
Kodiboyina Chanti* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.3, April – May 2017, 6028-6035.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6028

Implementation of Power and Delay Variant

of a Radix-10 Combinational Multiplier

Using Mixed Binary and BCD Code

KODIBOYINA CHANTI

M.Tech VLSI

Avanthi Institute of Engg & Technology

Makavarapalem, Narsipatnam, VSP

PENTA ASHOK

Assistant Professor

Avanthi Institute of Engg & Technology

Makavarapalem, Narsipatnam, VSP

Abstract: The decimal multiplication is one of the most important decimal arithmetic operations which

have a growing demand in the area of commercial, financial, and scientific computing. It has been revived

in recent years due to the large amount of data in commercial applications. In this paper, we propose a

parallel decimal multiplication algorithm with three components, which are a partial product generation,

a partial product reduction, and a final digit-set conversion. First, a redundant number system is applied

to recode not only the multiplier, but also multiples of the multiplicand in signed-digit (SD) numbers.

Furthermore, we present a multi operand SD addition algorithm to reduce the partial product array.We

consider the problem of multi operand parallel decimal addition with an approach that uses binary

arithmetic, suggested by the adoption of binary-coded decimal (BCD) numbers. This involves corrections

in order to obtain the BCD result or a binary-to-decimal (BD) conversion. The BD conversion moreover

allows an easy alignment of the sums of adjacent columns. We treat the design of BCD digit adders using

fast carry-free adders and the conversion problem through a known parallel scheme using elementary

conversion cells. Spread sheets have been developed for adding several BCD digits and for simulating the

BD conversion as a design tool. In this project Xilinx-ISE tool is used for simulation, logical verification,

and further synthesizing.

LANGUAGE USED: VERILOG.

SOFTWARE USED: XILINX ISE 12.3i.

I. INTRODUCTION

Hardware implementations of decimal arithmetic

units have recently gained importance because they

provide higher accuracy in financial applications.

In this work, we present a combinational decimal

multiplier which can be pipelined to reach the

desired throughput. The multiply unit is organized

as follows: the multiplier is recoded; the partial

products are kept in a redundant format; the partial

product are accumulated by a tree of redundant

adders and the final product is obtained by

converting the carry-save tree’s outputs into

binary-coded decimal (BCD) format. With respect

to previous implementations of radix-10 multipliers

such as the ones in our design is different in the

following aspects:

1) The multiplier is combinational (parallel) and

not sequential;

2) We recode only the multiplier while in both

operands are recoded in -5 to +5;

3) In the partial product generation only

multiples of 5 and2 are required;

4) The accumulation of partial products is done

in a tree of radix-10 carry-save adders and

counters while in the sequential unit of

signed-digit adders are used.

We present the standard cells implementation of

the multiplier and compare its latency with those of

the schemes presented in and Moreover, we

compare the delay and the area of the decimal

combinational multiplier with those obtained by the

implementation of a binary (radix-4) double

precision multiplier.

II. REDUNDANT BCD

REPRESENTATIONS

The proposed decimal multiplier uses internally a

redundant BCD arithmetic to speed up and simplify

the implementation. This arithmetic deals with

radix-10 ten’s complement integers of the form:

The value of Zi depends on the decimal

representation parameterized by (l; m; e). We use a

4-bit encoding to represent digits Zi. This allows us

to manage decimal operands in different

representations with the same arithmetic, such as

on the other hand, the binary value of the 4-bit

vector representation of Zi is given by them

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Innovative Technology and Research (IJITR)

https://core.ac.uk/display/228553292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Kodiboyina Chanti* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.3, April – May 2017, 6028-6035.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6029

Fig: Combinational SD radix-10 architecture.

In contrast to our previous SD radix-10

implementations, 3X is obtained in a reduced

constant time delay (3 XOR-gate delays) by using

the XS-3 representation. Moreover, a negative

multiple is generated from the correspondent

positive one by a bitwise XOR operation.

Consequently, the latency is reduced and the

hardware implementation is simplified. The

scheme proposed in also produces 3X in constant

time but using redundant signed-digit BCD

arithmetic. Decimal partial product reduction. In

this stage, the array of dþ1 ODDS partial products

is reduced to two 2d-digit words (A, B). Our

proposal relies on a binary carry-save adder tree to

perform carry-free additions of the decimal partial

products. The array of dþ1 ODDS partial products

can be viewed as adjacent digit columns of height h

d þ 1. Since ODDS digits are encoded in binary,

therules for binary arithmetic apply within the digit

bounds, and only carries generated between radix-

10 digits (4-bit columns) contribute to the decimal

correction of the binary sum. That is, if a carry out

is produced as a result of a 4-bit (modulo 16)

binary addition, the binary sum must

beincremented by 6 at the appropriate position to

obtain the correct decimal sum (modulo 10

addition).Two previous designs implement tree

structures for the addition of ODDS operands. In

the non speculative BCD adder, a combinational

logic block is used to determine the sum correction

after all the operands have been added in a binary

CSA tree, with the maximum number of inputs

limited to 19 BCD operands. By contrast, in our

method the sum correction is evaluated

concurrently with the binary carry-save additions

using columns of binary counters. Basically we

count the number of carries per decimal column

and then a multiplication by 6 is performed (a

correction by 6 for each carry-out from each

column). The result is added as a correction term to

the output of the binary carry-save reduction tree.

This improves significantly the latency of the

partial product reduction tree. Moreover, the

proposed architecture accepts an arbitrary number

of ODDS or BCD operand inputs. Some of PPR

tree structures presented in (the area-improved PPR

tree) also exploit a similar idea, but rely on a

custom designed ODDS adder to perform some of

the stage reductions.

Our proposal aims to provide an optimal reuse of

any binary CSA tree for multi operand decimal

addition, as it was done in for the 4221 and 5211

decimal coding Conversion to (non-redundant)

BCD. We consider the use of a BCD carry-

propagate adder to perform the final conversion to

a non-redundant BCD product P ¼ Aþ B. The

proposed architecture is a 2d-digit hybridparallel

prefix/carry-select adder, the BCD Quaternary Tree

adder (see Section 6). The sum of input digits Ai, Bi

at each position i has to be in the range ½0; 18& so

that at most one decimal carry is propagated to the

next position i þ 1 . Furthermore, to generate the

correct decimalcarry, the BCD addition algorithm

implemented requires Ai þ Bito be obtained in

excess-6. Several choices arepossible. We opt for

representing operand A in BCD excess-6 (Ai2

½0;9&, ½Ai& ¼Aiþe, e¼6), and B coded in BCD

(Bi2 ½0;9&, e¼0).

III. DECIMAL PARTIAL PRODUCT

GENERATION

The partial product generation stage comprises the

recoding of the multiplier to a SD radix-10

representation, the calculation of the multiplicand

multiples in XS-3 code and the generation of the

ODDS partial products.The SD radix-10 encoding

produces d SD radix-10 digits Ybk, being the most

significant digit (MSD) of the multiplier [29]. Each

digit Ybk is represented with a 5-bit hot-one code

(Y1k; Y2k; Y3k; zY4k;Y 5k) to select the

appropriate multiple f1X; . . . ; 5Xg with a5:1 mux

and a sign bit Ysk that controls the negation of the

selected multiple.The negative multiples are

obtained by ten’s complementing the positive ones.

This is equivalent to taking the nine’s complement

of the positive multiple and then adding

1. As we have shown in Section 2, the nine’s

complement can be obtained simply by bit

inversion.

2. Providing support for 20 or more input BCD

operands would require a significant modification

of the original non speculative addition algorithm.

Kodiboyina Chanti* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.3, April – May 2017, 6028-6035.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6030

Fig: SD radix-10 generation of a partial product

digit. Generation of decimal multiples NX.

The XOR gates at the output of the mux invert the

multiplicand multiple, to obtain its 9’s

complement, if the SD radix-10 digit is negative

(Ysk¼1). On the other hand, if the signals (Y1k;

Y2k; Y3k; Y4k; Y5k) are all zero then PP½k& ¼0,

but it has to be coded in XS-3 (bit encoding 0011).

Then, to set the two least significant bits to 1, the

input to the XOR gate is Ysk¼Ysk_Ybkiszero (_

denotes the Boolean OR operator), where Ybk is

zero equals 1 if all the signals (Y1k; Y2k; Y3k; Y4k;

Y5k) are zero.In addition, the partial product signs

are encoded into their MSDs (see Section 4.2). The

generation of the most significant partial product

PP½d& is described in Section 4.4, and only

depends on Ysd1, the sign of the most significant

SD radix-10 digit.

Generation of the Multiplicand Multiples:

We denote by NX2 f1X;2X;3X;4X;5Xg, the set of

multiplicand multiples coded in the XS-3

representation, withdigitsNXi2 ½3;12&, being

½NXi& ¼NXiþ32 ½0;15& the corresponding value

of the 4-bit binary encoding of NXi given by

Equation (2). the high-level block diagram of the

multiples generation with just one carry

propagation. This is performed in two steps:

Most-Significant Digit Encoding

The MSD of each PP½k&, PPd½k&, is directly

obtained in the ODDS representation. Note that

these digits store the carries generated in the

computation of the multiplicand multiples and the

sign bit of the partial product. For positive partial

products we haveNote that the term ½PPd½k&& is

always positive. Specifically, for positive partial

products (Ysk¼0), this term results in

TABLE Preferred Digit Recoding Mappings for

NX Multiples

Correction Term

The resultant partial product sum has to be

corrected off-the-critical-path by adding a

precomputed term, which only depends on the

format precision d. This term has to gather: (a) the

8 constants that have not been included in the MSD

encoding and (b) a Particularizing for d¼16 and

d¼34 digit operands, the following expressions for

the correction term in 10’s complement are

obtained. The correction term is allocated into the

array of dþ1 partial products coded in ODDS

(digits in ½0;15&), as we show in the next section.

Partial Product Array

As a conclusion of the considerations in the

previous sections, Fig. illustrates the shape of the

partial product array, particularizing for d¼16.

Note that the maximum digit column height is

dþ1.In each column several components can be

observed. Digits labeled with O represent the

redundant excess-3 BCD digits in the set ½0;15&.

Digits labeled with Sk represent the MSD of each

partial product, PPd½k& (see Section 4.2). The 16

least significant digits of the correction term fcð16Þ

are placed at the least significant position of each

row after being added to Ysk, to complete the 10’s

complement in case of a negative partial product;

thus Hk¼Yskþ f0;3;7g (digitwise addition, out of

the critical path), so that Hk2 ½0;8&. Note that the

negative bit 10
32

 is canceled with the carry-out of

the partial product sum in excess. The 16 leading

digits of the correction term, ½fcð16Þ&d, are added

to the most significant partial product PP½d&.

Thus, in parallel with the multiplicand his

computation does not involve carry propagation

and it is out of the critical path). Digits labeled as F

in Fig., represent the most-significant partial

product, PP½d&, where

IV. DECIMAL PARTIAL PRODUCT

REDUCTION

The PPR tree consists of three parts:

(1) A regular binary CSA tree to compute an

estimation of the decimal partial product sum in a

binary carry-save form (S, C),

(2) A sum correction block to count the carries

generated between the digit columns,

(3) A decimal digit 3:2 compressor which

increments the carry-save sum according to the

carries count to obtain the final double-word

product (A; B), A being represented with excess-6

BCD digits and B being represented with BCD

digits. The PPR tree can be viewed as adjacent

columns of h ODDS digits each, h being the

column height (see Fig.), and hdþ1. the high-level

architecture of a column of the PPR tree (the ith

column) with h ODDS digits in [0, 15] (4 bits per

digit). Each digit column of the binary CSA tree

Kodiboyina Chanti* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.3, April – May 2017, 6028-6035.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6031

(the gray colored box in Fig.) reduces the h input

digits and ncin input carry bits, transferred from the

previouscorresponding dot-diagram representation

for h¼17 (m¼14) in Fig. An efficient

implementation is obtained by representing the

digit of Wi6 with l ODDS digits, Wti½0&; . . . ;

Wti½l 1&), being l ¼ 1 for Decimal64, and l ¼ 2

for Decimal128.

Fig. Decimal partial product array generated for

d ¼ 16 (16 16-digit multiplier).

Fig. High-level architecture of the proposed

decimal PPR tree (h inputs, 1-digit column).

Fig. Dot-diagrams for the proposed decimal PPR

(h ¼ 17 inputs, 1-digit column).

Fig Implementation of the PPR Tree Highest

Column (h ¼ 17) for a 16 16-digit multiplication.

This CSA generates l carry outs giþ1½0&;. . .;

giþ1½l1& with weight 1610
i
, which are transferred

to the next column, and introduced into the 6 block

to produce another ODDS digit, Wzi 2 ½0; 15.The

last step is the addition of digits Gi; Zi; Wzi of the

column, GiþZiþWzi2 ½0;45&. We have designed a

decimal 3:2 digit compressor that reduces digits

Wzi, Gi and Zi to two digits Ai, Bi. The dot-diagram

of the decimal 3:2 digit compressor is shown in

Fig. To obtain the final BCD product by using a

single BCD carry propagate addition, that is,

P¼AþB, which is the last step in the multiplication

(see Fig. and Section 3), it is required that Ai þ Bi 2

½0; 18&. Moreover, to reduce the delay of the

finalBCD carry-propagate adder (see Section 6)

operand A is obtained in excess-6, so that we

compute ½Ai& ¼Aiþe in excess e¼6 as defined by

Equation (2), being the output digits sum ½Ai&

þBi2 ½6;24&.The evaluation is split in two parts:

Block A computes the sum of the two MSBS of the

input digits (the bits with weights 8 and 4), and a

two-bit carry input Whi2 f0;1;2;3g. This sum is in

½0; 39 &. The outputs of this block are a BCD

digit Ai in excess-6 ½Ai& 2 ½6;15& and a two-bit

decimal carry output Whiþ12 f0;1;2;3g which is

transferred to the next column (the iþ1th column).

Note that the LSB of the carry output Whiþ1

depends on the MSB of the input carry Whi.

However, there is no further carry propagation

since the LSB of Whiþ1 is just the LSB of ½Aiþ1&,

that is, ½Aiþ1;0&.

On the other hand, Block B implements the sum of

the two LSB bits of the input digits (the bits with

weights 2 and 1). This sum is in ½0;9&, so that Bi

is evaluated as a regular binary addition.

After that, the sum correction digits (Wti½0&;. . .;

Wti½l1&) and the output digits of the binary CSA

tree (Si, Ci)

Kodiboyina Chanti* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.3, April – May 2017, 6028-6035.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6032

V. FINAL CONVERSION TO BCD

The selected architecture is a 2d-digit hybrid

parallel prefix/ carry-select adder, the BCD

Quaternary Tree adder. The delay of this adder is

slightly higher to the delay of a binary adder of 8d

bits with a similar topology.

The decimal carries are computed using a carry

prefix tree, while two conditional BCD digit sums

are computed out of the critical path using 4-bit

digit adders which implements ½Ai & þBiþ0 and

½Ai& þBiþ1. These conditional sums correspond to

each one of the carry input values. If the

conditional carry out from a digit is one, the digit

adder performs a 6 subtraction. The selection of the

appropriate conditional BCD digit sums is

implemented with a final level of 2:1 multiplexers.

To design the carry prefix tree we analyzed the

signal arrival profile from the PPRT tree, and

considered the use of different prefix tree

topologies to optimize the area for the minimum

delay adder.

VI. EVALUATION AND COMPARISON

The proposed combinational architectures for BCD

1616-digit and 34 34-digit multipliers are evaluated

andcompared with other representative BCD

multipliers. The area and delay figures of our

architectures were obtained from an area-delay

evaluation model for static CMOS gates, and

validated with the synthesis ofverified RTL models

coded in VHDL. This evaluation is detailed in

Section 6.1.

TABLE Area and Delay (LE-Based Model) for

the Proposed Mults

Finally, the most representative sequential and

parallel decimal multipliers have been compared

with our architecture. The results of the comparison

are summarized in Section 6.2

Evaluation

As stated above, the evaluation has been performed

in two steps. First, a technological independent

evaluation using a model for static CMOS circuits

based on Logical Effort (LE) has been carried out,

and then the results obtained with this model have

been validated with the synthesis and functional

verification of the RTL model.

Technological Independent Evaluation

Our technological independent evaluation model

allows us to obtain a rough estimation of the area

and delay figures for the architecture being

evaluated. It takes into account the different input

and output gate loads, but neither interconnections

nor gate sizing optimizations are modeled. The

delay is given in FO4 units, that is, the delay of an

1 inverter with a fanout of four inverters. The

hardware complexity is given as the number of

equivalent minimum size NAND2 gates. We do not

expect this rough model to give absolute area-delay

figures, due to the high wiring complexity of

parallel multipliers. However, based on our

experience this model is good enough for making

design decisions at gate level and it provides

reasonable accuracy of area and delay ratios to

compare different designs.

Table shows the delay, input capacitance (Lin) and

area of the main building blocks used in the BCD

multipliers. The input capacitance is normalized to

the input capacitance of the 1 inverter. The Lout

parameter represents the normalized output load

connected to the gate. The XOR2 gate is

implemented with CMOS transmission gates.

To evaluate our architectures, gates with the drive

strength of the minimum sized (1) inverter have

been assumed, and buffers have been inserted to

deal with high loads. The critical path delay in

every stage of the multiplier has been estimated as

the sum of the delays of the gates on this critical

path. The area and delay figures obtained for the 16

16-digit and 34 34-digit architectures are shown

inTable 4.

Synthesis Results

The designs have been synthesized using Synopsys

Design Compiler B-2012.09-SP3 and a 90 nm

CMOS standard cell library [11]. The FO4 delay

for this library is 49 ps undertypical conditions (1

V, 25 C). The area-delay curves of Fig. have been

obtained with the constraint Cout¼Cin¼4Cinv,

whereCinvis the input capacitance of a 1inverterof

the library.

Fig. Area-delay space obtained from synthesis.

We also include in Fig. the area-delay points

estimated from the LE-based model evaluation. We

Kodiboyina Chanti* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.3, April – May 2017, 6028-6035.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6033

have kept the hierarchy of the design in the

synthesis process as described in Sections 3 to 6

(no top level architecture optimization options).

Nevertheless, some specific structures have been

optimized internally to reduce the overall delay.

To ensure the correctness of the designs we have

simulated the RTL models of the 1616-digit and

3434-digit multipliers using the Synopsys VCS-

MX tool and a comprehensive set of random test

vectors.

Comparison

Table shows the area and delay estimations

obtained from synthesis for some representative

BCD sequential and combinational multipliers. As

far as we know, the most representative high-

performance BCD multipliers are 1616-digit

combinational and sequential implementations. The

area and delay figures shown in Table correspond

to the minimum delay point of each

implementation, and were obtained from the

synthesis results provided in the respective

reference, except for the two multipliers of

reference, which correspond to an estimation

obtained by their authors using a LE-based model.

The comparison ratios are given with respect to the

area and delay figures of a 53-bit binary Booth

radix-4 multiplier extracted from.

TABLE Synthesis Results for Fixed-Point

Multipliers.

The PPG of multipliers is based on a SD radix-5

scheme that generates 32 BCD partial products for

a 16-digit multiplier. Though it only requires

simple constant time delay BCD multiplicand

multiples, the 9’s complement operation for

obtaining the negative multiples is more complex

than a simple bit inversion. The partial product

reduction implemented in is a BCD carry-save

adder tree build of BCD digit adders. On the other

hand, the BCD partial products are reduced in by

using counters that compute the binary sum of each

column of digits sum, and subsequent binary to

decimal conversions.

The BCD multiplier pre-computes all the positive

decimal multiplicand multiples f0X;. . .;9Xg. The

delay of PPG is reduced by representing the

complex operands (3X;6X;7X;8X;9X) as the sum

of two simpler multiples. The number of partial

products generated is therefore equivalent to that of

the SD radix-5 scheme. The PPR tree is

implemented with BCD digit adders as in. This has

the disadvantage of a large area compared to the

other BCD multipliers analyzed.

The two 1616-digit BCD multipliers of implement

an easy-multiple PPG (only precomputes

f2X;4X;5Xg) that produces 32 BCD partial

products. The intermediate decimal partial product

sums are computed in overloaded BCD to speed up

the PPR evaluation. The delay-improved design

uses a tree structure built of five levels overloaded

BCD digit adders, while the area-improved design

replaces two levels of these custom designed

adders by three levels of 4 : 2 compressors and a

binary counter. This reduces the area consumption

but at the cost of introducing a significant latency

penalty.

Fig. Area-delay space for the fastest 1616-digit

mults.

The BCD multipliers in use either the SD radix-5

PPG scheme or a SD radix-10 PPG scheme. The

last one has the advantage that practically it halves

the number of partial products generated by the

former (17 against 32 for 1616-digit

multiplications). However, it has the disadvantage

of a significant latency overhead due to the

generation of the complex multiple 3X. The latency

and area of priorart multipliers are improved by

representing the partial products in (4221) or

(5211) decimal codes, which allow them to

implement PPR using a very regular and compact

tree of 4-bit binary carry-save adders (built of 3 : 2

or 4 : 2 compressors) and decimal digit doublers.

The most recent implementation is presented in. It

also uses a SD radix-10 PPG scheme to reduce the

number of partial products generated to 17, and

subsequently, the area of the PPR tree. To avoid the

latency overhead of the 3 multiple generation, the

partial products are coded in a redundant SD

representation.Sequential1616-digit (Decimal64)

BCD multipliers are about two times smaller than

equivalent parallel implementations, but have

higher latency and reduced throughput (one mult

issued every 17 cycles). For example, the proposed

multiplier is about seven times faster than the best

Kodiboyina Chanti* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.3, April – May 2017, 6028-6035.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6034

sequential implementation proposed in, but

requires 2.5 times more area.

To compare the high hardware cost of a

combinational Decimal128 implementation, we

also include in Table 5 the area and delay figures

obtained for our 3434-digit BCD multiplier. Due to

the tight area and power consumption constraints of

current DFUs , a sequential architecture seems a

more realistic solution than a fully pipelined

implementation for a commercial Decimal128

multiplier.

Finally, we present a more detailed comparison of

the fastest BCD 1616-digit combinational

multipliers (SD Radix-5 and SD Radix-10, and the

proposed one) in terms of latency and area. The

corresponding area-delay synthesis values are

shown in Fig.

We have directly introduced in the figure the area-

delay curves of referenced multipliers and as

provided by their authors, since all of them were

synthesized using 90 nm CMOS standard cell

libraries and similar conditions. The area-delay

points for the two multipliers of reference

correspond to an estimation obtained by their

authors using a LE-based model. From the area-

delay space represented in Fig., we observe that our

proposed decimal multiplier has an area

improvement roughly in the range 20-35 percent

depending on the target delay. On the other hand,

for the minimum delay point (44FO4), the

proposed multiplier is still competitive with the

fastest design shown in .More recently, the authors

of reference have presented in a comparison study

between their delay-improved multiplier and the

multiplier of reference based on synthesis results

using a TSMC 130 nm standard CMOS process

under typical conditions (1.2 V, 25 C). They show

that for the minimum delay point of each one of the

two area-delay curves obtained, the delay-

improved multiplier is 20 percent faster and has 10

percent less area compared to the design of.

Therefore, according to the curve corresponding to

the design presented in should be to the left of the

area-delay points corresponding to the delay-

improved design presented in.

VII. RESULTS

RTL SCHEMATIC:

TECHNOLOGY SCHEMATICS:

WAVEFORM:

VIII. CONCLUSION

In this paper we have presented the algorithm and

architecture of a new BCD parallel multiplier. The

improvements of the proposed architecture rely on

the use of certain redundant BCD codes, the XS-3

and ODDS representations. Partial products can be

generated very fast in the XS-3 representation

using the SD radix-10 PPG scheme: positive

multiplicand multiples (0X, 1X, 2X, 3X, 4X, 5X)

are precomputed in a carry-free way, while

negative multiples are obtained by bit inversion of

the positive ones. On the other hand, recoding of

XS-3 partial products to the ODDS representation

is straightforward. The ODDS representation uses

the redundant digit set [0, 15] and a 4-bit binary

Kodiboyina Chanti* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.3, April – May 2017, 6028-6035.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6035

encoding (BCD encoding), which allows the use of

a binary carry-save adder tree to perform partial

product reduction in a very efficient way. We have

presented architectures for IEEE-754 formats,

Decimal64 (16 precision digits) and Decimal128

(34 precision digits). The area and delay figures

estimated from both a theoretical model and

synthesis show that our BCD multiplier presents

20-35 percent less area than other designs for a

given target delay

IX. REFERENCES

[1] A. Aswal, M. G. Perumal, and G. N. S.

Prasanna, “On basic financial decimal

operations on binary machines,” IEEE

Trans. Comput., vol. 61, no. 8, pp. 1084–

1096, Aug. 2012.

[2] M. F. Cowlishaw, E. M. Schwarz, R. M.

Smith, and C. F. Webb, “A decimal

floating-point specification,” in Proc. 15th

IEEE Symp. Comput. Arithmetic, Jun.

2001, pp. 147–154.

[3] M. F. Cowlishaw, “Decimal floating-point:

Algorism for computers,” in Proc. 16th

IEEE Symp. Comput. Arithmetic, Jul. 2003,

pp. 104–111.

[4] . Carlough and E. Schwarz, “Power6

decimal divide,” in Proc. 18th IEEE Symp.

Appl.-Specific Syst., Arch., Process., Jul.

2007, pp. 128–133.

[5] S. Carlough, S. Mueller, A. Collura, and M.

Kroener, “The IBM zEnterprise-196

decimal floating point accelerator,” in Proc.

20th IEEE Symp. Comput. Arithmetic, Jul.

2011, pp. 139–146.

[6] L. Dadda, “Multioperand parallel decimal

adder: A mixed binary and BCD approach,”

IEEE Trans. Comput., vol. 56, no. 10, pp.

1320–1328, Oct. 2007.

[7] L. Dadda and A. Nannarelli, “A variant of a

Radix-10 combinational multiplier,” in

Proc. IEEE Int. Symp. Circuits Syst., May

2008, pp. 3370–3373.

[8] L. Eisen, J. W. Ward, H.W. Tast, N.

Mading, J. Leenstra, S. M. Mueller, C.

Jacobi, J. Preiss, E. M. Schwarz, and S. R.

Carlough, “IBM POWER6 accelerators:

VMX and DFU,” IBM J. Res. Dev., vol. 51,

no. 6, pp. 663–684, Nov. 2007.

[9] M. A. Erle and M. J. Schulte, “Decimal

multiplication via carry-save addition,” in

Proc. IEEE Int. Conf Appl.Specific Syst.,

Arch., Process., Jun. 2003, pp. 348–358.

