q x  argmin ci x 2
2.  (6) 

ci C 

Second condition limits the position of each 

centroid to the mean value of all the vectors it 

represents:  

 (7)  

These conditions are greatly reminiscent of well-

known k-means clustering. Indeed, a common way 

to construct a vector quantizer is with a Lloyd’s 

algorithm:  

1. Randomly initialize centroid positions.  

2. Repeat for a predetermined number of 

iterations:  

a. Assign every data vector to the nearest 

centroid (6).  

b. Replace every centroid with the mean of 

vectors assigned to it (7).  

The total computational complexity of Lloyd’s 

algorithm is 𝑂(𝐿𝑁𝐾𝐷), where  is the number of 

iterations. While Lloyd’s algorithm is intuitive, 

simple and widely used, it only converges to a 

locally optimal solution. The results may vary 

wildly with different initializations, and some 

starting points may lead to very poor 

representations.  

A set of vectors assigned to a particular centroid is 

known as Voronoi cell or just a cell. Any vector 

quantizer therefore defines a space partitioning – a 

Voronoi tessellation, with each cell defining a 

separate subspace. An example of such is shown on 

Figure 2.  

 

Figure 2.  An example of a vector quantizer and 

corresponding Voronoi tesselation 

Evidently, the Voronoi tessellation can be used as a 

foundation for non-exhaustive distance calculation. 

One strong advantage of such an approach, when 

compared to hashing, would be the fact that the 

original data space is preserved, and the Euclidean 

distances remain meaningful instead of being 

approximated with Hamming distances. Better 

preservation of pairwise vector dissimilarities, in 

turn, leads to better search performance.  

Since vector quantization does not change the 

distance function, there are two possible 

approaches to the nearest neighbor search. If 

symmetric distance computation (SDC) is used, the 

query vector is quantized to the nearest centroid, 

and then the distances from that centroid to all the 

others are estimated. In case of asymmetric 

distance computation (ADC), the distances 

between the query and all the centroids are 

calculated directly. Both scenarios are shown on 

Figure 2.  
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Figure 3. Distance computation with vector 

quantization: 

symmetric (left) and asymmetric (right).  

Since centroid positions are always known in 

advance when the search is performed, it is 

possible to precompute all the pairwise distances 

between centroids and store them. This seemingly 

makes SDC very quick, but to quantize the query, 

one needs to calculate the distance from it to every 

centroid, which is the exact same process as in 

ADC. As a result, the differences in the calculation 

speed between the two are minimal. However, the 

quantization of the query vector introduces 

additional distortion. It is thus reasonable to 

conclude that ADC is superior to SDC and should 

be preferred. In fact, availability of ADC is a direct 

consequence of space preservation and can be 

considered an additional advantage of vector 

quantization over hashing-based approaches.  

Despite the aforementioned benefits, traditional 

vector quantization without any changes is not a 

practical solution for approximate nearest neighbor 

search, as it too suffers from the “curse of 

dimensionality”. If the number of codevectors 

(centroids) is  

, the code (index) of each database vector has a 

length of log2 𝐾 bits. This is not nearly enough for 

discrimination; for example, if a vector of 

dimensionality 960 would be represented by a 960-

bit code (1 bit per dimension), the corresponding 

vector quantizer would have to have 2960 centroids. 

Evidently, it is impossible to even store a codebook 

of that size in a computer memory, let alone 

applying any search operations on it. A different 

approach is necessary to take advantage of VQ 

properties. A number of such approaches have 

emerged, proceeding to outperform hashing-based 

techniques by a large margin.  

VI. PROPOSED METHOD 

In this paper, we propose a novel vector 

quantization method for ANN search which 

enables faster and more accurate retrieval on 

publicly available datasets. We define vector 

quantization as a multiple affine subspace learning 

problem and explore the quantization centroids on 

multiple affine subspaces. We propose an iterative 

approach to minimize the quantization error in 

order to create a novel quantization scheme. 

 

VII. CONCLUSION 

In this study a novel vector quantization algorithm 

is proposed for the approximate nearest neighbor 

search problem. The proposed method explores the 

quantization centers in affine subspaces through an 

iterative technique, which jointly attempts to 

minimize the quantization error of the training 

samples in the learnt subspaces, while minimizing 

the projection error of the samples to the 

corresponding subspaces. The proposed method 

has proven to outperform the state-of-the-art-

methods, with comparable computational cost and 

additional storage. In this paper it is also shown 

that, dimension reduction is an important source of 

quantization error, and by exploiting subspace 

clustering techniques the quantization error can be 

reduced, leading to a better quantization 

performance. So far we have focused mainly on 

exhaustive search but an index-based non-

exhaustive extension for the proposed method can 

be further investigated. Our approach can also be 

extended to labeled datasets in order to test k-

nearest neighbor classification performance. These 

will be the topics of our future work. 
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