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Abstract: RISC refers to Reduced Instruction Set Computer. Which means the computer that consists of 

RISC processor contains reduced (simple) instructions for performing necessary and required operations. 

Any chip if considered as processor, it should have the capability of performing certain operations like 

arithmetic, logical, control and data transfer. For performing these operations, a processor should 

contain some major blocks as Control unit (CU), Flexible computational unit (FCU), Program counter 

(PC), Accumulator, Instruction register, Memory and additional logic. 

RISC actually enhances the performance of processor by considering the factors like simple architecture 

construction and instruction set, easy instruction set for decoding and simplified control architecture. 

This paper proposes a simple 32 bit RISC processor by using Peres reversible logic gates, which is 

expected to reduce the size then the conventional architecture that is based on carry save logic adder 

approach. The synthesis and simulation is carried out using XILINX ISE 12.3i and HDL is developed 

using VERILOG language. 
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I. INTRODUCTION 

The design of 32-bit RISC processor incorporates 

various design blocks like Flexible computational 

unit (FCU), Accumulator, Program Counter (PC), 

Instruction Register (IR), Memory, Control Unit 

(CU), and additional logic. The design incorporates 

some the following issues which are based on 32 

bit data and 28 bit address. It Uses fixed instruction 

format of length 32 bit, Size of opcode  is of 4 bit, 

handling 15 instructions, has 256 memory 

locations, 32-bit registers (IR,ACC), Implements 2-

staged pipelining  i.e overlaps of fetch and execute 

cycles, No interrupts and  No  conditional 

branches, Data that it handles is unsigned integer 

type. 

The FCU performs both arithmetic and logical 

operations and as well as control of transfer instructions. 

It takes data and acc as inputs to generate output 

according to the opcode. An execlk is given as input for 

synchronization and the output is available at positive 

edge of the execlk. It performs arithmetic and logic 

instructions directly and control of transfer instructions 

are performed with the help of control and logic decoder.                                                                                                       

The flexible computational unit (FCU) performs all 

arithmetic    operations    (addition, Subtraction, 

multiplication, and division) and   logic 

  operations. Logic operations test various 

conditions encountered during processing and 

allow for different actions to be taken based on the 

results. The data required to perform the arithmetic 

and logical functions are inputs from the designated 

CPU registers and operands. The FCU relies on 

basic items to perform its operations.  These 

include number systems, data routing circuits 

  (adders/ subtracters),   timing,   instructions, 

operands,   and registers.  

The result of an FCU operation is always stored in 

accumulator at some specified time based on the 

control logic instruction and also the execlk. This 

output is again fed to FCU as input. If Reset =0, the 

output of accumulator is cleared to zero. When 

reset is high and load accumulator signal is set 

high, the output of the FCU is loaded in to the 

accumulator at the neg edge of the execlock. Used 

for writing data in to memory. When it is required 

to write data in to the memory, then necessary 

control signals are generated at the buffer. Buffer is 

used for achieving bi-directional operation of the 

data bus.               

Multiplexer provides memory access to either IR 

(instruction register) or PC (program counter) 

based on Fetch signal. Memory has both data and 

instructions .In order to access both data and 

instructions through a single address port a 

multiplexer is needed. It selects address according 

to the fetch signal. If the fetch signal is high pcout 

is selected and irout is selected when fetch signal is 

low. 

The program counter (PC) contains the address of 

the next instruction. The CPU fetches an 

instruction from memory, executes it and 

increments the content of PC. Thus in the next 

instruction cycle, it will fetch the next instruction 

of the program pointed out by the program counter. 
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The instructions are executed sequentially unless 

an instruction changes the content of program 

counter. 

Instruction register is a 32-bit register which gets 

loaded with data from the memory. When LdIr 

signal is high, the data bus contents get loaded into 

the    Instruction  register.  The 4-MSB’s of this 

loaded data [31:28] are the OpCode of the 

Instruction and the remaining bits [27:0] are the 

address of a memory location tofetch the 

subsequent data. 

On the falling edge of the asynchronous signal Rst 

the IR gets cleared irrespective of any condition. 

Outputs of IR module are IrOut (lower 28-bits) and 

OpCode (upper 4-bits) of the data fetched from the 

memory.  

The control logic generates all the necessary 

control signals required for satisfactory operation 

of the CPU. The control signals are load 

accumulator, load instruction register, increment 

program counter, load program counter, memory 

read, memory write. When LdAcc is set high, the 

output of the FCU is loaded into the accumulator. 

When Ldpc is set high program counter is loaded 

with the address from where the next instruction is 

to be fetched. When Ldir is set high the instruction 

register is loaded with the instruction that is to be 

executed. If increment program counter signal is 

set high, program counter is incremented by one to 

the previous value .If write signal is set high and 

read low then the data bus is being written on the 

address of the memory location indicated by thIf 

read signal is high and write low this is memory 

read operation and the data at the memory address 

indicated is placed on the data bus.   

II. FLEXIBLE PROCESSOR 

ARCHITECTURE 

Let us consider an instance when some information 

is stored in the memory. Now when the system is 

switched on, CPU is initialized. In order to fetch an 

instruction, as a result the program goes to the 

location in the memory that is pointed out by the 

program counter. After some instance, the 

instruction from the memory is put on the data bus. 

This cycle is called the instruction fetch cycle. The 

instruction is now available at the data bus. at next 

instance; the instruction is loaded into the 

instruction register. This is called the instruction 

load. In this cycle the 4 msb’s of the instruction are 

separated and put in the opcode register and are 

loaded to control unit as well as FCU. The rest of 

the bits are sent out as Irout. The outputs of the 

instruction register and the program counter are 

connected to a mux. During the negative edge of 

the fetch signal, the output of the instruction 

register is selected, while the output from the 

program counter is selected during the positive 

edge of fetch cycle. 

 

fig.1: Flexible processor architecture. 

Now when the fetch signal goes low the mux 

selects the output from the instruction register and 

it points to the location of the operand. Now the 

operand present in the location is placed on the data 

bus. After an instruction is fetched the program 

counter is incremented. It points to the next 

location. Now the operand is available at the FCU. 

The operand is taken in by the FCU and operates 

on it.  

Now the result is available at acc1 at positive edge 

of execlk. During the negative edge of execlk, the 

result at the Acc1 register is placed on the data bus, 

which is sent and loaded into the accumulator for 

any further operations. If the data has to be stored 

into the memory, then during this clock cycle, Rd 

and Wr has to be 0 & 1 respectively. As a result the 

accumulator is connected to the memory and the 

value in the accumulator is sent back to a location 

in the memory through a module named Buffer. A 

characteristic of RISC processor is their ability to 

execute one instruction per clock cycle. 

The Flexible computational Unit (FCU) performs 

arithmetic (addition, subtraction, multiplication) 

and/or logical operations (and,or nand etc). Two 

bits selection determines which operation takes 

place at a particular time. All the modules in the 

FCU design are realized using VHDL.          

Design functionalities are validated through 

simulation. Besides verifying the outputs, the 

outputs' timing diagram and interfacing signals are 

also tracked to ensure the design specifications. 

Successful implementation of FCU using VHDL 

fulfills the needs for different high-performance 

applications. 

 

Fig.2: FCU block diagram. 

In computing, flexible computational unit (FCU) 

is a digital circuit that performs arithmetic and 

logical operations. The FCU is a fundamental 
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building block of the central processing unit (CPU) 

of a computer, and even the simplest 

microprocessors contain one for purposes such as 

maintaining timers. The processors found inside 

modern CPUs and graphics processing units 

accommodate very powerful and very complex 

FCUs; a single component may contain a number 

of FCUs. Mathematician John von Neumann 

proposed the FCU concept in 1945, when he wrote 

a report on the foundations for a new computer. An 

FCU must process numbers using the same format 

as the rest of the digital circuit. The format of 

modern processors is almost always the two's 

complement binary number representation. Early 

computers used a wide variety of number systems, 

including ones' complement, two's complement 

sign-magnitude format, and even true decimal 

systems, with ten tubes per digit. 

FCUs for each one of these numeric systems had 

different designs, and that influenced the current 

preference for two's complement, as this is the 

representation that makes it easier for the FCUs to 

calculate additions and subtractions. The ones' 

complement and two's complement number 

systems allow for subtraction to be accomplished 

by adding the negative of a number in a very 

simple way which negates the need for specialized 

circuits to do subtraction; however, calculating the 

negative in two's complement requires adding a one 

to the low order bit and propagating the carry. An 

alternative way to do two's complement subtraction 

of A−B is to present a one to the carry input of the 

adder and use ¬B rather than B as the second input. 

Most of a processor's operations are performed by 

one or more FCUs. An FCU loads data from input 

registers, an external Control Unit then tells the 

FCU what operation to perform on that data, and 

then the FCU stores its result into an output 

register. The Control Unit is responsible for 

moving the processed data between these registers, 

FCU and memory. 

Most FCUs can perform operations such as Bitwise 

logic operations (AND, NOT, OR, XOR), Integer 

arithmetic operations (addition, subtraction, and 

sometimes multiplication though this is more 

expensive), Bit-shifting operations (snhifting or 

rotating a word by a specified number of bits to the 

left or right, with or without sign extension). Shifts 

can be seen as multiplications and divisions by a 

power of two. 

Engineers can design an Flexible computational 

unit to calculate any operation. The more complex 

the operation, the more expensive the FCU is, the 

more space it uses in the processor, the more power 

it dissipates. Therefore, engineers compromise. 

They make the FCU powerful enough to make the 

processor fast, but yet not so complex as to become 

prohibitive. 

III. REVERSIBLE LOGIC GATES 

A reversible logic gate is an n-input n-output logic 

device with one-to-one mapping. This helps to 

determine the outputs from the inputs and also the 

inputs can be uniquely recovered from the outputs. 

Also in the synthesis of reversible circuits direct 

fan-out is not allowed as one–to-many concept is 

not reversible. A reversible circuit should be 

designed using minimum number of reversible 

logic gates. From the point of view of reversible 

circuit design, there are many parameters for 

determining the complexity and performance of 

circuits. 

In this, an improved design of reversible multiplier 

with respect to its previous counterparts is 

proposed. Multiplier circuits play an important role 

in computational operation using computers. There 

are many arithmetic operations which are 

performed, on a computer FCU, through the use of 

multipliers. Design and implementation of digital 

circuits using reversible logic has attracted 

popularity to gain entry into the future computing 

technology. 

Feynman Gate 

Figure 3 shows a 2*2 Feynman gate . Quantum 

cost of a Feynman gate is 1.Feynman gate is called 

as Controlled NOT gate or CNOT gate. It is 

equivalent to single control input tofili gate. 

 

Fig.3: feynman gate and its symbolic 

representation. 

Toffoli Gate 

Figure 4 shows a 3*3 Toffoli gate The input vector 

is I(A, B, C) and the output vector is O(P,Q,R). The 

outputs are defined by P=A, Q=B, R=A(B xor C). 

Quantum cost of a Toffoli gate is 5. It has two 

control inputs. 

 

Fig.4: Toffoli gate and its symbolic 

representation. 

Peres Gate: 

 Figure 5 shows 3*3 Peres gate. The input vector is 

I (A,B,C) and the output vector is O (P,Q,R). the 

output is defined by P=A, Q= A^B and R= A&B 
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^C. quantum cost of a Peres is 4. It  needs two 

Toffoli gates for its construction. 

 

Fig.5: Peres gate and its symbolic representation. 

BVPPG gate: 

BVPPG gate is a 5 * 5 reversible gate and its logic 

diagram is as shown in figure 6. Its quantum cost is 

10. Ffoli representation of the BVPPG gate is a 

shown. 

 

Fig.6: BVPPG gate and its symbolic 

representation. 

The BVPPG gate is used to construct the partial 

product generator which has resulted in least 

number of gates, least quantum cost and least 

number of garbage outputs. The two product terms 

are available at the outputs R and T of the BVPPG 

gate with C and E inputs maintained constant at 0. 

The other outputs namely P, Q and S are used for 

fan-out of the multiplier operands as shown in 

figure. This reduces the number of external fan-out 

gates to zero in our design which is main design 

feature. The proposed design is compared with the 

existing designs 

 

Fig. 7: Producing product terms and duplication 

of the inputs 

CNOT GATE  

CNOT gate is also known as controlled-not gate. It 

is a 2*2 reversible gate. The CNOT gate can be 

described as: 

Iv = (A, B) ; Ov = (P= A, Q= A B) 

Iv and Ov are input and output vectors 

respectively.m Quantum cost of CNOT gate is 1. 

Figure  shows a 2*2 CNOT gate and its symbol. 

 

Fig.8: CNOT gate and its logic symbol. 

NFT Gate:  

It is a 3x3 gate and its logic circuit and its quantum 

implementation is as shown in the figure. It has 

quantum cost five 

 

Fig.9: NFT gate and its  Logic symbol. 

IV. RESULTS 

RTL schematic 

 

Internal architecture 

 

Technological schematic 
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V. CONCLUSION 

RISC actually enhances the performance of 

processor by considering the factors like simple 

architecture construction and instruction set, easy 

instruction set for decoding and simplified control 

architecture. For performing these operations, this 

processor contain the major blocks as Control unit 

(CU), Flexible computational unit (FCU), 

Program counter (PC), Accumulator, Instruction 

register, Memory and additional logic. In the 

proposed design, the logic used is  RCA with 

reversible logic gates which consumes less power 

20.520 w and  occupies less area 270 in terms of 

LUT's  when compared with the existing carry 

save technique with a power consumption of 

25.232 w and with area of 332 in terms of 

LUT's  . The synthesis and simulation is carried 

out using XILINX ISE 12.3i and HDL is 

developed using VERILOG language.  
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