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Abstract: A brand new methodology for embedding residue arithmetic inside a dual-field Montgomery 

modular multiplication formula for integers in as well as for polynomials was presented within this 

project. A design methodology for incorporating Residue Number System (RNS) and Polynomial Residue 

Number System (PRNS) in Montgomery modular multiplication in GF (p) or GF (2n) correspondingly, in 

addition to VLSI architecture of the dual-field residue arithmetic Montgomery multiplier are presented 

within this paper. In cryptographic applications to engender the public and private keys we suffer from 

the arithmetic operations like advisement, subtraction and multiplication. An analysis of input/output 

conversions to/from residue representation, combined with the suggested residue Montgomery 

multiplication formula, reveals prevalent multiply-accumulate data pathways both between your 

converters and backward and forward residue representations. 

Keywords: Carry Save Addition; Energy Efficient Architectures; Montgomery Modular Multiplier; 

Cryptosystem; 

I. INTRODUCTION 

The computation from the Montgomery 

exponentiation (ME) within the Residue Number 

System (RNS) sanctions constraining the delay 

because of carry propagation and reaching a higher 

amount of parallelism. This method mainly 

necessitates the execution of some Montgomery 

multiplications (MMs). However, in RNS, some 

operations are natively arduous to complete. 

Hence, several approaches happen to be suggested 

to be able to planarity exploit the potential for RNS 

for modular exponentiation, by minimizing the 

outcome of cognate drawbacks. A vital component 

of these approaches may be the Base Extension 

(BE), which calculates several on the different 

RNS base. Using residue systems can provide 

reduced complexity and power use of arithmetic 

units with large word lengths [1]. However, 

RNS/PRNS implementations bear the additional 

price of input converters to translate figures from 

the standard binary format into residues and output 

converters to translate from RNS/PRNS to binary 

representations. The mathematical conditions that 

should be satisfied for any valid RNS/PRNS 

incorporation are examined. The derived 

architecture is extremely parallelizable and 

versatile, because it supports binary-to RNS/PRNS 

and RNS/PRNS-to-binary conversions, Mixed 

Radix Conversion (MRC) for integers and 

polynomials, dual-field Montgomery 

multiplication, and dual-field modular 

exponentiation and inversion within the same 

hardware. 

II. RNS TECHNIQUE 

A residue number system is characterized by a 

predicate that is not a single radix but an N-tuples 

of integers (mN,mN-1 … m1). Each of  these mi (i 

= 1, 2, … N) is called a modulus. An integer “X” is 

represented in the residue number system by N-

tuple (xN, xN-1… x1) where xI is a nonnegative 

integer gratifying 

X = mI * qI  +  xI  , ………… (1) 

Where qI is the most sizably voluminous integer 

such that 0<=xI <= (mI – 1). xi is kenned as the 

residue of X modulo mi, and notations X mod mi 

and |X|mi are commonly utilized. In Residue 

Number Systems (RNS), an integer X is 

represented by its residues {x0…..xn-1} modulo a 

base of relatively prime numbers {m0…..mn-1}. 

Thus an astronomically immense number can be 

represented as a set of diminutive integers. 

Additament and multiplication can be facilely 

parallelized, there is no carry propagation. The time 

is reduced to the evaluation of these operations 

with diminutive numbers. This representation is 

utilizable in cryptography and digital signal 

processing. Furthermore, in these two domains, 

modular multiplication (A X B mod N) is 

frequently utilized. When a number gets more 

immensely colossal, the arithmetic operations get 

more involutes. Thus in RNS system, the sizably 

voluminous numbers can be represented into their 

residues. The residues are conspicuously minutely 

diminutive in comparison to the immensely 

colossal number [2]. Hence, the arithmetic 
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operations will be simple and can be performed on 

each residue independently giving the provision of 

parallel operations. The RNS divides an integer 

into a number of more diminutive integers that can 

be processed in parallel independently of each 

other.  

III. RSA ALGORTIHM 

RSA implemented two important ideas: i) Public-

key file encryption. This concept omits the 

requirement for a “courier” to provide secrets of 

recipients over another secure funnel before 

transmitting the initially-intended message. In 

RSA, file encryption keys are public, as the 

understanding keys aren't, so just the person using 

the correct understanding key can decipher an 

encrypted message. Everybody has their very own 

file encryption and understanding keys. The keys 

should be made in a way the understanding key 

might not be easily deduced in the public file 

encryption key. ii) Digital signatures. The receiver 

might need to verify that the transmitted message 

really originated in the sender (signature), and 

didn’t just originate from there (authentication). 

IV. MONTGOMERY MULTIPLICA-TION 

Let the modules n be a k-bit integer i.e., 2
k-1

≤n<2
k
 

and let r be 2
k
.The Montgomery Multiplication 

algorithm requires that r and n be relatively prime, 

i.e., gcd(r,n)=gcd(2
k
,n)=1.this requirement is 

satisfied if n is odd. in order to describe the 

Montgomery multiplication algorithm, we first 

define the n-residue of an integer a<n as a=a.r(mod 

n).it is the straightforward to show the set is a 

complete residue system.                                                    

{a.r mod n ,0 ≤ a ≤ n-1} Montgomery 

multiplication requires converting a and b into a 

special representation called Montgomery form. 

However, when many products are required, as 

in modular exponentiation, the conversion to 

Montgomery form becomes a negligible fraction of 

the time of the computation, and performing the 

computation by Montgomery multiplication is 

faster than the available alternatives. Let N denote 

a positive integer modulus. The ring Z/NZ consists 

of residue classes modulo N, that is, sets of the 

form:  

 

where a is some fixed integer. Each residue class is 

a set of integers such that the difference of any two 

integers in the set is divisible by N [3]. The residue 

class corresponding to a is denoted . Equality of 

residue classes is called congruence and is denoted:    

                       

Storing an entire residue class on a computer is 

impossible because the residue class has many 

elements. Instead, residue classes are stored as 

representatives. Conventionally, these 

representatives are the integers a for which 0 

≤ a ≤ N − 1. If a is an integer, then the 

representative of  is written a mod N. When 

writing congruence’s, it's common to identify an 

integer with the residue class it represents. With 

this convention, the above equality is written 

     

Arithmetic on residue classes is done by first 

performing integer arithmetic on their 

representatives. The output of the integer operation 

determines a residue class, and the output of the 

modular operation is determined by computing the 

residue class's representative. For example, if N = 

17, then the sum of the residue classes  and 

 is computed by finding the integer sum 7 + 15 = 

22, then determining 22 mod 17, the integer 

between 0 and 16 whose difference with 22 is a 

multiple of 17. In this case, that integer is 5, so       

  

If a and b are integers in the range [0, N − 1], then 

their sum is in the range [0, 2N − 2] and their 

difference is in the range [−N + 1, N − 1], so 

determining the representative in [0, N − 1]requires 

at most one subtraction or addition (respectively) 

of N. However, the product ab is in the 

range [0, N
2
 − 2N + 1]. Storing the intermediate 

integer product ab requires twice as many bits as 

either a or b, and efficiently determining the 

representative in [0, N − 1] requires division. 

Mathematically, the integer between 0 and N − 

1 that is congruent to ab can be expressed by 

applying the division algorithm: 

  

where q is the quotient  and r, the 

remainder, is in the interval [0, N −    1]. The 

remainder r is ab mod N. Determining r can be 

done by computing q, then subtracting qN from ab. 

For example, the product  is determined by 

computing  

                                     

dividing ,  and subtracting 

  . 

The only mathematical requirement on the 

auxiliary modulus R is that it be a positive integer 

such that gcd(N, R) = 1. For computational 

purposes it is also necessary that division and 

reduction modulo R be inexpensive, and the 

modulus is not useful for modular multiplication 

unless R > N. The Montgomery 

form or Montgomery representation of the residue 

class with respect to R is aR mod N, that is, it is 

the representative of the residue class . For 

example, suppose that N = 17 and that R = 100. 

The Montgomery forms of 3, 5, 7, and 15 are300 

https://en.wikipedia.org/wiki/Modular_exponentiation
https://en.wikipedia.org/wiki/Ring_(mathematics)
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mod 17 = 11, 500 mod 17 = 7, 700 mod 17 = 3, 

and 1500 mod 17 = 4. Addition and subtraction in 

Montgomery form are the same as ordinary 

modular addition and subtraction because of the 

distributive law: 

 

 

This is a consequence of the fact that, 

because gcd(R, N) = 1, multiplication by R is 

an isomorphism on the additive group Z/NZ. For 

example, (7 + 15) mod 17 = 5, which in 

Montgomery form becomes (3 + 4) mod 17 = 7. 

Multiplication in Montgomery form, however, is 

seemingly more complicated. The usual product 

of aR and bR does not represent the product 

of a and b because it has an extra factor of R: 

 

Computing products in Montgomery form requires 

removing the extra factor of R [4]. While division 

by R is cheap, the intermediate product is not 

divisible by R because the modulo operation has 

destroyed that property. So for instance, the 

product of the Montgomery forms of 7 and 15 

modulo 17 is the product of 3 and 4, which are 12. 

Since 12 is not divisible by 100, additional effort is 

required to remove the extra factor of R. Removing 

the extra factor of R can be done by multiplying by 

an integer R′ such that  

,  

that is, by an R′ whose residue class is the modular 

inverse of R mod N. Then, working modulo N, 

 

The integer R′ exists because of the assumption 

that R and N are co-prime. It can be constructed 

using the extended Euclidean algorithm. The 

extended Euclidean algorithm efficiently 

determines integers R′ and N′ that satisfy Bézout's 

identity 0 < R′ < N, 0 < N′ < R, and: 

 

This shows that it is possible to do multiplication in 

Montgomery form. A straightforward algorithm to 

multiply numbers in Montgomery form is therefore 

to multiply aR mod N, bR mod N, and R′ as 

integers and reduce modulo N. 

V. ARCHITECTURES OF SYSTEM 

 

Fig.1.Proposed Architecture 

Dual-Field Addition /Subtraction: A Dual-field 

Full Adder (DFA) cell is basically a Full Adder 

(FA) cell consists of half adder and equipped with a 

field select signal ( fsel ), that controls the 

operation mod. When fsel= 0, the carry output is 

forced to 0 and the sum outputs the XOR operation 

of the inputs. As already mentioned, this is 

equivalent to the addition operation in GF(2n). 

When fsel = 1, GF(p) mode is selected and the cell 

operates as a normal FA cell. Dual-field adders in 

various configurations can be mechanized by 

utilizing DFA cells. In the proposed 

implementation, 3-level, CLA with 4-bit Carry 

Look ahead Generator (CLG) groups are employed. 

An example of a 4-bit dual-field CLA is shown 

below. The GAP modules generate the signals pi = 

xi XOR yi , gi = xi AND yi , ai = xi OR yi , and 

AND gates along with a fsel signal control whether 

to eliminate carries or not. The carry look ahead 

generator is an AND -OR network. Comparing the 

previous approach employing, which requires L (L-

1)/2 modular multiplications, the optimized MRC 

requires only L-2 modular multiplications [5]. The 

methodology is further extended for the case of GF 

(2n ). With trivial modifications of algorithms for 

modular addition/subtraction in  a dual-field 

modular adder/subtracted (DMAS) can be 

mechanized using CLA adders      When , the 

circuit is in mode and the output is derived directly 

from the top adder which performs a addition.  

Dual-Field Multiplication: A parallel multiplier, 

which is suitable for high-speed arithmetic, and 

requires little modification to support both fields, is 

considered in the proposed architecture. Regarding 

input operands, either integers or polynomials, 

partial product generation is common for both 

fields. Consequently, the addition tree that sums the 

partial products must support both formats. In 

GF(2
n
) mode, if DFA cells are used, all carries are 

eliminated and only  xor operations are performed 

among partial products. In GF(p) mode, the 

multiplier acts as a conventional tree multiplier. A 

4 X 4-bit example of the proposed dual-field 

multiplier (DM) with output in carry-save format is 

depicted. 

 

Fig.2.Dual-field multiplier (DM) 

Dual-Field Modular Reduction: A final modular 

reduction by each RNS/PRNS modulus is required, 

for each multiplication outcome, within each MAC 

unit. Dual-field modular reduction unit (DMR) be 

simplified as  

https://en.wikipedia.org/wiki/Isomorphism
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The same decomposition can be applied to 

polynomials and consequently, if dual-field adders 

and dual-field multipliers are employed. The word 

length of can be limited to a maximum of 10 bits 

for a base with 66 elements. 

MAC Unit: The circuit organization from the 

suggested MAC unit  operation is examined below 

in three steps, akin to the 3 phases from the 

calculations it handles, RNS/PRNS Montgomery 

multiplication, and residue-to-binary conversion. i) 

Binary-to-Residue Conversion: Initially, r-bit 

words from the input operands, as implied by 

cascaded to every MAC unit and kept in RAM1. 

These words function as the very first input 

towards the multiplier, combined with the 

quantities that are kept in a ROM. Their 

multiplication creates the inner products) that are 

added recursively within the DMAS unit. It makes 

sense stored through the bus in RAM1. The 

operation is repeated for that second operand and it 

makes sense kept in RAM2, to ensure that once the 

conversion is completed, each MAC unit supports 

the residue digits of these two  operands within the 

two RAMs. The conversion requires steps to 

become performed. ii) Montgomery Multiplication: 

The initial step from the suggested DRAMM is 

really a modular multiplication from the residue 

digits from the operands. As these digits are 

immediately available through the two RAMs, a 

modular multiplication is performed and also the 

lead to is kept in RAM1 for base and RAM2 for 

base . Step Two of DRAMM is really a 

multiplication from the previous result having a  

constant supplied by the ROM. The outcomes 

match inputs from the DBC formula and therefore 

are stored again in RAM1. All MAC units are 

updated with the bus using the corresponding RNS 

digits of other MACs along with a DBC process is 

initiated. 

 

Fig.3.Proposed MAC Unit 

iii) Residue-to-Binary Conversion: Residue-to-

binary conversion is basically  repeating the DBC 

formula, which aren't modulo operations. As one 

example of alteration, assume the generation from 

the inner products in row 1 Each method is 

calculated in parallel in every MAC unit along with 

a “carry-propagation” from MAC(1) to is 

conducted to include all inner products [6]. When 

summation finishes the very first digit of it makes 

sense created in parallel with this particular “carry-

propagation”, the interior products of line 2 are 

calculated. When a MAC unit completes an 

inclusion of carry-propagated inner products for 

line 1, a brand new addition for line 2 is conducted. 

VI. CONCLUSION 

The mathematical framework along with a flexible, 

dual-field, residue arithmetic architecture for 

Montgomery multiplication is developed and also 

the necessary conditions for that system parameters 

are derived. The suggested DRAMM architecture 

supports all operations of Montgomery 

multiplication residue-to-binary and binary-to-

residue conversions, MRC for integers and 

polynomials, dual-field modular exponentiation 

and inversion, within the same hardware. Generic 

complexity and real performance comparisons with 

condition-of-the-artworks prove the potential for 

residue arithmetic exploitation in Montgomery 

multiplication. 
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