
 Amalna Jose* et al.

(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.5, Issue No.3, April – May 2017, 6492-6495.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6492

Cloud Deployments Using Micro-Services

for Digital Monetization Application for

Customers
AMALNA JOSE

Student M.Tech. CSE, R. V College of Engineering,

Bengaluru

Dr. RAJASHREE SHETTAR

Professor, CSE, R. V College of Engineering,

Bengaluru

Abstract--The market today is heading towards cloud. Market demand is growing starting with customer

experience (CX) and business applications heading towards “pay-as-you-go” subscription pricing model

for the software requiring a unified and personalized experience. The traditional cloud deployments take

the portfolio step wise and fail to unify the portfolio in the right way. This paper proposes to develop a

new breed of cloud services providing digital monetization experience to the customer, where the

customer can rapidly turn their ideas into new revenue streams at web pace and web scale. The use of

microservice architecture drastically reduced the build and test time for the application to minutes when

compared to the on-premise deployment which is typically in hours. The debugging of the solution would

not result in shutting the entire application rather only the microservice module that has issue this helps

to provide service with ideally zero downtime.

Keywords—Microservices; Docker; Monetization;

I. INTRODUCTION

Cloud computing is becoming the cornerstone of

the digital economy now. Industries around the

globe now use cloud private, public or a

combination of the two to deliver their products

and services. According to 451 Research which is a

leading information technology research and

advisory company based out of New York, 40% of

all enterprise workloads are running on private or

public cloud. Some of the leading companies like

Netflix, LinkedIn [1], Facebook, Amazon are built

around cloud native applications wherein a

distributed microservice based architecture is used

to quickly deliver new products and services which

are highly cost effective and responsive to the

market demands.

By breaking up applications into distinct single-

purpose services or micro-services [2] that are

loosely coupled on dependency and identified

through an explicit service endpoint, the overall

agility and maintainability of the application would

be improved to gain competitive benefit in the

market today. Microservice[2] based applications

allows to circulate work over numerous groups

such that each group can take a shot at individual

application areas without forcing extra work on

others. A Microservice model allows the decay of

an application into freely executing administrations

[3]. Updating of a single microservice can be done

more effortlessly and the resulting update can be

production enabled without the requirement for

long integration work over the different

development teams [4].

A microservice based design normally authorizes a

secluded structure. It fits to a continuous delivery

software development process. A change to a little

piece of the application just requires one or few

administrations to be revamped and redeployed.

Major advantage of microservice is that it sticks to

standards, such as fine-grained interfaces, business-

driven advancement, polyglot programming and

persistence, lightweight container deployment,

ideal cloud application structures, and DevOps

(DEVlopment OPerationS) [2] with all-

encompassing administration monitoring. This

paper focuses on building a monetization system

based on microservices architecture to enable the

tenant of the system to be able to generate revenue

and web pace and web scale.

II. OVERVIEW OF MICROSERVICES

ARCHITECTURE

The most ideal approach to describe microservices

is to contrast it with the old monolithic method for

building applications. In the customary three-tier

design, the server-side application plays the part of

the center layer, preparing business logic and

serving information from database level to

customers (web browsers, portable applications,

web of things, and so on.). The application is

composed as a solitary, brought together code base

and everything keeps running in a similar

procedure. Scaling is finished by imitating the same

solid application on different servers [6].

In microservices architecture [7], the monolithic is

disintegrated into various little, granular, freely

deployable administrations [8]. The way that these

administrations are autonomously deployable is

critical; it empowers some of microservices most

vital advantages. These services can be created in

parallel by various groups, utilizing diverse

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Innovative Technology and Research (IJITR)

https://core.ac.uk/display/228553737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Amalna Jose* et al.

(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.5, Issue No.3, April – May 2017, 6492-6495.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6493

technology stack that are most appropriate for their

purpose. Likewise, as they are autonomously

deployed, they can be freely scaled. For instance,

an administration that is CPU-substantial, however,

need not bother for much memory as it can be

scaled on servers furnished with effective processor

but a low memory. The services that are required

only need to be scaled and not all of them.

In the event that the services are so free and

segregated, by what method it would be advisable

to share code between them. Indeed, this is an issue

of finding the adjust point [8]. While sharing code

between services permits reusing existing

functionalities and keeping the DRY(Don’t Repeat

Yourself) rule, it likewise expands the coupling of

the services. One arrangement is to share just the

specialized libraries, and the basic functionalities

can be made into remain solitary services that

different services can call to which leads to

communication between services.

Correspondence between the microservices should

be possible in two primary ways, HTTP and

message line (Azure Service Bus, RabbitMQ,

Apache Kafka, and so forth) [4]. Fundamentally,

HTTP is immediate correspondence and ought to

be utilized when there is a need for a quick reaction

from the other service. But, the publish/subscribe

mechanism of the message queue is more like

produce and overlook way.

At long last, as the services are exceptionally

granular, customer applications, as a rule, need to

interface with different services to get the

information they require. To permit changes in the

services without influencing the customers, an API

Gateway is utilized [9]. The API Gateway is a

conceptual layer that covers up away all the

microservices, leaving a solitary endpoint for

customers to impart. Demands going to the

entryway will be proxies/directed to the proper

services. The entryway can likewise help to

effortlessly screen the use of the services. Figure 1

below shows a model for the microservices

architecture.

Figure 1 A model for microservices architecture

While the old monolithic architecture had

functioned admirably previously, in the present

world where applications need to deploy new

elements all the time and should be work

unceasingly, it's just outdated. Modification in a

little part requires testing, rebuilding and

redeploying the whole application. Furthermore,

since everything keeps running in the same process,

an unhandled exception can cut down the entire

framework. Microservices architecture, on the

other hand is a great deal more adaptable and

flexible. The services themselves are extremely

simple, concentrating on doing just a single thing

admirably so they're easier to test and guarantee a

higher quality. Each service can be worked with the

most appropriate tools and technologies, permitting

polyglot persistence and such. Different developers

and teams can deliver autonomously under this

architecture. This is helpful for continuous

delivery, permitting frequent releases while

keeping whatever remains of the framework stable.

On the off chance that a service goes down, it will

just influence the parts that specifically rely on

upon it (if there are such parts). Alternate parts will

keep on functioning well.

III. OVERVIEW OF DOCKER

CONTAINERS

Docker is a device intended to make it simpler to

develop, deploy, and run applications by utilizing

containers. Containers enable a developer to bundle

up an application with the greater part of the parts it

needs, for example, libraries and different

dependencies, and ship everything out as one

bundle. On account of the container, the engineer

can rest guaranteed that the application will keep

running on some other Linux machine paying little

heed to any modified settings that machine may

have that could vary from the machine utilized for

composing and testing the code.

Docker is somewhat similar to a virtual machine. In

any case, not at all like a virtual machine, instead of

making an entire virtual working framework,

Docker enables applications to utilize an

indistinguishable Linux piece from the framework

that they're running on and just requires

applications be dispatched with things not officially

running on the host PC. This gives a critical

execution support and diminishes the measure of

the application.

Docker is an instrument that is intended to profit

both designers and framework heads, making it a

piece of numerous DevOps tool chains. For

developers, it implies that they can concentrate on

composing code without agonizing over the

framework that it will at last be running on. It

likewise enables them to get a head begin by

utilizing one of thousands of projects effectively

intended to keep running in a Docker compartment

 Amalna Jose* et al.

(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.5, Issue No.3, April – May 2017, 6492-6495.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6494

as a piece of their application. For operations staff,

Docker gives adaptability and conceivably lessens

the quantity of frameworks required due to its little

impression and lower overhead.

A container is a lightweight, executable and stand-

alone bundle of a bit of programming that

incorporates everything expected to run it: code,

runtime, framework instruments, framework

libraries, settings. Accessible for both Linux and

Windows based applications; containerized

programming will dependably run the same, paying

little respect to the earth. Holders separate

programming from its environment, for instance

contrasts amongst advancement and organizing

situations and help decrease clashes between

groups running distinctive programming on a

similar framework.

IV. METHODOLOGY

The product is divided into different functional

areas like billing, care, payments, accounts-

receivable etc. Each functional area is developed as

an individual self-contained micro-service.

Functionality required for each microservice is

identified and the appropriate design is developed

for attaining each of the required functionality. The

communication among the microservices is with

the use of REST based calls or Kafka messaging

events. As per the design depending on the priority

of the functionalities the required modules are

developed. Each microservice is then run in

dockerised containers. So the approach for

development is to initially develop the basic needed

module. So the approach is to develop modules for

configuring a payment gateway which allows the

administrator to add, modify and delete the

payment gateway provider. Next the modules

necessary for adding a card is developed. The next

module required is to perform a sale operation for

buying a product by the user of the product. Once

the microservices with basic functionality are up

and running the next step is to integrate the

developed components to complete the complete

buying and billing journey. The integration can

take place either via the REST calls or by using a

messaging queue. The approach adopted is to

follow REST calls when only two microservices

are involved but if there are more services then the

approach of messaging is followed.

V. INFERENCE AND RESULT

Based on the results obtained it can be inferred that

the applications built in a microservice approach

cater to fast development, testing and deployment

when compared to the monolithic architecture. The

build time for each microservice is around 10

minutes in case of first time build as the necessary

packages needs to be downloaded but the later

builds have a reduced time varying from 5-10

minutes when compared to the build time of

monolithic application which ranges from 4-6

hours. The build for the microservices include the

running of various tests like unit tests, integration

test and so on. But the monolithic application

testing is a separate task which typically takes few

hours to complete. The on premise deployment of

the product will also involve lot of tasks and is time

consuming to set up the product. From the

perspective of a customer the overall deployment

cost is reduced as it is a SaaS based product. Since

each component is developed as individual

microservice the customer can opt to the services

that are essential to him rather than opting for the

entire package in case of the on-premise

deployment.

VI. CONCLUSION AND FUTURE WORK

This work mainly aimed at developing a cloud

native solution for the billing and revenue

management of the tenant organization. With the

aim of providing the communication service

provider or any billing and charging system to

quickly try and launch their product service.

The current development does not support a

notification system to the customer hence a

correspondence service is required to provide the

notification or messaging support for the system.

The ability to support refund and adjustment is not

accommodated. Currently the system supports only

sale operation it can be extended to support the

authorization capture and void operation of

payment.

VII. ACKNOWLEDGEMENT

The authors thank Dr S Sridhar Director RVCT

RVCE Bangalore for communicating this paper for

publication in this journal.

VIII. REFERENCES

[1] Alex Feinberg, Phanindra Ganti, Lei Gao,

“Data Infrastructure at LinkedIn”, IEEE

28th International Conference on Data

Engineering, Washington DC,2012, pp.

1370 – 1381.

[2] Johannes Thönes, “Microservices”, IEEE

Software, vol. 31, (1), 2015, pp. 116 – 116.

[3] David Jaramillo, Duy V Nguyen, Robert

Smart, “Leveraging microservices

architecture by using Docker technology”,

Southeast Con, Hursley, United Kingdom,

2016, pp. 1-5.

[4] Rami Bahsoon, Sara Hassan, “Microservices

and Their Design Trade-offs: A Self-

Adaptive Roadmap”, IEEE International

Conference on Services Computing,

Birmingham, UK, 2016, pp.813 – 818.

 Amalna Jose* et al.

(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.5, Issue No.3, April – May 2017, 6492-6495.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6495

[5] Armin Balalaie and Abbas Heydarnoori,

“Microservices Architecture Enables

DevOps: Migration to a Cloud-

NativeArchitecture”, IEEE Software, vol.

33, (3), 2016, pp. 42-52.

[6] Takanori Ueda, Takuya Nakaike, and

Moriyoshi Ohara, “Workload

Characterization for Microservices”, IEEE

International Symposium on Workload

Characterization (IISWC), Tokyo, 2016, pp.

1-10.

[7] Maria Fazio, Antonio Celesti, Rajiv Ranjan,

“Open Issues in Scheduling Microservices

in the Cloud”, Cloud Computing, vol. 3, (5),

2016, pp. 81- 88.

[8] Alan Sill, “The Design and Architecture of

Microservices”, Cloud Computing, vol. 3,

(5), 2016, pp. 76-80.

[9] Mazin Yousif, “Microservices”, Cloud

Computing, vol. 3, (5), 2016, pp. 4-5.

