
Chandaka Venkata Lakshmi* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.3, April – May 2017, 6115-6119.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6115

Implementation of Low Power and

Delay Scalable Channel Parallel NAND Flash

Memory Controller Architecture Using ALU
CHANDAKA VENKATA LAKSHMI

Avanthi Institute of Engineering and Technology,

Bhogapuram Mandal, Tagarapuvalasa,

Vizianagaram Dist

Dr.G.V.SRIDHAR, M.E ,PhD.

Professor & HOD, Avanthi Institute of Engineering

and Technology, Bhogapuram Mandal,

Tagarapuvalasa, Vizianagaram Dist

Abstract: RISC refers to Reduced Instruction Set Computer. Which means the computer that consists of

RISC processor contains reduced (simple) instructions for performing necessary and required operations.

Any chip if considered as processor, it should have the capability of performing certain operations like

arithmetic, logical, control and data transfer. For performing these operations, a processor should

contain some major blocks as Control unit (CU), Flexible computational unit (FCU), Program counter

(PC), Accumulator, Instruction register, Memory and additional logic.

RISC actually enhances the performance of processor by considering the factors like simple architecture

construction and instruction set, easy instruction set for decoding and simplified control architecture.

This paper proposes a simple 32 bit RISC processor by using Peres reversible logic gates, which is

expected to reduce the size then the conventional architecture that is based on carry save logic adder

approach. The synthesis and simulation is carried out using XILINX ISE 12.3i and HDL is developed

using VERILOG language.

Key words: RISC; Reversible Logic Gates; Carry Save Logic; XILINX;

I. INTRODUCTION

The design of 32-bit RISC processor incorporates

various design blocks like Flexible computational

unit (FCU), Accumulator, Program Counter (PC),

Instruction Register (IR), Memory, Control Unit

(CU), and additional logic. The design incorporates

some the following issues which are based on 32

bit data and 28 bit address. It Uses fixed instruction

format of length 32 bit, Size of opcode is of 4 bit,

handling 15 instructions, has 256 memory

locations, 32-bit registers (IR,ACC), Implements 2-

staged pipelining i.e overlaps of fetch and execute

cycles, No interrupts and No conditional

branches, Data that it handles is unsigned integer

type.

The FCU performs both arithmetic and logical

operations and as well as control of transfer instructions.

It takes data and acc as inputs to generate output

according to the opcode. An execlk is given as input for

synchronization and the output is available at positive

edge of the execlk. It performs arithmetic and logic

instructions directly and control of transfer instructions

are performed with the help of control and logic decoder.

The flexible computational unit (FCU) performs all

arithmetic operations (addition, Subtraction,

multiplication, and division) and logic

 operations. Logic operations test various

conditions encountered during processing and

allow for different actions to be taken based on the

results. The data required to perform the arithmetic

and logical functions are inputs from the designated

CPU registers and operands. The FCU relies on

basic items to perform its operations. These

include number systems, data routing circuits

 (adders/ subtracters), timing, instructions,

operands, and registers.

The result of an FCU operation is always stored in

accumulator at some specified time based on the

control logic instruction and also the execlk. This

output is again fed to FCU as input. If Reset =0, the

output of accumulator is cleared to zero. When

reset is high and load accumulator signal is set

high, the output of the FCU is loaded in to the

accumulator at the neg edge of the execlock. Used

for writing data in to memory. When it is required

to write data in to the memory, then necessary

control signals are generated at the buffer. Buffer is

used for achieving bi-directional operation of the

data bus.

Multiplexer provides memory access to either IR

(instruction register) or PC (program counter)

based on Fetch signal. Memory has both data and

instructions .In order to access both data and

instructions through a single address port a

multiplexer is needed. It selects address according

to the fetch signal. If the fetch signal is high pcout

is selected and irout is selected when fetch signal is

low.

The program counter (PC) contains the address of

the next instruction. The CPU fetches an

instruction from memory, executes it and

increments the content of PC. Thus in the next

instruction cycle, it will fetch the next instruction

of the program pointed out by the program counter.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Innovative Technology and Research (IJITR)

https://core.ac.uk/display/228553397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chandaka Venkata Lakshmi* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.3, April – May 2017, 6115-6119.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6116

The instructions are executed sequentially unless

an instruction changes the content of program

counter.

Instruction register is a 32-bit register which gets

loaded with data from the memory. When LdIr

signal is high, the data bus contents get loaded into

the Instruction register. The 4-MSB’s of this

loaded data [31:28] are the OpCode of the

Instruction and the remaining bits [27:0] are the

address of a memory location tofetch the

subsequent data.

On the falling edge of the asynchronous signal Rst

the IR gets cleared irrespective of any condition.

Outputs of IR module are IrOut (lower 28-bits) and

OpCode (upper 4-bits) of the data fetched from the

memory.

The control logic generates all the necessary

control signals required for satisfactory operation

of the CPU. The control signals are load

accumulator, load instruction register, increment

program counter, load program counter, memory

read, memory write. When LdAcc is set high, the

output of the FCU is loaded into the accumulator.

When Ldpc is set high program counter is loaded

with the address from where the next instruction is

to be fetched. When Ldir is set high the instruction

register is loaded with the instruction that is to be

executed. If increment program counter signal is

set high, program counter is incremented by one to

the previous value .If write signal is set high and

read low then the data bus is being written on the

address of the memory location indicated by thIf

read signal is high and write low this is memory

read operation and the data at the memory address

indicated is placed on the data bus.

II. FLEXIBLE PROCESSOR

ARCHITECTURE

Let us consider an instance when some information

is stored in the memory. Now when the system is

switched on, CPU is initialized. In order to fetch an

instruction, as a result the program goes to the

location in the memory that is pointed out by the

program counter. After some instance, the

instruction from the memory is put on the data bus.

This cycle is called the instruction fetch cycle. The

instruction is now available at the data bus. at next

instance; the instruction is loaded into the

instruction register. This is called the instruction

load. In this cycle the 4 msb’s of the instruction are

separated and put in the opcode register and are

loaded to control unit as well as FCU. The rest of

the bits are sent out as Irout. The outputs of the

instruction register and the program counter are

connected to a mux. During the negative edge of

the fetch signal, the output of the instruction

register is selected, while the output from the

program counter is selected during the positive

edge of fetch cycle.

fig.1: Flexible processor architecture.

Now when the fetch signal goes low the mux

selects the output from the instruction register and

it points to the location of the operand. Now the

operand present in the location is placed on the data

bus. After an instruction is fetched the program

counter is incremented. It points to the next

location. Now the operand is available at the FCU.

The operand is taken in by the FCU and operates

on it.

Now the result is available at acc1 at positive edge

of execlk. During the negative edge of execlk, the

result at the Acc1 register is placed on the data bus,

which is sent and loaded into the accumulator for

any further operations. If the data has to be stored

into the memory, then during this clock cycle, Rd

and Wr has to be 0 & 1 respectively. As a result the

accumulator is connected to the memory and the

value in the accumulator is sent back to a location

in the memory through a module named Buffer. A

characteristic of RISC processor is their ability to

execute one instruction per clock cycle.

The Flexible computational Unit (FCU) performs

arithmetic (addition, subtraction, multiplication)

and/or logical operations (and,or nand etc). Two

bits selection determines which operation takes

place at a particular time. All the modules in the

FCU design are realized using VHDL.

Design functionalities are validated through

simulation. Besides verifying the outputs, the

outputs' timing diagram and interfacing signals are

also tracked to ensure the design specifications.

Successful implementation of FCU using VHDL

fulfills the needs for different high-performance

applications.

Fig.2: FCU block diagram.

In computing, flexible computational unit (FCU)

is a digital circuit that performs arithmetic and

logical operations. The FCU is a fundamental

Chandaka Venkata Lakshmi* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.3, April – May 2017, 6115-6119.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6117

building block of the central processing unit (CPU)

of a computer, and even the simplest

microprocessors contain one for purposes such as

maintaining timers. The processors found inside

modern CPUs and graphics processing units

accommodate very powerful and very complex

FCUs; a single component may contain a number

of FCUs. Mathematician John von Neumann

proposed the FCU concept in 1945, when he wrote

a report on the foundations for a new computer. An

FCU must process numbers using the same format

as the rest of the digital circuit. The format of

modern processors is almost always the two's

complement binary number representation. Early

computers used a wide variety of number systems,

including ones' complement, two's complement

sign-magnitude format, and even true decimal

systems, with ten tubes per digit.

FCUs for each one of these numeric systems had

different designs, and that influenced the current

preference for two's complement, as this is the

representation that makes it easier for the FCUs to

calculate additions and subtractions. The ones'

complement and two's complement number

systems allow for subtraction to be accomplished

by adding the negative of a number in a very

simple way which negates the need for specialized

circuits to do subtraction; however, calculating the

negative in two's complement requires adding a one

to the low order bit and propagating the carry. An

alternative way to do two's complement subtraction

of A−B is to present a one to the carry input of the

adder and use ¬B rather than B as the second input.

Most of a processor's operations are performed by

one or more FCUs. An FCU loads data from input

registers, an external Control Unit then tells the

FCU what operation to perform on that data, and

then the FCU stores its result into an output

register. The Control Unit is responsible for

moving the processed data between these registers,

FCU and memory.

Most FCUs can perform operations such as Bitwise

logic operations (AND, NOT, OR, XOR), Integer

arithmetic operations (addition, subtraction, and

sometimes multiplication though this is more

expensive), Bit-shifting operations (snhifting or

rotating a word by a specified number of bits to the

left or right, with or without sign extension). Shifts

can be seen as multiplications and divisions by a

power of two.

Engineers can design an Flexible computational

unit to calculate any operation. The more complex

the operation, the more expensive the FCU is, the

more space it uses in the processor, the more power

it dissipates. Therefore, engineers compromise.

They make the FCU powerful enough to make the

processor fast, but yet not so complex as to become

prohibitive.

III. REVERSIBLE LOGIC GATES

A reversible logic gate is an n-input n-output logic

device with one-to-one mapping. This helps to

determine the outputs from the inputs and also the

inputs can be uniquely recovered from the outputs.

Also in the synthesis of reversible circuits direct

fan-out is not allowed as one–to-many concept is

not reversible. A reversible circuit should be

designed using minimum number of reversible

logic gates. From the point of view of reversible

circuit design, there are many parameters for

determining the complexity and performance of

circuits.

In this, an improved design of reversible multiplier

with respect to its previous counterparts is

proposed. Multiplier circuits play an important role

in computational operation using computers. There

are many arithmetic operations which are

performed, on a computer FCU, through the use of

multipliers. Design and implementation of digital

circuits using reversible logic has attracted

popularity to gain entry into the future computing

technology.

Feynman Gate

Figure 3 shows a 2*2 Feynman gate . Quantum

cost of a Feynman gate is 1.Feynman gate is called

as Controlled NOT gate or CNOT gate. It is

equivalent to single control input tofili gate.

Fig.3: feynman gate and its symbolic

representation.

Toffoli Gate

Figure 4 shows a 3*3 Toffoli gate The input vector

is I(A, B, C) and the output vector is O(P,Q,R). The

outputs are defined by P=A, Q=B, R=A(B xor C).

Quantum cost of a Toffoli gate is 5. It has two

control inputs.

Fig.4: Toffoli gate and its symbolic

representation.

Peres Gate:

 Figure 5 shows 3*3 Peres gate. The input vector is

I (A,B,C) and the output vector is O (P,Q,R). the

output is defined by P=A, Q= A^B and R= A&B

Chandaka Venkata Lakshmi* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.3, April – May 2017, 6115-6119.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6118

^C. quantum cost of a Peres is 4. It needs two

Toffoli gates for its construction.

Fig.5: Peres gate and its symbolic representation.

BVPPG gate:

BVPPG gate is a 5 * 5 reversible gate and its logic

diagram is as shown in figure 6. Its quantum cost is

10. Ffoli representation of the BVPPG gate is a

shown.

Fig.6: BVPPG gate and its symbolic

representation.

The BVPPG gate is used to construct the partial

product generator which has resulted in least

number of gates, least quantum cost and least

number of garbage outputs. The two product terms

are available at the outputs R and T of the BVPPG

gate with C and E inputs maintained constant at 0.

The other outputs namely P, Q and S are used for

fan-out of the multiplier operands as shown in

figure. This reduces the number of external fan-out

gates to zero in our design which is main design

feature. The proposed design is compared with the

existing designs

Fig. 7: Producing product terms and duplication

of the inputs

CNOT GATE

CNOT gate is also known as controlled-not gate. It

is a 2*2 reversible gate. The CNOT gate can be

described as:

Iv = (A, B) ; Ov = (P= A, Q= A B)

Iv and Ov are input and output vectors

respectively.m Quantum cost of CNOT gate is 1.

Figure shows a 2*2 CNOT gate and its symbol.

Fig.8: CNOT gate and its logic symbol.

NFT Gate:

It is a 3x3 gate and its logic circuit and its quantum

implementation is as shown in the figure. It has

quantum cost five

Fig.9: NFT gate and its Logic symbol.

IV. RESULTS

RTL schematic

Internal architecture

Technological schematic

Chandaka Venkata Lakshmi* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.3, April – May 2017, 6115-6119.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6119

V. CONCLUSION

RISC actually enhances the performance of

processor by considering the factors like simple

architecture construction and instruction set, easy

instruction set for decoding and simplified control

architecture. For performing these operations, this

processor contain the major blocks as Control unit

(CU), Flexible computational unit (FCU),

Program counter (PC), Accumulator, Instruction

register, Memory and additional logic. In the

proposed design, the logic used is RCA with

reversible logic gates which consumes less power

20.520 w and occupies less area 270 in terms of

LUT's when compared with the existing carry

save technique with a power consumption of

25.232 w and with area of 332 in terms of

LUT's . The synthesis and simulation is carried

out using XILINX ISE 12.3i and HDL is

developed using VERILOG language.

VI. REFERENCES

[1] P. Ienne and R. Leupers, Customizable

Embedded Processors: Design Technologies

and Applications. San Francisco, CA, USA:

Morgan Kaufmann, 2007.

[2] P. M. Heysters, G. J. M. Smit, and E.

Molenkamp, “A flexible and energy-

efficient coarse-grained reconfigurable

architecture for mobile systems,” J.

Supercomput., vol. 26, no. 3, pp. 283–308,

2003.

[3] B. Mei, S. Vernalde, D. Verkest, H. D. Man,

and R. Lauwereins, “ADRES: An

architecture with tightly coupled VLIW

processor and coarse-grained reconfigurable

matrix,” in Proc. 13th Int. Conf. Field

Program. Logic Appl., vol. 2778. 2003, pp.

61–70.

[4] M. D. Galanis, G. Theodoridis, S.

Tragoudas, and C. E. Goutis, “A high-

performance data path for synthesizing DSP

kernels,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 25, no. 6,

pp. 1154–1162, Jun. 2006.

[5] K. Compton and S. Hauck, “Automatic

design of reconfigurable domainspecific

flexible cores,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 16, no. 5,

pp. 493–503, May 2008.

[6] S. Xydis, G. Economakos, and K.

Pekmestzi, “Designing coarse-grain

reconfigurable architectures by inlining

flexibility into custom arithmetic data-

paths,” Integr., VLSI J., vol. 42, no. 4, pp.

486–503, Sep. 2009.

[7] S. Xydis, G. Economakos, D. Soudris, and

K. Pekmestzi, “High performance and area

efficient flexible DSP datapath synthesis,”

IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 19, no. 3, pp. 429–442,

Mar. 2011.

[8] G. Ansaloni, P. Bonzini, and L. Pozzi,

“EGRA: A coarse grained reconfigurable

architectural template,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 19,

no. 6, pp. 1062–1074, Jun. 2011.

[9] M. Stojilovic, D. Novo, L. Saranovac, P.

Brisk, and P. Ienne, “Selective flexibility:

Creating domain-specific reconfigurable

arrays,” IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst., vol. 32, no. 5, pp.

681–694, May 2013.

[10] R. Kastner, A. Kaplan, S. O. Memik, and E.

Bozorgzadeh, “Instruction generation for

hybrid reconfigurable systems,” ACM

Trans. Design Autom. Electron. Syst., vol.

7, no. 4, pp. 605–627, Oct. 2002.

[11] [Online]. Available:

http://www.synopsys.com, accessed 2013.

[12] T. Kim and J. Um, “A practical approach to

the synthesis of arithmetic circuits using

carry-save-adders,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 19,

no. 5, pp. 615–624, May 2000.

[13] A. Hosangadi, F. Fallah, and R. Kastner,

“Optimizing high speed arithmetic circuits

using three-term extraction,” in Proc.

Design, Autom. Test Eur. (DATE), vol. 1.

Mar. 2006, pp. 1–6.

[14] A. K. Verma, P. Brisk, and P. Ienne, “Data-

flow transformations to maximize the use of

carry-save representation in arithmetic

circuits,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 27, no. 10,

pp. 1761–1774, Oct. 2008.

