
Aravind Kundu* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.1, December – January 2017, 5560-5563.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 5560

Embedding Residue Arithmetic Into Modular

Multiplication For Integers And Polynomials
Dr.ARVIND KUNDU

Associate Professor(HOD), Department of ECE

SCIENT Institute of Technology, Ibrahimpatnam,

T.S, INDIA

Mr.V.NAGA MAHESH M.Tech

Assistant Professor, Department of ECE

SCIENT Institute of Technology, Ibrahimpatnam,

T.S, INDIA

R.DEEPTHI

PG Scholar, Department of ECE

SCIENT Institute of Technology, Ibrahimpatnam, T.S, INDIA

Abstract: A brand new methodology for embedding residue arithmetic inside a dual-field Montgomery

modular multiplication formula for integers in as well as for polynomials was presented within this

project. A design methodology for incorporating Residue Number System (RNS) and Polynomial Residue

Number System (PRNS) in Montgomery modular multiplication in GF (p) or GF (2n) correspondingly, in

addition to VLSI architecture of the dual-field residue arithmetic Montgomery multiplier are presented

within this paper. In cryptographic applications to engender the public and private keys we suffer from

the arithmetic operations like advisement, subtraction and multiplication. An analysis of input/output

conversions to/from residue representation, combined with the suggested residue Montgomery

multiplication formula, reveals prevalent multiply-accumulate data pathways both between your

converters and backward and forward residue representations.

Keywords: Carry Save Addition; Energy Efficient Architectures; Montgomery Modular Multiplier;

Cryptosystem;

I. INTRODUCTION

The computation from the Montgomery

exponentiation (ME) within the Residue Number

System (RNS) sanctions constraining the delay

because of carry propagation and reaching a higher

amount of parallelism. This method mainly

necessitates the execution of some Montgomery

multiplications (MMs). However, in RNS, some

operations are natively arduous to complete.

Hence, several approaches happen to be suggested

to be able to planarity exploit the potential for RNS

for modular exponentiation, by minimizing the

outcome of cognate drawbacks. A vital component

of these approaches may be the Base Extension

(BE), which calculates several on the different

RNS base. Using residue systems can provide

reduced complexity and power use of arithmetic

units with large word lengths [1]. However,

RNS/PRNS implementations bear the additional

price of input converters to translate figures from

the standard binary format into residues and output

converters to translate from RNS/PRNS to binary

representations. The mathematical conditions that

should be satisfied for any valid RNS/PRNS

incorporation are examined. The derived

architecture is extremely parallelizable and

versatile, because it supports binary-to RNS/PRNS

and RNS/PRNS-to-binary conversions, Mixed

Radix Conversion (MRC) for integers and

polynomials, dual-field Montgomery

multiplication, and dual-field modular

exponentiation and inversion within the same

hardware.

II. RNS TECHNIQUE

A residue number system is characterized by a

predicate that is not a single radix but an N-tuples

of integers (mN,mN-1 … m1). Each of these mi (i

= 1, 2, … N) is called a modulus. An integer “X” is

represented in the residue number system by N-

tuple (xN, xN-1… x1) where xI is a nonnegative

integer gratifying

X = mI * qI + xI , ………… (1)

Where qI is the most sizably voluminous integer

such that 0<=xI <= (mI – 1). xi is kenned as the

residue of X modulo mi, and notations X mod mi

and |X|mi are commonly utilized. In Residue

Number Systems (RNS), an integer X is

represented by its residues {x0…..xn-1} modulo a

base of relatively prime numbers {m0…..mn-1}.

Thus an astronomically immense number can be

represented as a set of diminutive integers.

Additament and multiplication can be facilely

parallelized, there is no carry propagation. The time

is reduced to the evaluation of these operations

with diminutive numbers. This representation is

utilizable in cryptography and digital signal

processing. Furthermore, in these two domains,

modular multiplication (A X B mod N) is

frequently utilized. When a number gets more

immensely colossal, the arithmetic operations get

more involutes. Thus in RNS system, the sizably

voluminous numbers can be represented into their

residues. The residues are conspicuously minutely

diminutive in comparison to the immensely

colossal number [2]. Hence, the arithmetic

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Innovative Technology and Research (IJITR)

https://core.ac.uk/display/228552966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aravind Kundu* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.1, December – January 2017, 5560-5563.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 5561

operations will be simple and can be performed on

each residue independently giving the provision of

parallel operations. The RNS divides an integer

into a number of more diminutive integers that can

be processed in parallel independently of each

other.

III. RSA ALGORTIHM

RSA implemented two important ideas: i) Public-

key file encryption. This concept omits the

requirement for a “courier” to provide secrets of

recipients over another secure funnel before

transmitting the initially-intended message. In

RSA, file encryption keys are public, as the

understanding keys aren't, so just the person using

the correct understanding key can decipher an

encrypted message. Everybody has their very own

file encryption and understanding keys. The keys

should be made in a way the understanding key

might not be easily deduced in the public file

encryption key. ii) Digital signatures. The receiver

might need to verify that the transmitted message

really originated in the sender (signature), and

didn’t just originate from there (authentication).

IV. MONTGOMERY MULTIPLICA-TION

Let the modules n be a k-bit integer i.e., 2
k-1

≤n<2
k

and let r be 2
k
.The Montgomery Multiplication

algorithm requires that r and n be relatively prime,

i.e., gcd(r,n)=gcd(2
k
,n)=1.this requirement is

satisfied if n is odd. in order to describe the

Montgomery multiplication algorithm, we first

define the n-residue of an integer a<n as a=a.r(mod

n).it is the straightforward to show the set is a

complete residue system.

{a.r mod n ,0 ≤ a ≤ n-1} Montgomery

multiplication requires converting a and b into a

special representation called Montgomery form.

However, when many products are required, as

in modular exponentiation, the conversion to

Montgomery form becomes a negligible fraction of

the time of the computation, and performing the

computation by Montgomery multiplication is

faster than the available alternatives. Let N denote

a positive integer modulus. The ring Z/NZ consists

of residue classes modulo N, that is, sets of the

form:

where a is some fixed integer. Each residue class is

a set of integers such that the difference of any two

integers in the set is divisible by N [3]. The residue

class corresponding to a is denoted . Equality of

residue classes is called congruence and is denoted:

Storing an entire residue class on a computer is

impossible because the residue class has many

elements. Instead, residue classes are stored as

representatives. Conventionally, these

representatives are the integers a for which 0

≤ a ≤ N − 1. If a is an integer, then the

representative of is written a mod N. When

writing congruence’s, it's common to identify an

integer with the residue class it represents. With

this convention, the above equality is written

Arithmetic on residue classes is done by first

performing integer arithmetic on their

representatives. The output of the integer operation

determines a residue class, and the output of the

modular operation is determined by computing the

residue class's representative. For example, if N =

17, then the sum of the residue classes and

 is computed by finding the integer sum 7 + 15 =

22, then determining 22 mod 17, the integer

between 0 and 16 whose difference with 22 is a

multiple of 17. In this case, that integer is 5, so

If a and b are integers in the range [0, N − 1], then

their sum is in the range [0, 2N − 2] and their

difference is in the range [−N + 1, N − 1], so

determining the representative in [0, N − 1]requires

at most one subtraction or addition (respectively)

of N. However, the product ab is in the

range [0, N
2
 − 2N + 1]. Storing the intermediate

integer product ab requires twice as many bits as

either a or b, and efficiently determining the

representative in [0, N − 1] requires division.

Mathematically, the integer between 0 and N −

1 that is congruent to ab can be expressed by

applying the division algorithm:

where q is the quotient and r, the

remainder, is in the interval [0, N − 1]. The

remainder r is ab mod N. Determining r can be

done by computing q, then subtracting qN from ab.

For example, the product is determined by

computing

dividing , and subtracting

 .

The only mathematical requirement on the

auxiliary modulus R is that it be a positive integer

such that gcd(N, R) = 1. For computational

purposes it is also necessary that division and

reduction modulo R be inexpensive, and the

modulus is not useful for modular multiplication

unless R > N. The Montgomery

form or Montgomery representation of the residue

class with respect to R is aR mod N, that is, it is

the representative of the residue class . For

example, suppose that N = 17 and that R = 100.

The Montgomery forms of 3, 5, 7, and 15 are300

https://en.wikipedia.org/wiki/Modular_exponentiation
https://en.wikipedia.org/wiki/Ring_(mathematics)

Aravind Kundu* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.1, December – January 2017, 5560-5563.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 5562

mod 17 = 11, 500 mod 17 = 7, 700 mod 17 = 3,

and 1500 mod 17 = 4. Addition and subtraction in

Montgomery form are the same as ordinary

modular addition and subtraction because of the

distributive law:

This is a consequence of the fact that,

because gcd(R, N) = 1, multiplication by R is

an isomorphism on the additive group Z/NZ. For

example, (7 + 15) mod 17 = 5, which in

Montgomery form becomes (3 + 4) mod 17 = 7.

Multiplication in Montgomery form, however, is

seemingly more complicated. The usual product

of aR and bR does not represent the product

of a and b because it has an extra factor of R:

Computing products in Montgomery form requires

removing the extra factor of R [4]. While division

by R is cheap, the intermediate product is not

divisible by R because the modulo operation has

destroyed that property. So for instance, the

product of the Montgomery forms of 7 and 15

modulo 17 is the product of 3 and 4, which are 12.

Since 12 is not divisible by 100, additional effort is

required to remove the extra factor of R. Removing

the extra factor of R can be done by multiplying by

an integer R′ such that

,

that is, by an R′ whose residue class is the modular

inverse of R mod N. Then, working modulo N,

The integer R′ exists because of the assumption

that R and N are co-prime. It can be constructed

using the extended Euclidean algorithm. The

extended Euclidean algorithm efficiently

determines integers R′ and N′ that satisfy Bézout's

identity 0 < R′ < N, 0 < N′ < R, and:

This shows that it is possible to do multiplication in

Montgomery form. A straightforward algorithm to

multiply numbers in Montgomery form is therefore

to multiply aR mod N, bR mod N, and R′ as

integers and reduce modulo N.

V. ARCHITECTURES OF SYSTEM

Fig.1.Proposed Architecture

Dual-Field Addition /Subtraction: A Dual-field

Full Adder (DFA) cell is basically a Full Adder

(FA) cell consists of half adder and equipped with a

field select signal (fsel), that controls the

operation mod. When fsel= 0, the carry output is

forced to 0 and the sum outputs the XOR operation

of the inputs. As already mentioned, this is

equivalent to the addition operation in GF(2n).

When fsel = 1, GF(p) mode is selected and the cell

operates as a normal FA cell. Dual-field adders in

various configurations can be mechanized by

utilizing DFA cells. In the proposed

implementation, 3-level, CLA with 4-bit Carry

Look ahead Generator (CLG) groups are employed.

An example of a 4-bit dual-field CLA is shown

below. The GAP modules generate the signals pi =

xi XOR yi , gi = xi AND yi , ai = xi OR yi , and

AND gates along with a fsel signal control whether

to eliminate carries or not. The carry look ahead

generator is an AND -OR network. Comparing the

previous approach employing, which requires L (L-

1)/2 modular multiplications, the optimized MRC

requires only L-2 modular multiplications [5]. The

methodology is further extended for the case of GF

(2n). With trivial modifications of algorithms for

modular addition/subtraction in a dual-field

modular adder/subtracted (DMAS) can be

mechanized using CLA adders When , the

circuit is in mode and the output is derived directly

from the top adder which performs a addition.

Dual-Field Multiplication: A parallel multiplier,

which is suitable for high-speed arithmetic, and

requires little modification to support both fields, is

considered in the proposed architecture. Regarding

input operands, either integers or polynomials,

partial product generation is common for both

fields. Consequently, the addition tree that sums the

partial products must support both formats. In

GF(2
n
) mode, if DFA cells are used, all carries are

eliminated and only xor operations are performed

among partial products. In GF(p) mode, the

multiplier acts as a conventional tree multiplier. A

4 X 4-bit example of the proposed dual-field

multiplier (DM) with output in carry-save format is

depicted.

Fig.2.Dual-field multiplier (DM)

Dual-Field Modular Reduction: A final modular

reduction by each RNS/PRNS modulus is required,

for each multiplication outcome, within each MAC

unit. Dual-field modular reduction unit (DMR) be

simplified as

https://en.wikipedia.org/wiki/Isomorphism

Aravind Kundu* et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.5, Issue No.1, December – January 2017, 5560-5563.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 5563

The same decomposition can be applied to

polynomials and consequently, if dual-field adders

and dual-field multipliers are employed. The word

length of can be limited to a maximum of 10 bits

for a base with 66 elements.

MAC Unit: The circuit organization from the

suggested MAC unit operation is examined below

in three steps, akin to the 3 phases from the

calculations it handles, RNS/PRNS Montgomery

multiplication, and residue-to-binary conversion. i)

Binary-to-Residue Conversion: Initially, r-bit

words from the input operands, as implied by

cascaded to every MAC unit and kept in RAM1.

These words function as the very first input

towards the multiplier, combined with the

quantities that are kept in a ROM. Their

multiplication creates the inner products) that are

added recursively within the DMAS unit. It makes

sense stored through the bus in RAM1. The

operation is repeated for that second operand and it

makes sense kept in RAM2, to ensure that once the

conversion is completed, each MAC unit supports

the residue digits of these two operands within the

two RAMs. The conversion requires steps to

become performed. ii) Montgomery Multiplication:

The initial step from the suggested DRAMM is

really a modular multiplication from the residue

digits from the operands. As these digits are

immediately available through the two RAMs, a

modular multiplication is performed and also the

lead to is kept in RAM1 for base and RAM2 for

base . Step Two of DRAMM is really a

multiplication from the previous result having a

constant supplied by the ROM. The outcomes

match inputs from the DBC formula and therefore

are stored again in RAM1. All MAC units are

updated with the bus using the corresponding RNS

digits of other MACs along with a DBC process is

initiated.

Fig.3.Proposed MAC Unit

iii) Residue-to-Binary Conversion: Residue-to-

binary conversion is basically repeating the DBC

formula, which aren't modulo operations. As one

example of alteration, assume the generation from

the inner products in row 1 Each method is

calculated in parallel in every MAC unit along with

a “carry-propagation” from MAC(1) to is

conducted to include all inner products [6]. When

summation finishes the very first digit of it makes

sense created in parallel with this particular “carry-

propagation”, the interior products of line 2 are

calculated. When a MAC unit completes an

inclusion of carry-propagated inner products for

line 1, a brand new addition for line 2 is conducted.

VI. CONCLUSION

The mathematical framework along with a flexible,

dual-field, residue arithmetic architecture for

Montgomery multiplication is developed and also

the necessary conditions for that system parameters

are derived. The suggested DRAMM architecture

supports all operations of Montgomery

multiplication residue-to-binary and binary-to-

residue conversions, MRC for integers and

polynomials, dual-field modular exponentiation

and inversion, within the same hardware. Generic

complexity and real performance comparisons with

condition-of-the-artworks prove the potential for

residue arithmetic exploitation in Montgomery

multiplication.

VII. REFERENCES

[1] D. Hankerson, A. Menezes, and S.

Vanstone, Guide to Elliptic Curves

Cryptography. New York, NY, USA:

Springer-Verlag & Hall/CRC, 2004.

[2] J.-P. Deschamps, Hardware Implementation

of Finite-Field Arithmetic. New York, NY,

USA: McGraw-Hill, 2009.

[3] R. Rivest, A. Shamir, and L. Adleman, “A

method for obtaining digital signatures and

public-key cryptosystems,”Commun.

ACM,vol.21,pp. 120–126, Feb. 1978.

[4] S. Kawamura, M. Koike, F. Sano, and A.

Shimbo, “Cox-Rower architecture for fast

parallel Montgomery multiplication,” in

EUROCRYPT’00: Proc. 19th Int. Conf.

Theory and Application of Cryptographic

Techniques, 2000, pp. 523–538.

[5] D. Schinianakis, A. Fournaris, H. Michail,

A. Kakarountas, and T. Stouraitis, “An RNS

implementation of an elliptic curve point

multiplier,”IEEE Trans. Circuits Syst. I, vol.

56, no. 6, pp. 1202–1213, Jun. 2009.

[6] I.Blake,G.Seroussi,andN.Smart, Elliptic

Curves in Cryptography. Cambridge, U.K.:

Cambridge Univ. Press, 2002.

