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Abstract: The decimal multiplication is one of the most important decimal arithmetic operations which 

have a growing demand in the area of commercial, financial, and scientific computing. It has been revived 

in recent years due to the large amount of data in commercial applications. In this paper, we propose a 

parallel decimal multiplication algorithm with three components, which are a partial product generation, 

a partial product reduction, and a final digit-set conversion. First, a redundant number system is applied 

to recode not only the multiplier, but also multiples of the multiplicand in signed-digit (SD) numbers.  

Furthermore, we present a multi operand SD addition algorithm to reduce the partial product array.We 

consider the problem of multi operand parallel decimal addition with an approach that uses binary 

arithmetic, suggested by the adoption of binary-coded decimal (BCD) numbers. This involves corrections 

in order to obtain the BCD result or a binary-to-decimal (BD) conversion. The BD conversion moreover 

allows an easy alignment of the sums of adjacent columns. We treat the design of BCD digit adders using 

fast carry-free adders and the conversion problem through a known parallel scheme using elementary 

conversion cells. Spread sheets have been developed for adding several BCD digits and for simulating the 

BD conversion as a design tool. In this project Xilinx-ISE tool is used for simulation, logical verification, 

and further synthesizing. 

LANGUAGE USED: VERILOG. 

SOFTWARE USED: XILINX ISE 12.3i. 

I. INTRODUCTION 

Hardware implementations of decimal arithmetic 

units have recently gained importance because they 

provide higher accuracy in financial applications. 

In this work, we present a combinational decimal 

multiplier which can be pipelined to reach the 

desired throughput. The multiply unit is organized 

as follows: the multiplier is recoded; the partial 

products are kept in a redundant format; the partial 

product are accumulated by a tree of redundant 

adders and the final product is obtained by 

converting the carry-save tree’s outputs into 

binary-coded decimal (BCD) format. With respect 

to previous implementations of radix-10 multipliers 

such as the ones in our design is different in the 

following aspects:    

1) The multiplier is combinational (parallel) and 

not sequential;  

2) We recode only the multiplier while in both 

operands are recoded in -5 to +5; 

3) In the partial product generation only 

multiples of 5 and2 are required;   

4) The accumulation of partial products is done 

in a tree of radix-10 carry-save adders and 

counters while in the sequential unit of 

signed-digit adders are used. 

We present the standard cells implementation of 

the multiplier and compare its latency with those of 

the schemes presented in and Moreover, we 

compare the delay and the area of the decimal 

combinational multiplier with those obtained by the 

implementation of a binary (radix-4) double 

precision multiplier. 

II. REDUNDANT BCD 

REPRESENTATIONS 

The proposed decimal multiplier uses internally a 

redundant BCD arithmetic to speed up and simplify 

the implementation. This arithmetic deals with 

radix-10 ten’s complement integers of the form: 

The value of Zi depends on the decimal 

representation parameterized by (l; m; e). We use a 

4-bit encoding to represent digits Zi. This allows us 

to manage decimal operands in different 

representations with the same arithmetic, such as 

on the other hand, the binary value of the 4-bit 

vector representation of Zi is given by them 
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Fig: Combinational SD radix-10 architecture. 

In contrast to our previous SD radix-10 

implementations, 3X is obtained in a reduced 

constant time delay (3 XOR-gate delays) by using 

the XS-3 representation. Moreover, a negative 

multiple is generated from the correspondent 

positive one by a bitwise XOR operation. 

Consequently, the latency is reduced and the 

hardware implementation is simplified. The 

scheme proposed in also produces 3X in constant 

time but using redundant signed-digit BCD 

arithmetic. Decimal partial product reduction. In 

this stage, the array of dþ1 ODDS partial products 

is reduced to two 2d-digit words (A, B). Our 

proposal relies on a binary carry-save adder tree to 

perform carry-free additions of the decimal partial 

products. The array of dþ1 ODDS partial products 

can be viewed as adjacent digit columns of height h 

d þ 1. Since ODDS digits are encoded in binary, 

therules for binary arithmetic apply within the digit 

bounds, and only carries generated between radix-

10 digits (4-bit columns) contribute to the decimal 

correction of the binary sum. That is, if a carry out 

is produced as a result of a 4-bit (modulo 16) 

binary addition, the binary sum must 

beincremented by 6 at the appropriate position to 

obtain the correct decimal sum (modulo 10 

addition).Two previous designs implement tree 

structures for the addition of ODDS operands. In 

the non speculative BCD adder, a combinational 

logic block is used to determine the sum correction 

after all the operands have been added in a binary 

CSA tree, with the maximum number of inputs 

limited to 19 BCD operands. By contrast, in our 

method the sum correction is evaluated 

concurrently with the binary carry-save additions 

using columns of binary counters. Basically we 

count the number of carries per decimal column 

and then a multiplication by 6 is performed (a 

correction by 6 for each carry-out from each 

column). The result is added as a correction term to 

the output of the binary carry-save reduction tree. 

This improves significantly the latency of the 

partial product reduction tree. Moreover, the 

proposed architecture accepts an arbitrary number 

of ODDS or BCD operand inputs. Some of PPR 

tree structures presented in (the area-improved PPR 

tree) also exploit a similar idea, but rely on a 

custom designed ODDS adder to perform some of 

the stage reductions.  

Our proposal aims to provide an optimal reuse of 

any binary CSA tree for multi operand decimal 

addition, as it was done in for the 4221 and 5211 

decimal coding Conversion to (non-redundant) 

BCD. We consider the use of a BCD carry-

propagate adder to perform the final conversion to 

a non-redundant BCD product P ¼ Aþ B. The 

proposed architecture is a 2d-digit hybridparallel 

prefix/carry-select adder, the BCD Quaternary Tree 

adder (see Section 6). The sum of input digits Ai, Bi 

at each position i has to be in the range ½0; 18& so 

that at most one decimal carry is propagated to the 

next position i þ 1 . Furthermore, to generate the 

correct decimalcarry, the BCD addition algorithm 

implemented requires Ai þ Bito be obtained in 

excess-6. Several choices arepossible. We opt for 

representing operand A in BCD excess-6 (Ai2 

½0;9&, ½Ai& ¼Aiþe, e¼6), and B coded in BCD 

(Bi2 ½0;9&, e¼0). 

III. DECIMAL PARTIAL PRODUCT 

GENERATION 

The partial product generation stage comprises the 

recoding of the multiplier to a SD radix-10 

representation, the calculation of the multiplicand 

multiples in XS-3 code and the generation of the 

ODDS partial products.The SD radix-10 encoding 

produces d SD radix-10 digits Ybk, being the most 

significant digit (MSD) of the multiplier [29]. Each 

digit Ybk is represented with a 5-bit hot-one code 

(Y1k; Y2k; Y3k; zY4k;Y 5k) to select the 

appropriate multiple f1X; . . . ; 5Xg with a5:1 mux 

and a sign bit Ysk that controls the negation of the 

selected multiple.The negative multiples are 

obtained by ten’s complementing the positive ones. 

This is equivalent to taking the nine’s complement 

of the positive multiple and then adding  

1. As we have shown in Section 2, the nine’s 

complement can be obtained simply by bit 

inversion. 

2. Providing support for 20 or more input BCD 

operands would require a significant modification 

of the original non speculative addition algorithm. 
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Fig: SD radix-10 generation of a partial product 

digit. Generation of decimal multiples NX. 

The XOR gates at the output of the mux invert the 

multiplicand multiple, to obtain its 9’s 

complement, if the SD radix-10 digit is negative 

(Ysk¼1). On the other hand, if the signals (Y1k; 

Y2k; Y3k; Y4k; Y5k) are all zero then PP½k& ¼0, 

but it has to be coded in XS-3 (bit encoding 0011). 

Then, to set the two least significant bits to 1, the 

input to the XOR gate is Ysk¼Ysk_Ybkiszero (_ 

denotes the Boolean OR operator), where Ybk is 

zero equals 1 if all the signals (Y1k; Y2k; Y3k; Y4k; 

Y5k) are zero.In addition, the partial product signs 

are encoded into their MSDs (see Section 4.2). The 

generation of the most significant partial product 

PP½d& is described in Section 4.4, and only 

depends on Ysd1, the sign of the most significant 

SD radix-10 digit. 

Generation of the Multiplicand Multiples:  

We denote by NX2 f1X;2X;3X;4X;5Xg, the set of 

multiplicand multiples coded in the XS-3 

representation, withdigitsNXi2 ½3;12&, being 

½NXi& ¼NXiþ32 ½0;15& the corresponding value 

of the 4-bit binary encoding of NXi given by 

Equation (2). the high-level block diagram of the 

multiples generation with just one carry 

propagation. This is performed in two steps: 

Most-Significant Digit Encoding 

The MSD of each PP½k&, PPd½k&, is directly 

obtained in the ODDS representation. Note that 

these digits store the carries generated in the 

computation of the multiplicand multiples and the 

sign bit of the partial product. For positive partial 

products we haveNote that the term ½PPd½k&& is 

always positive. Specifically, for positive partial 

products (Ysk¼0), this term results in 

 

TABLE Preferred Digit Recoding Mappings for 

NX Multiples 

 

 

Correction Term 

The resultant partial product sum has to be 

corrected off-the-critical-path by adding a 

precomputed term, which only depends on the 

format precision d. This term has to gather: (a) the 

8 constants that have not been included in the MSD 

encoding and (b) a Particularizing for d¼16 and 

d¼34 digit operands, the following expressions for 

the correction term in 10’s complement are 

obtained. The correction term is allocated into the 

array of dþ1 partial products coded in ODDS 

(digits in ½0;15&), as we show in the next section. 

Partial Product Array 

As a conclusion of the considerations in the 

previous sections, Fig.  illustrates the shape of the 

partial product array, particularizing for d¼16. 

Note that the maximum digit column height is 

dþ1.In each column several components can be 

observed. Digits labeled with O represent the 

redundant excess-3 BCD digits in the set ½0;15&. 

Digits labeled with Sk represent the MSD of each 

partial product, PPd½k& (see Section 4.2). The 16 

least significant digits of the correction term fcð16Þ 

are placed at the least significant position of each 

row after being added to Ysk, to complete the 10’s 

complement in case of a negative partial product; 

thus Hk¼Yskþ f0;3;7g (digitwise addition, out of 

the critical path), so that Hk2 ½0;8&. Note that the 

negative bit 10
32

 is canceled with the carry-out of 

the partial product sum in excess. The 16 leading 

digits of the correction term, ½fcð16Þ&d, are added 

to the most significant partial product PP½d&. 

Thus, in parallel with the multiplicand his 

computation does not involve carry propagation 

and it is out of the critical path). Digits labeled as F 

in Fig., represent the most-significant partial 

product, PP½d&, where 

IV. DECIMAL PARTIAL PRODUCT 

REDUCTION 

The PPR tree consists of three parts:  

(1) A regular binary CSA tree to compute an 

estimation of the decimal partial product sum in a 

binary carry-save form (S, C),  

(2) A sum correction block to count the carries 

generated between the digit columns,  

(3) A decimal digit 3:2 compressor which 

increments the carry-save sum according to the 

carries count to obtain the final double-word 

product (A; B), A being represented with excess-6 

BCD digits and B being represented with BCD 

digits. The PPR tree can be viewed as adjacent 

columns of h ODDS digits each, h being the 

column height (see Fig.), and hdþ1. the high-level 

architecture of a column of the PPR tree (the ith 

column) with h ODDS digits in [0, 15] (4 bits per 

digit). Each digit column of the binary CSA tree 
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(the gray colored box in Fig.) reduces the h input 

digits and ncin input carry bits, transferred from the 

previouscorresponding dot-diagram representation 

for h¼17 (m¼14) in Fig. An efficient 

implementation is obtained by representing the 

digit of Wi6 with l ODDS digits, Wti½0&; . . . ; 

Wti½l 1&), being l ¼ 1 for Decimal64, and l ¼ 2 

for Decimal128. 

 

Fig. Decimal partial product array generated for 

d ¼ 16 (16  16-digit multiplier). 

 

Fig. High-level architecture of the proposed 

decimal PPR tree (h inputs, 1-digit column). 

 

Fig. Dot-diagrams for the proposed decimal PPR 

(h ¼ 17 inputs, 1-digit column). 

 

Fig Implementation of the PPR Tree Highest 

Column (h ¼ 17) for a 16  16-digit multiplication. 

This CSA generates l carry outs giþ1½0&;. . .; 

giþ1½l1& with weight 1610
i
, which are transferred 

to the next column, and introduced into the 6 block 

to produce another ODDS digit, Wzi 2 ½0; 15.The 

last step is the addition of digits Gi; Zi; Wzi of the 

column, GiþZiþWzi2 ½0;45&. We have designed a 

decimal 3:2 digit compressor that reduces digits 

Wzi, Gi and Zi to two digits Ai, Bi. The dot-diagram 

of the decimal 3:2 digit compressor is shown in 

Fig. To obtain the final BCD product by using a 

single BCD carry propagate addition, that is, 

P¼AþB, which is the last step in the multiplication 

(see Fig. and Section 3), it is required that Ai þ Bi 2 

½0; 18&. Moreover, to reduce the delay of the 

finalBCD carry-propagate adder (see Section 6) 

operand A is obtained in excess-6, so that we 

compute ½Ai& ¼Aiþe in excess e¼6 as defined by 

Equation (2), being the output digits sum ½Ai& 

þBi2 ½6;24&.The evaluation is split in two parts: 

Block A computes the sum of the two MSBS of the 

input digits (the bits with weights 8 and 4), and a 

two-bit carry input Whi2 f0;1;2;3g. This sum is in 

½0; 39 &. The outputs of this block are a BCD 

digit Ai in excess-6 ½Ai& 2 ½6;15& and a two-bit 

decimal carry output Whiþ12 f0;1;2;3g which is 

transferred to the next column (the iþ1th column). 

Note that the LSB of the carry output Whiþ1 

depends on the MSB of the input carry Whi. 

However, there is no further carry propagation 

since the LSB of Whiþ1 is just the LSB of ½Aiþ1&, 

that is, ½Aiþ1;0&. 

On the other hand, Block B implements the sum of 

the two LSB bits of the input digits (the bits with 

weights 2 and 1). This sum is in ½0;9&, so that Bi 

is evaluated as a regular binary addition. 

After that, the sum correction digits (Wti½0&;. . .; 

Wti½l1&) and the output digits of the binary CSA 

tree (Si, Ci) 
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V. FINAL CONVERSION TO BCD 

The selected architecture is a 2d-digit hybrid 

parallel prefix/ carry-select adder, the BCD 

Quaternary Tree adder. The delay of this adder is 

slightly higher to the delay of a binary adder of 8d 

bits with a similar topology. 

The decimal carries are computed using a carry 

prefix tree, while two conditional BCD digit sums 

are computed out of the critical path using 4-bit 

digit adders which implements ½Ai & þBiþ0 and 

½Ai& þBiþ1. These conditional sums correspond to 

each one of the carry input values. If the 

conditional carry out from a digit is one, the digit 

adder performs a 6 subtraction. The selection of the 

appropriate conditional BCD digit sums is 

implemented with a final level of 2:1 multiplexers. 

To design the carry prefix tree we analyzed the 

signal arrival profile from the PPRT tree, and 

considered the use of different prefix tree 

topologies to optimize the area for the minimum 

delay adder. 

VI. EVALUATION AND COMPARISON 

The proposed combinational architectures for BCD 

1616-digit and 34 34-digit multipliers are evaluated 

andcompared with other representative BCD 

multipliers. The area and delay figures of our 

architectures were obtained from an area-delay 

evaluation model for static CMOS gates, and 

validated with the synthesis ofverified RTL models 

coded in VHDL. This evaluation is detailed in 

Section 6.1. 

 

TABLE Area and Delay (LE-Based Model) for 

the Proposed Mults 

Finally, the most representative sequential and 

parallel decimal multipliers have been compared 

with our architecture. The results of the comparison 

are summarized in Section 6.2 

Evaluation 

As stated above, the evaluation has been performed 

in two steps. First, a technological independent 

evaluation using a model for static CMOS circuits 

based on Logical Effort (LE) has been carried out, 

and then the results obtained with this model have 

been validated with the synthesis and functional 

verification of the RTL model. 

 

 

Technological Independent Evaluation 

Our technological independent evaluation model 

allows us to obtain a rough estimation of the area 

and delay figures for the architecture being 

evaluated. It takes into account the different input 

and output gate loads, but neither interconnections 

nor gate sizing optimizations are modeled. The 

delay is given in FO4 units, that is, the delay of an 

1 inverter with a fanout of four inverters. The 

hardware complexity is given as the number of 

equivalent minimum size NAND2 gates. We do not 

expect this rough model to give absolute area-delay 

figures, due to the high wiring complexity of 

parallel multipliers. However, based on our 

experience this model is good enough for making 

design decisions at gate level and it provides 

reasonable accuracy of area and delay ratios to 

compare different designs. 

Table shows the delay, input capacitance (Lin) and 

area of the main building blocks used in the BCD 

multipliers. The input capacitance is normalized to 

the input capacitance of the 1 inverter. The Lout 

parameter represents the normalized output load 

connected to the gate. The XOR2 gate is 

implemented with CMOS transmission gates. 

To evaluate our architectures, gates with the drive 

strength of the minimum sized (1) inverter have 

been assumed, and buffers have been inserted to 

deal with high loads. The critical path delay in 

every stage of the multiplier has been estimated as 

the sum of the delays of the gates on this critical 

path. The area and delay figures obtained for the 16  

16-digit and 34  34-digit architectures are shown 

inTable 4. 

Synthesis Results 

The designs have been synthesized using Synopsys 

Design Compiler B-2012.09-SP3 and a 90 nm 

CMOS standard cell library [11]. The FO4 delay 

for this library is 49 ps undertypical conditions (1 

V, 25 C). The area-delay curves of Fig. have been 

obtained with the constraint Cout¼Cin¼4Cinv, 

whereCinvis the input capacitance of a 1inverterof 

the library. 

 

Fig. Area-delay space obtained from synthesis. 

We also include in Fig. the area-delay points 

estimated from the LE-based model evaluation. We 
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have kept the hierarchy of the design in the 

synthesis process as described in Sections 3 to 6 

(no top level architecture optimization options). 

Nevertheless, some specific structures have been 

optimized internally to reduce the overall delay. 

To ensure the correctness of the designs we have 

simulated the RTL models of the 1616-digit and 

3434-digit multipliers using the Synopsys VCS-

MX tool and a comprehensive set of random test 

vectors. 

Comparison 

Table shows the area and delay estimations 

obtained from synthesis for some representative 

BCD sequential and combinational multipliers. As 

far as we know, the most representative high-

performance BCD multipliers are 1616-digit 

combinational and sequential implementations. The 

area and delay figures shown in Table correspond 

to the minimum delay point of each 

implementation, and were obtained from the 

synthesis results provided in the respective 

reference, except for the two multipliers of 

reference, which correspond to an estimation 

obtained by their authors using a LE-based model. 

The comparison ratios are given with respect to the 

area and delay figures of a 53-bit binary Booth 

radix-4 multiplier extracted from. 

 

TABLE Synthesis Results for Fixed-Point 

Multipliers. 

The PPG of multipliers is based on a SD radix-5 

scheme that generates 32 BCD partial products for 

a 16-digit multiplier. Though it only requires 

simple constant time delay BCD multiplicand 

multiples, the 9’s complement operation for 

obtaining the negative multiples is more complex 

than a simple bit inversion. The partial product 

reduction implemented in is a BCD carry-save 

adder tree build of BCD digit adders. On the other 

hand, the BCD partial products are reduced in by 

using counters that compute the binary sum of each 

column of digits sum, and subsequent binary to 

decimal conversions. 

The BCD multiplier pre-computes all the positive 

decimal multiplicand multiples f0X;. . .;9Xg. The 

delay of PPG is reduced by representing the 

complex operands (3X;6X;7X;8X;9X) as the sum 

of two simpler multiples. The number of partial 

products generated is therefore equivalent to that of 

the SD radix-5 scheme. The PPR tree is 

implemented with BCD digit adders as in. This has 

the disadvantage of a large area compared to the 

other BCD multipliers analyzed. 

The two 1616-digit BCD multipliers of implement 

an easy-multiple PPG (only precomputes 

f2X;4X;5Xg) that produces 32 BCD partial 

products. The intermediate decimal partial product 

sums are computed in overloaded BCD to speed up 

the PPR evaluation. The delay-improved design 

uses a tree structure built of five levels overloaded 

BCD digit adders, while the area-improved design 

replaces two levels of these custom designed 

adders by three levels of 4 : 2 compressors and a 

binary counter. This reduces the area consumption 

but at the cost of introducing a significant latency 

penalty. 

 

Fig. Area-delay space for the fastest 1616-digit 

mults. 

The BCD multipliers in use either the SD radix-5 

PPG scheme or a SD radix-10 PPG scheme. The 

last one has the advantage that practically it halves 

the number of partial products generated by the 

former (17 against 32 for 1616-digit 

multiplications). However, it has the disadvantage 

of a significant latency overhead due to the 

generation of the complex multiple 3X. The latency 

and area of priorart multipliers are improved by 

representing the partial products in (4221) or 

(5211) decimal codes, which allow them to 

implement PPR using a very regular and compact 

tree of 4-bit binary carry-save adders (built of 3 : 2 

or 4 : 2 compressors) and decimal digit doublers. 

The most recent implementation is presented in. It 

also uses a SD radix-10 PPG scheme to reduce the 

number of partial products generated to 17, and 

subsequently, the area of the PPR tree. To avoid the 

latency overhead of the 3 multiple generation, the 

partial products are coded in a redundant SD 

representation.Sequential1616-digit (Decimal64) 

BCD multipliers are about two times smaller than 

equivalent parallel implementations, but have 

higher latency and reduced throughput (one mult 

issued every 17 cycles). For example, the proposed 

multiplier is about seven times faster than the best 
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sequential implementation proposed in, but 

requires 2.5 times more area. 

To compare the high hardware cost of a 

combinational Decimal128 implementation, we 

also include in Table 5 the area and delay figures 

obtained for our 3434-digit BCD multiplier. Due to 

the tight area and power consumption constraints of 

current DFUs , a sequential architecture seems a 

more realistic solution than a fully pipelined 

implementation for a commercial Decimal128 

multiplier. 

Finally, we present a more detailed comparison of 

the fastest BCD 1616-digit combinational 

multipliers (SD Radix-5 and SD Radix-10, and the 

proposed one) in terms of latency and area. The 

corresponding area-delay synthesis values are 

shown in Fig.  

We have directly introduced in the figure the area-

delay curves of referenced multipliers and as 

provided by their authors, since all of them were 

synthesized using 90 nm CMOS standard cell 

libraries and similar conditions. The area-delay 

points for the two multipliers of reference 

correspond to an estimation obtained by their 

authors using a LE-based model. From the area-

delay space represented in Fig., we observe that our 

proposed decimal multiplier has an area 

improvement roughly in the range 20-35 percent 

depending on the target delay. On the other hand, 

for the minimum delay point (44FO4), the 

proposed multiplier is still competitive with the 

fastest design shown in .More recently, the authors 

of reference have presented in a comparison study 

between their delay-improved multiplier and the 

multiplier of reference based on synthesis results 

using a TSMC 130 nm standard CMOS process 

under typical conditions (1.2 V, 25 C). They show 

that for the minimum delay point of each one of the 

two area-delay curves obtained, the delay-

improved multiplier is 20 percent faster and has 10 

percent less area compared to the design of. 

Therefore, according to the curve corresponding to 

the design presented in should be to the left of the 

area-delay points corresponding to the delay-

improved design presented in. 

VII. RESULTS 

RTL SCHEMATIC: 

 

 

 

TECHNOLOGY SCHEMATICS: 

 

WAVEFORM: 

 

VIII. CONCLUSION 

In this paper we have presented the algorithm and 

architecture of a new BCD parallel multiplier. The 

improvements of the proposed architecture rely on 

the use of certain redundant BCD codes, the XS-3 

and ODDS representations. Partial products can be 

generated very fast in the XS-3 representation 

using the SD radix-10 PPG scheme: positive 

multiplicand multiples (0X, 1X, 2X, 3X, 4X, 5X) 

are precomputed in a carry-free way, while 

negative multiples are obtained by bit inversion of 

the positive ones. On the other hand, recoding of 

XS-3 partial products to the ODDS representation 

is straightforward. The ODDS representation uses 

the redundant digit set [0, 15] and a 4-bit binary 
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encoding (BCD encoding), which allows the use of 

a binary carry-save adder tree to perform partial 

product reduction in a very efficient way. We have 

presented architectures for IEEE-754 formats, 

Decimal64 (16 precision digits) and Decimal128 

(34 precision digits). The area and delay figures 

estimated from both a theoretical model and 

synthesis show that our BCD multiplier presents 

20-35 percent less area than other designs for a 

given target delay 
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