
Bani Mukherjee* et al. 
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH 

 Volume No.5, Issue No.3, April – May 2017, 5955-5961. 

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved.  Page | 5955 

 

Magneto-Hydro-Dynamics Boundary Layer Viscous 

Flow Over A Stretching Sheet: An Approach Based 

on Homotopy Perturbation Method 
Dr. (Mrs.) BANI MUKHERJEE 

Professor, Department of Applied Mathematics 

Indian Institute of Technology ( ISM ),  Dhanbad -

826004, Jharkhand, India.  

RAGA ASHRITHA
 

Student, Integrated M Tech (M & C ) 

Dept. of Applied Mathematics,  Indian Institute of 

Technology ( ISM ), Dhanbad-826004 , Jharkhand, India.  

Abstract- In this paper by means of homotopy perturbation method an approximate solution of the steady 

magneto-hydrodynamics flow under slip condition over a permeable stretching sheet has been studied. 

The homotopy perturbation method (HPM) has been used to solve the governing non linear equation to 

derive an approximate analytical solution. The main feature of the HPM is that it produces analytic 

expression for the solution to nonlinear differential equations and the obtained analytic solution is in the 

form of an infinite power series. In this work the analytic solution obtained by using first two terms from 

HPM solution. The solution is given in a closed form equation and is an approximate solution of the full 

governing Navier–Stokes equations. The effects of the slip, the magnetic and the mass transfer 

parameters are discussed. Results show that there is only one physical solution for any combination of the 

slip, the magnetic, and the mass transfer parameters. The velocity and shear stress profiles are greatly 

influenced by these parameters. 
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I. INTRODUCTION 

During the last decades,  flow of incompressible 

viscous fluid and heat transfer phenomena over 

stretching sheets  have received great attention, 

owning to the abundance of practical application in 

the chemical and manufacturing process such as 

aerodynamics, extrusion of plastic sheets, 

continuous casting of metals, glass, fibres and 

paper production. The study of hydrodynamic flow 

of an electrically conducting fluid caused by the 

deformation of the wall of a vessel containing a 

fluid is of considerable interest in a modern 

metallurgical and metal-working process. 

The study of magneto-hydrodynamic has important 

applications, and may be used to deal with 

problems such as cooling of nuclear reactors by 

liquid sodium and induction flow meter, which 

depends on the potential difference in the fluid in 

the direction perpendicular to the motion and to the 

magnetic field (Ganesan & Palani [1]). At high 

operating temperature, radiation effect can be quite 

significant. Many processes in engineering areas 

occur at high temperatures and knowledge of 

radiation heat transfer becomes very important for 

the design of pertinent equipment (Seddeek [2]). 

The viscous flow due to a stretching boundary 

occurs in expanding or contracting surfaces in a 

fluid such as extrusion of sheet material form a die 

and the elongation of pseudo-pods.  The flow and 

heat transfer of a viscous and incompressible fluid 

over a stretching sheet has attracted the interest of 

many researchers in view of its applications in 

many industrial manufacturing process- examples 

are in the glass blowing, the cooling and/or drying 

of papers and textiles, the extrusion of a polymer in 

a melt-spinning process, metals and plastics, 

continuous casting and spinning of fibers, etc. 

Crane [3] was the first who studied the two-

dimensional steady flow of an incompressible 

viscous fluid caused by a linearly stretching plate 

and obtained an exact solution in closed analytical 

form. Since then, many authors have studied 

various aspects of this problem, as Ishak et al. [4] 

have studied the flow behaviors due to a stretching 

sheet in the presence of magnetic field, considering 

some other physical features such as power-law 

velocity and buoyancy effect, with various surface 

heating conditions.  

All the above mentioned studies continued their 

discussions by assuming the no slip boundary 

conditions. The no-slip boundary condition that is 

the assumption that a liquid adheres to a solid 

boundary, is one of the central tenets of the 

Navier–Stokes theory. However, there are 

situations wherein this condition does not hold. 

Partial velocity slip may occur on the stretching 

boundary when the fluid is particulate such as 

emulsions, suspensions, foams and polymer 

solutions. The non-adherence of the fluid to a solid 

boundary, also known as velocity slip, is a 

phenomenon that has been observed under certain 

circumstances. Recently, many researchers 

investigated the flow problems taking slip flow 

condition at the boundary. The fluids that exhibit 

boundary slip have important technological 

applications such as in the polishing of artificial 

heart valves and internal cavities. 
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Takher et al. [5] investigated the unsteady magneto 

hydrodynamic flow due to the impulsive motion of 

a stretching sheet and reported that the surface heat 

transfer increase upto a certain portion of time, 

beyond that it decreases. There are many situations 

where the flow and heat transfer are unsteady due 

to sudden stretching of a sheet. Heat transfer of an 

unsteady boundary layer flow over stretching 

sheets by Elbashbeshy and Bazid [6] has studied 

that thermal boundary layer thickness and 

momentum boundary layer thickness decrease with 

unsteadiness parameter, on the other hand the effect 

of thermal radiation and boundary layer flow and 

heat transfer problem can be quite significant at 

high operating temperature. In view of this 

Elbashbeshy et al.[7], [8] and Hossain et al.[9] have 

studied thermal radiation of gray fluid which is 

emitting and  absorbing radiation in non-scattering 

medium. The unsteady viscous flow over a 

continuous shrinking surface with mass transfer has 

been studied by Fang et al. [10]. Ali et al. [11] have 

studied the problem of unsteady fluid and heat 

induced by submerged stretching surface.  

The newest analytical methods to solve the 

mathematical problems are both homotopy and 

perturbation methods. In recent years, the 

application of the homotopy perturbation methods 

in nonlinear problems has been studied by scientist 

and engineers. Homotopy techniques were applied 

to find all roots of nonlinear equation first in  

(Hillermeier, [12]),, (Yildirim, [13]), (Ganji and 

Rajabi,[14]), (Domairry and Nadim,[15]) and( 

Rajabi, [16]). Recently, the application of 

homotopy theory becomes a powerful 

mathematical tool, when it is successfully coupled 

with perturbation theory (He, [17], [18]) and 

(Ganji, [19]). 

Motivated by the above investigations and possible 

applications, the purpose of this article is to 

studythe nature of the MHD flows over a stretching 

sheet applying homotopy perturbation method 

which is useful for finding the approximate 

analytical solution. In this paper the homotopy 

perturbation method (HPM) has been used to solve 

the governing nonlinear equation to derive an 

approximate analytical solution. HPM is an 

analytical procedure for finding the solution of 

problems which is based on the constructing a 

homotopy with an embedding parameter p  that is 

considered as a small parameter 

A. Abbreviations and Acronyms 

    velocity component in x  direction 

    velocity component in y direction 

P   pressure of the fluid 

L   proportional constant of velocity slip     

B   magnetic field  strength 

M  magnetic parameter  

f  dimensionless stream function 

   the kinematic viscosity 

 electrical conductivity of the fluid 

( , )x y steam function 

 similarity variable 

 unknown parameter 

 velocity parameter 

  density of the fluid 

II. FORMULATION OF THE PROBLEM 

Two-dimensional laminar flow over a continuously 

stretching sheet in an electrically conducting 

quiescent fluid is considered in the influence of 

transverse magnetic field. The sheet stretching 

velocity and the wall mass transfer velocity as is 

taken respectively as 0 ( )wU U x and  

( )w wv v x , which will be determined later. A 

uniform magnetic field of strength B  is applied 

normal to the stretching surface. The induced 

magnetic field is being neglected since the magnetic 

Reynolds number for the flow is considered to be 

very small. No external electric field is applied so 

the effect of polarization of fluid is neglected. The 

x-axis is taken along the continuous surface in the 

direction of motion with the slot as the origin and y- 

axis is perpendicular to it as shown in Fig. 1 

 

Fig. 1 

B. Equations 

The governing equation of continuity, momentum 

and energy under above assumptions reduces to: 

 (1) 

2 2 2

2 2

1
( )

u u p u u B
u v u

x y x x y




 

    
     

    
 (2) 

2 2

2 2

1
( )

v v p v v
u v

x y x x y




    
    

    
 

(3) 

With the boundary conditions: 
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0( ,0)
u

u x U x L
y


 


     (4) 

( ,0) ( )     wv x v x
  (5)  

u( , ) 0x    (6)  

Where   and  are velocity component in x and y 

direction respectively,     is the kinematic 

viscosity, p is the pressure,  is the density,  is 

the electrical conductivity of the fluid, and L is a 

proportional constant of the velocity slip. The 

magnetic field with strength B is applied in the 

vertical direction and the induced magnetic field is 

neglected considering that this group of N-S 

equations is valid for small magnetic field strength. 

The continuity equation (1) is satisfied by the 

Cauchy- Riemann equation 

u
y





and v
x


 


 where ( , )x y  is the steam 

function. 

The following similarity transformation and 

dimensionless variables are introduced  

0U
y


   (7) 

0( , ) ( )x y U xf  
 

(8) 

where  is the similarity variable,   is the stream 

function and f  is the dimensionless stream 

function. 

The velocity u & v in terms of stream function with 

similarity variable are expressed as 

0 '( )u u xf 
 

(9) 

0 ( )v U f    (10) 

The wall-mass-transfer velocity becomes

0( ) (0)wv x U f 
 

(11) 

The above momentum and energy equations is 

made free from dimension & reduces to 

2 2 0f ff f M f                          (12) 

with the boundary conditions 

,    1f s f f      at  0                (13)  
 

0f    at 
 

(14)
 

where dash represent differentiation with respect 

to, s is the wall mass transfer parameter showing 

the strength of the mass-transfer at the sheet, M is 

the magnetic parameter with 

2
2

0

B
M

U




   and   

    is the velocity parameter with
0U

L


 . 

The pressure term can be obtained from equation 

(3)   as

2

2

p v v

y





  


constant 

III. HOMOTOPY PERTURBATION 

METHOD 

Equation (12) can be rewritten in the following 

form 

( ) 0u F u                                            (15) 

where 

2 2( )F u uu u M u     and ( ) ( )u f   

                                                                     (16) 

According to homotopy perturbation method the 

following has been constructed 

2 2( ) 0u u p F u u           (17) 

where is unknown parameter so that  when p=1 

perturbation equation (17) reduces to the above 

equation (15) 

The boundary conditions that is equation (13) and 

equation (14) reduces to 

(0) , (0) 1 ''(0) u s u u    (18) 

 ( ) 0u  
        (19)

 

The solution of equation (17) is considered as a 

power series in p as follow: 

2

0 1 2 ...............u u pu p u              (20) 

Substituting equation (20) into equation (17) and 

equating the first two terms of identical power of

p , that is 

Coefficient of 
0p : 

2

0 0 0,u u      (21) 

with 

0

0

0

(0)  

(0) 1 

( ) 0

u s

u

u



 

  

 

Coefficient of
1p :    

2 2 2 2

1 1 0 0 0 0 0 0u u u u u M u u             (22) 
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With 

1

1 1

1

(0) 0

 (0) '' (0)

 ( ) 0

u

u u

u





 

  
 

 

The solution of equation (21) is given by, 

0 2

1
( ) [1 exp( )]u s 

 
   


     (23) 

Using the solution of 0 ( )u   equation (22) has 

been reduced to 

2

1 1 1u u C e           (24) 

 Where, 

2 2

1

1 1
[ ]( )

1 1
C s M 

 
   

 
 

  

The solution of 1( )u  is obtaining as follow: 

1( ) ,u B e        (25) 

1

2
       

2

C
where B




, 

Or 

2 2

2

1 1 1
[ ]( )

2 1 1
B s M 

  
   

 
 

 (26) 

The solution of 1( )u  is satisfied by the initial and 

boundary conditions that is 1(0) 0u  and 

1( ) 0u   respectively. Since   1( )u B e   

therefore 1(0)u B  and 1'' (0) 2u B  . 

Henceunder the other initial condition that is

1 1(0) '' (0)u u  , the following result obtain: 

(1 2 ) 0B    

Which is true only if either B=0  or    
1

2



   

  CASE 1:  0B   OR 
1

2



 

 

Therefore, the approximate solution under the 

constraint 0B   

0 1( ) ( ) ( )u u u   

2

2 2

2

1
( ) [1 exp( )]

1 1
         [ ]

2 1 1

u s

e
s M



 
 


 

  



   


   
   

 (27) 

Where 
1

2



   

Differentiating twice with respect to    that is 

( )u   which is  given by 

2 2

( ) [exp( )]
1

1 1 2
      [ ][ ]

2 1 1 1

u

e e
s M

 


 




 

   

 


   



    
  

 

 
(28)

 

The value of (0)f  becomes 

22(2 )
(0) (0) 2

M
f u s




    

 
(29)

 

CASE2:  0B   

The approximate solution when 0B  is given by  

0 1( ) ( ) ( )u u u     

or 

2

1
( ) [1 exp( )]u s 

 
   


, 

where is the root of the following third degree 

algebraic equation:
3 2 2 2(1 ) ( ) 1 0s s M M          

 (30)
 

Differentiating twice with respect to       that is  

( )u  which is given by 

( ) [exp( )]
1

u


 



  


  (31) 

The value of (0)f  becomes 

(0) (0)
1

f u





  


 (32) 

Equation (30) is a complete cubic algebraic 

equation.The positive real roots of  is the only 

physically feasible solution which is based on the 

flow configuration. Moreover it is interesting to 

note that the solution by Wang [20] is the special 

case of our solution when M = 0 and the solution of 
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Andersson [21] and Wang [22] is also the special 

case of our general solution when both 0M  and

0s  . 

IV. RESULT 

The physical feasible solution is determined for any 

combination of three control parameters, namely 

the mass-suction, the magnetic and the slip 

parameters considering only the positive root of 

equation (3.17). Few numerical values of  under 

different combination of the three parameters are 

shown in Table-1 and Table- 2 for M =0.5 and M 

=2.0 respectively. It is observed that the value of 

 increases with the increase of mass parameter 

and magnetic parameter. However it decreases with 

the increase of slip parameter. 

TABLE.I:The solution of    when 0.5M 
under different values of   and   

ϒ 

s       

0.0 0.5 1.0 3.0 10.0 

3 3.3708                   3.1984                      3.1555                  3.1114                    3.0910 

2 2.5000                   2.3092                      2.2481                  2.1759                    2.1378 

1 1.7247                   1.5326                       1.4527                 1.3364                    1.2574 

0 1.1180                   0.9619                       0.8837                  0.7473                   0.6231 

-1 0.7247                   0.6235                       0.5669                   0.4594                   0.3499 

-2 0.5000                   0.4388                       0.4013                   0.3252                   0.2420 

-3 0.3708                    0.3323                      0.3070                    0.2520                   0.1875 

TABLE-2:  The solution of      when  2.0M   

under different values of   and   

  ϒ         

s       

0.0 0.5 1.0 3.0 10.0 

3 4.1926                  4.0651                     4.0394                4.0153             4.0049 

2 3.4495                  3.3186                      3.2876                3.2567             3.2427 

1 2.7913                  2.6631                      2.6274                2.5890             2.5706 

0 2.2361                  2.1179                      2.0796                2.0349             2.0118 

-1 1.7913                  1.6891                      1.6511                1.6029             1.5760 

-2 1.4495                  1.3652                      1.3301                1.2818              1.2525 

-3 1.1926                  1.1249                      1.0938                1.0478             1.0178 

 

In order to show to study the effect of the three 

parameters on the flow field and shear stresses, few 

typical velocity and shear stress profile for different 

combination of the three parameter are plotted in 

Figure 1.The effects of the magnetic parameter by 

keeping the slip and mass suction parameters 

constant has been shown at Figure 2. (a) and Figure 

2(b) respectively as follows:- 

 

Figure. 2.(a) 

Velocity profiles (func = ( )f  ) at  =1 and  =0.5 

under different magnetic parameters  M =0.5, 1.0, 

2.0, 5.0. 

 

Figure 2.(b) 

Shear stress profiles (func = ( )f  ) at  =1 and 

 =0.5 under different magneticparameters  

 M =0.5, 1.0, 2.0, 5.0. 

The effect of velocity slip parameters are shown in 

the following Figure3 (a), Figure3 (b), and Figure4 

(a), Figure 4(b). A mass suction is applied at the 

surface with M=1 and s=1 in Figure 3(a) and 

Figure3(b) and with M=0.1 and  s = - 1 in Figure 

4(a) & Figure 4(b). 

 

Figure 3(a) 

Velocity profiles (func = ( )f  )at M =1and    = 1 

under    different velocity slip parameters   = 0.1, 

0.5, 1.0, 2.0. 
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Figure 3 (b) 

Shear stress profiles (, func = ( )f  ) at M =1and  

  = 1 under different velocity slip parameters  

  = 0.1, 0.5, 1.0, 2.0. 

 

Figure 4(a) 

Velocity profiles at  = −1 and  =0.1 under 

different velocity slip parameters   = 0.1, 1.0, 3.0, 

10.0. 

 

Figure 4(b) 

Shear stress profiles at  = −1 and  =0.1 under 

different velocity slip parameters   = 0.1, 1.0, 3.0, 

10.0)  

The effect of mass transfer parameters are studied 

graphically in figure 5(a) & Figure 5 (b) for M=0.5 

and  = 0.5 to visualize how the mass injection 

helps the flow to penetrate more into the fluidas 

follows:  

 

Figure 5(a) 

Velocity profiles at =0.5and  =0.5underdifferent 

mass suction parameters s = 2.0, 1.0, 0, -1.0, -2.0.  

 

Figure 5(b) 

 Shear stress profiles at =0.5and  =0.5under 

different mass suction parameters s = 2.0, 1.0, 0,-

1.0, -2.0. 

It is observed from the above Figures 2(a) & 2(b) 

that the wall slips velocity increases with the 

increase of M and the wall drag force also increases 

with the increase of M. The graph as in Figure 3. 

(a) & 3 (b) shows that higher velocity slip occur for 

a large value of   . The wall drag force becomes 

smaller for a large value of  . Flow penetrates 

deeper for a small value of  . There are no common 

points between these velocity and shear-stress 

profiles. Similarly again in Figure 4(a) & 4 (b) the 

velocity slip increases and the wall drag force 

decreases with the increase of slip parameter. 

However for both the velocity and shear stress 

profile there are interception points. The effect of 

mass transfer parameters are studied in figure 5(a) 

& 5 (b) for M=0.5 and  = 0.5 to visualize that mass 

injection helps the flow to penetrate more into the 

fluid.   

In the present work , the homotopy perturbation 

method (HPM) has been applied to compute the 

solution domains under certain values of control 

parameters , typical velocity and stress profiles for 

different combination of three parameter has been 

illustrated graphically. The combination of the 

partial slip, the magnetic effect and mass transfer 

greatly affects the fluid flow and shear stresses on 

the wall and in the fluid. 
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