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COMPARISON OF SPHERICAL CUBE MAP PROJECTIONS

USED IN PLANET-SIZED TERRAIN RENDERING

Aleksandar M. Dimitrijević, Martin Lambers and Dejan D. Rančić

Abstract. A wide variety of projections from a planet surface to a two-dimensional
map are known, and the correct choice of a particular projection for a given application
area depends on many factors. In the computer graphics domain, in particular in the
field of planet rendering systems, the importance of that choice has been neglected
so far and inadequate criteria have been used to select a projection. In this paper,
we derive evaluation criteria, based on texture distortion, suitable for this application
domain, and apply them to a comprehensive list of spherical cube map projections to
demonstrate their properties.
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1. Introduction

Map projections have been used for centuries to represent the curved surface of
the Earth with a two-dimensional map. A wide variety of map projections have been
proposed, each with different properties. Of particular interest are scale variations
and angular distortions introduced by map projections – since the spheroidal surface
is not developable, a projection onto a plane cannot be both conformal (angle-
preserving) and equal-area (constant-scale) at the same time. These two properties
are usually analyzed using Tissot’s indicatrix. An overview of map projections and
an introduction to Tissot’s indicatrix are given by Snyder [24].

In computer graphics, a map projection is a central part of systems that render
planets or similar celestial bodies: the surface properties (photos, digital elevation
models, radar imagery, thermal measurements, etc.) are stored in a map hierarchy
in different resolutions. During the rendering, the data from this map hierarchy
are sampled for display on a screen. Despite its central role, many systems do not
pay much attention to the choice of projection for the map hierarchy. Often, a
relatively straightforward approach is used, which leads to sampling problems both
during the creation of the map hierarchy and during its sampling at rendering time.
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Fig. 1.1: Polyhedral projections based on Platonic solids: tetrahedron (a), octahe-
dron (b), hexahedron (c), dodecahedron (d) and icosahedron (e).

This is particularly apparent with systems that use a single map to cover the whole
planet surface. Such systems usually exhibit strong distortions and artifacts in the
polar regions. Examples include the well-known commercial products like Google
Earth [5] and NASA World Wind [15]. A few systems do care about the projection
they use, but use insufficient evaluation criteria and/or evaluate too few alternatives
to make a good choice [10, 13, 11].

Projecting a spheroidal surface to a single plane (flat or folded into a cylinder or
a cone) always results in singularities [10, 24], therefore the first step for improve-
ment is to subdivide the spheroidal surface into several regions, each of which is
projected to a separate projection plane. The subdivision reduces map distortion,
but increases the number of interrupts. The faces of an encompassing or inscribed
polyhedron are very good candidates for the projection planes, hence the polyhe-
dral projections have been used for centuries to represent the surface of the Earth.
Fig. 1.1 displays unfolded polyhedral projections based on Platonic solids.

As it can be seen in Fig. 1.1, the increase of the polyhedral faces number reduces
distortion and increases interrupts at the same time. The number of interrupts is
also an important aspect of a map projection. For paper maps, interrupts make
visual discontinuities, while for electronic maps (i.e. textures) they may require
separate data sets for each region. The number of data sets may have a direct
impact on the memory usage [4]. Therefore, it should be minimized if possible.

For the purposes of computer graphics, the projection to the faces of a cube
(as a special form of a hexahedron) is of particular interest because each face is
rectangular and thus allows straightforward storage of map data in common 2D file
formats, as well as management of rendering data in common 2D texture formats.
Also, cube based projections expose moderate distortion and number of interrupts.

In this paper, we derive a set of evaluation criteria, based on texture distortion,
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and apply them to a comprehensive list of hexahedral map projections to demon-
strate their properties. This list covers all spherical cube map projection known to
be used in planet-sized terrain rendering. One of the projections (Outerra Spher-
ical Cube Map) is published for the first time, thanks to its original implementer
Brano Kemen [8]. We implemented all of these projections as well as map projection
software and a set of evaluation tests.

The remainder of this paper is organized as follows. Sec. 2. gives an overview
of related work in the field of planet rendering, with an emphasis on the choice
of map projections. In Sec. 3., we derive the evaluation criteria that we apply to
spherical cube map projections, reviewed in Sec. 4. The results of this evaluation
are presented and discussed in Sec. 5. Finally, Sec. 6. concludes the paper.

2. Related Work

Map projections from a sphere surface to a plane have a long history, and a
wide variety of methods have been developed, each with specific properties carefully
chosen for specific tasks. An overview is given by Snyder [24].

A popular map projection for planet rendering systems, including the com-
mercial offerings Google Earth [5] and NASA World Wind [15], is the equidistant
cylindrical (or plate carrée) projection. Like all single-map projections, it suffers
from singularities. In proximity to the poles, very small surface areas are mapped
to many samples on the map, distributed over elongated areas. This causes signifi-
cant storage and data access overhead in the renderer as well as a radial blur in the
rendered image [10].

The problems associated with singularities can only be avoided by subdividing
the sphere and using multiple maps. Kooima et al. use equidistant cylindrical pro-
jection for the equatorial part of the planet and two additional polar stereographic
projections for the polar regions. Weighted averages are used for smooth transitions
between the three regions [10].

Among polyhedral projections, the cube based approaches are very popular.
They divide the spherical surface into six identical regions, as shown in Fig. 2.1.
This allows using a single map projection (Fig. 2.2) that behaves consistently at
cube face borders, thus eliminating the need for weighted averaging. Furthermore,
the rectangular maps for the cube faces allow straightforward data storage using
quadtree hierarchies and common file formats and straightforward data management
in the rendering system using common and efficient rectangular textures.

The straightforward projection of the sphere to the cube faces is a gnomonic
projection. The distortions introduced by gnomonic projection onto cube faces
are significant. For this reason, Lerbour and et al. proposed an adjustment to
the gnomonic projection [13] that reduces these distortions to some degree. Lam-
bers and Kolb compared the gnomonic and adjusted gnomonic projections with the
Quadrilateralized Spherical Cube (QSC) projection, and chose the latter [11]. As
we will demonstrate in the next sections, their evaluation was too limited.
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Fig. 2.1: A spherical planet model inscribed into a cube. The cube partitions the
sphere surface into six equal areas.

Fig. 2.2: The world mapped using a cube map projection.

In the application area of planet rendering, very few map projections have been
considered for subdivisions of the planet. Of the cube-based subdivisions, only the
gnomonic projection, an adjusted version of the gnomonic projection and the QSC
projection are documented in the literature. In the next sections, we extend this list
with a projection used in the Outerra rendering engine [8], an approximately equal-
area projection based on the sphere representation in the Cartesian coordinates
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[17] and a variant of the HEALPix projection [6]. All of these spherical cube map
projections are explained in Sec. 4. and compared using the criteria derived in
Sec. 3., according to the distortion they introduce in the texture application for
planet-sized terrain rendering algorithms.

3. Evaluation Approach

In classical applications of map projections, the two-dimensional map is the fi-
nal product and intended for direct use by the end user. In a planet rendering
application, on the other hand, the map is just an intermediate data representa-
tion. Consequently, the projection is used in two steps: first, when mapping the
original data to the cube-based hierarchical representation in a preprocessing step,
and second, when sampling this representation during rendering to produce the end
result. While a poor choice of map projection can have negative effects already dur-
ing preprocessing, the crucial step for the quality of the end result is the rendering
step.

We will, therefore, focus on rendering and sampling aspects of spherical cube
map projections. To this end, we first examine, in Sec. 3.1., the way textures
are applied to a rendered terrain. This discussion provides sufficient details to
understand how texture filtering is performed and how effects of distortion can
be reduced. In Sec. 3.2., we discuss how applied projections introduce a texture
distortion, while Sec. 3.3. explains the methods used in the evaluation process. The
main evaluation criterion for the projection comparison is texture distortion, but we
also consider the precision and efficiency of the forward and inverse transformations,
as well as the size of the applied textures.

3.1. Texture Application

Two-dimensional textures are image-overlays applied to geometrical objects to
improve their fidelity without increasing their complexity. A texture application
entails mapping from texture space to screen space. The mapping is done through
two filtering schemes: minification and magnification [23]. When a texel (the small-
est unit of a texture) is smaller than an area, it is applied to (one texel maps to
multiple pixels on a screen) a magnification filter is used. Otherwise, multiple texels
are mapped to a single pixel using a minification filter. In order to minimize the
aliasing effect caused by minification, multiple levels of detail (the same texture in
different resolutions) are used. That enables choosing the level where the texel-to-
pixel ratio is near to one. Lance Williams proposed mipmaps as an efficient way to
pack multiple levels of detail into a single texture [28]: each lower resolution level is
constructed from the higher resolution level by downsampling with a factor of two
in both horizontal and vertical directions.

Mipmaps have been used for decades as a very efficient way of texture mapping.
As the size of the object being mapped increases, however, the application of high-
fidelity mipmapped textures becomes untenable. The visualization of the planet
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Fig. 3.1: A clipmap – an updatable partial mipmap. Clipmap levels are grouped
into two sets: the clipmap pyramid (low-resolution static levels) and the clipmap
stack (higher-resolution dynamic levels). The levels in the clipmap stack are cen-
tered on the focal point and toroidally updated as it moves.

Earth, with submeter accuracy, could require several petabytes of storage space
for the full mipmapped texture; clearly this is too much to fit in the graphics or
system memory. To solve this problem, several techniques have been developed.
One of the most popular is known as clipmapping [26]. A clipmap is an updatable
representation of a partial mipmap, in which each mipmap level is clipped to a
specified size. Instead of the exponential growth of full mipmaps, a clipmap grows
linearly with each new level of detail.

The appropriate level of clipmap to apply is chosen according to the texture
scale-factors. The scale-factors of the applied texture are calculated using partial
derivatives of the given functions u(x, y) and v(x, y) that map screen coordinates
(x, y) to the two-dimensional texture coordinates s and t, respectively. Depending
on the orientation of the surface, scale-factors along the horizontal and vertical
screen axes (ρx and ρy, respectively) may differ.
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ρmax(x, y) = max (ρx(x, y), ρy(x, y))

ρmin(x, y) = min (ρx(x, y), ρy(x, y))

(3.1)

Since derivatives may be computationally expensive and/or numerically unsta-
ble [9], they are usually approximated in the graphics hardware by computing for-
ward/backward differences between neighboring pixels in a 2×2 block. Whether the
forward or backward difference is used depends on the position of the pixel in the
block. In standard texture filtering schemes, a proper level of detail (λ) is selected
according to ρmax(x, y) which gives smoother results:

(3.2) λ(x, y) = log2 (ρmax(x, y))
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Further smoothing is achieved by linear interpolation of the texel values closest
to the center of the displayed pixel. Bilinear filtering interpolates values of the
texel from a single level only, selected by the rounded value of an integral part of
λ. Trilinear filtering further improves the smoothness by combining two adjacent
levels. The integral part of λ selects a more detailed level, while the fractional part
defines blending factor with the next coarser one (λ + 1).

If the surface being viewed is at an oblique angle, trilinear filtering could result
in a blurry display. The fidelity and sharpness of the applied texture, in that case,
can be improved through anisotropic filtering [19]. Unlike the previous (isotropic)
filtering schemes, where the footprint of the filter projection into texture space is
a square, anisotropic filtering may have very narrow or long footprints. A higher
degree of anisotropy may improve texture filtering quality, but at the same time
reduce the texture filtering rate. Hence, the maximum degree of anisotropy (̺) is
always limited, usually to 16. According to the OpenGL anisotropic texture filter
specification [19], a proper texture level for anisotropic filtering should be selected
using the following equations:

N(x, y) = min

(⌈

ρmax(x, y)

ρmin(x, y)

⌉

, ̺

)

λ(x, y) = log2

(

ρmax(x, y)

N(x, y)

)(3.3)

In the next section, we shall see how applied filtering is used to minimize the
manifestation of texture distortion.

3.2. Distortion

Tissot’s indicatrices are very useful in estimating the distortion of a projection of
the Earth’s surface to a planar map. They are used in cartography to evaluate the
size and shape of the objects depicted on the map. However, in computer graphics
the more important consideration is the distortion of the textures after application
to a 3D model of the planet. In order to evaluate this texture application distortion
we will introduce two measures of distortion:

• the texel aspect distortion and

• the texel area distortion.

The texel aspect distortion (δaspect) is defined as the texel width (Λx) to height
(Λy) ratio after unprojecting to the surface of a planet:

(3.4) δaspect =
Λx

Λy
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In Eq. 3.4, Λx and Λy are calculated as distances on the spheroidal surface along
directions aligned with the texture (i.e. projection) axes X and Y, respectively. The
calculation is based on the central differences using the following equations:

(ϕl, θl)← inverse(x−∆/2, y)

(ϕr , θr)← inverse(x+∆/2, y)

(ϕb, θb)← inverse(x, y −∆/2)

(ϕt, θt)← inverse(x, y +∆/2)

Λx = σ(ϕl, θl, ϕr, θr)

Λy = σ(ϕb, θb, ϕt, θt)

(3.5)

In the previous equations, x and y are the coordinates of the point in texture
space and ∆ is a texel size. The function inverse depends on the chosen projection.
Sec. 4. presents all spherical cube map projections with their forward transformation
(from a sphere onto a plane, with normalized coordinates in the range [-1,1]) and
inverse transformation (from the plane back to the sphere). A distance on the sphere
between two points defined by their spherical coordinates (ϕ1, θ1) and (ϕ2, θ2), is
calculated with the function σ based on the following formulae:

σ(ϕ1, θ1, ϕ2, θ2) =

2Re arcsin

(
√

sin2
|θ1 − θ2|

2
+ cos θ1 cos θ2 sin

2 |ϕ1 − ϕ2|
2

)

Re =
2 · a+ b

3

(3.6)

Since the Earth is an oblate spheroid with very small flattening (f = 1/298.25722
3563), in order to simplify equations throughout this paper, we are using a spherical
approximation with the same volume as the reference ellipsoid (Re = (a · b)1/3 ≈
(2 · a + b)/3 = 6371km). The parameters a and b in the previous equations refer
to the semi-major and semi-minor axes of the WGS84 ellipsoid [16], respectively.
For the ellipsoidal model of the planet, the distance between two points can be
calculated more accurately using a Vincenty’s inverse method [27]. However, the
difference between the great circle distance formula (Eq. 3.6) and Vincenty’s inverse
formula in calculating distortion values is negligible. For example, in the case of
QSC projection (Sec. 4.5.), the relative error of the maximum texel aspect distortion
of the spherical approximation (compared to the WGS84 ellipsoidal model) is only
about 5 · 10−6. Therefore, the use of spherical approximations in the following
discussion is justified.

Although the texel aspect distortion is usually neglected when a projection is
chosen, the impact on the rendered surface can be significant and it manifests
through:
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• aliasing/blurring,

• additional anisotropy and

• a requirement for bigger textures.

The aliasing or blurring effects are consequences of shrinking or stretching of
the texture over the applied surface. A texel distortion is always the combination
of both aspect and area distortion. In order to simplify the analysis, without loss of
generality, let us assume that distortion affects just a single direction (Fig. 3.2). If
δaspect > 1, stretching appears, while δaspect < 1 causes texture shrinking. Depend-
ing on the texture scale-factors (Eq. 3.1), if the distortion is significant, even the
current level of a clipmap (λ) may change. Without bilinear or trilinear filtering, the
distortion results in a noticeable aliasing effect. Aliasing effects can be reduced by
bilinear/trilinear filtering, but only to a certain degree and with an accompanying
blur effect (Fig. 3.2).

Since aspect distortion introduces uneven texture sampling along different axes,
a higher texture fidelity and sharpness can be achieved only by using anisotropic
filtering (Fig. 3.2), but this introduces computational costs and is limited by the
maximum anisotropy degree. As the surface is viewed from a more oblique angle, a
higher degree of anisotropic filtering is required to provide sharpness. Because part
of the available anisotropy is spent on aspect distortion correction, oblique surfaces
may appear blurry.

Another reason for minimizing texel aspect distortion, even more important
than the blur of oblique surfaces, is the need for bigger textures. Because of aspect
distortion, after the application to a terrain, a texture changes its aspect and cover
the different area along different directions, resulting in more details in the direction
where shrinking occurs and fewer details in the direction where stretching occurs. If
we select the texture level with enough details for the stretching direction while not
taking into account aspect distortion, it will result in exceeding the size of a current
clipmap level along the direction where shrinking occurs (black strips in Fig. 3.2).
This issue can be solved by using texture levels bigger than their nominal size, for
the factor greater or equal to the maximum texel distortion. Bigger textures induce
higher memory consumption and longer update times. Choosing a coarser clipmap
level, to avoid exceeding the size of the current level, leads to blurry rendering
results.

The texel area distortion (δarea) is defined as the ratio of the texel size at the
current position (Λx ·Λy) and the texel size at the center of the cube face (Λ0 ·Λ0)
after unprojecting to the surface of a planet:

(3.7) δarea =
ΛxΛy

Λ0Λ0

Unlike texel aspect distortion, the texel area distortion is important only if it
changes across the surface of the current clipmap level λ. If δarea is nearly constant,
a distortion actually does not exist. The texel area distortion in non-equal-area
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Fig. 3.2: Effects of the texel aspect distortion. From left to right: texture with-
out distortion (a), horizontal stretching δaspect = 2 (b), horizontal shrinking with
trilinear filtering δaspect = 0.67 (c), horizontal shrinking with anisotropic filtering
δaspect = 0.67 (d)

projection can be nearly constant only for the higher resolution levels. Such levels
have smaller spatial extent, which prevents significant change in the value of area
distortion. For the lower resolution levels, where it is not the case, area distortion
has to be treated the same way as aspect distortion.

At the first glance, it seems that the texel area distortion does not require
bigger textures, but only a modification of the clipmap level selection, defined by
the following equation:

(3.8) λ′ = λ+ log2 (
√

δarea)

However, since texel area distortion gradually changes across the surface and
its value is usually not high enough to switch to the coarser clipmap level, texel
area distortion also contributes to the need for larger textures. If the value of λ′ is
clamped to a higher integral value, a nominal size of the texture can be used, but
the blurry outcome is inevitable. In order to preserve the ability to properly blend
adjacent clipmap levels and gain required sharpness of the visualization, we have to
provide levels big enough to contain nominal spatial extent, no matter where the
viewer is located.

Considering both texel aspect and area distortion, the size of the storage space
for a clipmap level should be bigger than its nominal size for the factor ε, where:

(3.9) ε = max(deltamax
aspect, delta

max
area)

deltamax
aspect and deltamax

area are the maximum values of the texel aspect and area
distortion, respectively.

In the conclusion, both texel aspect and area distortions result in higher texture
storage demands and, hence, slightly slower update. The texel aspect distortion
also spends a part of the available anisotropic filtering range. The higher aspect
distortion the blurrier the display of a surface viewed from an oblique angle. The
texel distortion elaborated in this section is one of the very important aspects that
has to be evaluated when a proper projection for the terrain rendering system is
chosen. The following section presents an evaluation method we used for comparing
spherical cube map projections in this paper.
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3.3. Evaluation Method

In order to examine their properties, we have implemented all spherical cube map
projections that we could collect. Our development environment was the Microsoft
Visual Studio 2013 and we used C/C++ compiler. All calculations are done on the
CPU using double extended precision [7]. For each face of the spherical cube, the
following tests were carried out:

• precision self-test,

• forward/inverse transformation time measurement,

• texel aspect distortion statistics, and

• texel area distortion statistics.

The precision self-test was used both for an internal implementation check and
for checking the quality of the projection. For each of N2 equally spaced points in
the map space (x, y ∈ [−1, 1]), the inverse transformation is executed followed by
forward transformations of its results. The final results should match the starting
coordinates. The difference of the starting and final values projected to the surface
of the Earth is used as a precision evaluation criterion.

Projection (forward transformation) and unprojection (inverse transformation)
are required in data preparation and during terrain rendering, respectively, which
is why the transformation execution time is an important property for evaluation.
High-performance counters [14] are used for measuring the transformation of huge
matrices with input coordinates. The measured time, besides the transformations
themselves, includes iteration and matrix access time. Such overhead is required in
order to prevent compiler optimizations from leading to incorrect results.

The texel aspect and area distortion are computed, using Eq. 3.4 through 3.7,
for the points on the equally spaced grid in map space. The statistics discussed in
this paper are computed for the set of up to 80002 points, with ∆ = 1 · 10−6.

In addition to the numerical tests, the same software was used to generate world
maps in each of the projections, to reproject data from the equidistant cylindrical
projection and to produce the images of texel aspect and area distribution over the
faces of the cube. The results of the tests, as well as the generated images, are
displayed and discussed in the following sections.

4. Spherical Cube Map Projections

This section presents a comprehensive set of Spherical Cube Map (SCM) pro-
jections. All projections are presented with their forward and inverse transforma-
tions, visual aspects of distortion shown through continents coastline and graticule
skewing for the front and top faces, and the distribution of texel aspect and area
distortions over the faces of the cube. The given formulae for forward and inverse
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transformations apply to the cube face centered on ϕ = 0 and θ = 0 (the front

face). An exception is the HEALPix projection, where transformations differ for
equatorial and polar regions, and, hence, have to be treated separately. Also, for
each of the projections, the effects of the inverse transformation are visualized by
reprojecting continent coastline and equally-spaced regular grid in the map space
back to the globe.

4.1. Tangential Spherical Cube

Tangential Spherical Cube (TSC) is the simplest SCM projection. It uses the
standard gnomonic projection to map the globe onto the six faces of a tangent
cube. As a gnomonic projection, it is distortion-free only at the point where the
tangent plane touches the surface. The distortion of shape, area and scale increases
with the distance from that point. The gnomonic projection dates from Ancient
Greece. Thales of Miletus (624-546 BC) used it for celestial maps. TSC was used
for terrestrial maps in the beginning of the 19th century for the first time [24]. It
is neither conformal nor equal-area projection.

Fig. 4.1: Front and top faces of the TSC projection.

Forward transformation:

x = tanϕ

y =
tan θ

cosϕ

(4.1)

Inverse transformation:

ϕ = arctanx

θ = arctan (y · cosϕ)(4.2)
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Fig. 4.2: The distribution of the texel aspect (left side) and area (right side) dis-
tortion over the face of the cube when TSC projection is used. The texel aspect
distortion ranges from 0.707 to 1.414 (δmax

aspect/δ
min
aspect = 2.0), while the texel area

distortion ranges from 0.222 to 1.0 (δmax
area/δ

min
area = 4.5).

Fig. 4.3: The inverse transformation of the rectangular equidistant grid in TSC
planar space and the continent coastlines to a globe surface.

Although it is simple, TSC is rarely used for visualization of the planet Earth,
because of its significant distortions, both in aspect and area. Fig. 4.1 depicts a
distortion through continent coastlines and graticule skewing, while Fig. 4.2 gives
a spatial distribution of distortions over the faces of the cube through the shades
of gray. Darker tones for the δaspect represent shrinking in the X-direction, while
brighter tones represent shrinking in the Y-direction. Darker tones for δarea repre-
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sent an area shrinking. Texels at the corners of a face of the cube cover 4.5 times
smaller surface than texels at the center. The effect of area shrinking can be ex-
plicitly visualized through the inverse transformation of the rectangular equidistant
grid in the projection space to a globe surface (Fig. 4.3). While aspect distortion is
slightly better than the equal-area or approximately equal-area SCM projections,
area distortion is far worse.

4.2. Adjusted Spherical Cube

Adjusted Spherical Cube (ASC) modifies TSC in order to reduce area distor-
tion. Instead of sampling the plane of projection, ASC samples the map directly
in spherical coordinates with steps expressed in terms of angles [12, 13]. Thus,
the forward transformation of TSC can be turned into ASC by simply calculating
arctan of the x and y coordinates and normalizing to ±1.

Fig. 4.4: Front and top faces of the ASC projection.

Forward transformation:

x =ϕ · 4
π

y =arctan

(

tan θ

cosϕ

)

· 4
π

(4.3)

Inverse transformation:

ϕ = x · π
4

θ = arctan
(

tan (
π · y
4

) · cosϕ
)(4.4)
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Fig. 4.5: The distribution of the aspect (left side) and area (right side) distortion
over the face of the cube when ASC projection is used. The texel aspect distortion
ranges from 0.707 to 1.414 (δmax

aspect/δ
min
aspect = 2.0), while the texel area distortion

ranges from 0.707 to 1.0 (δmax
area/δ

min
area = 1.414).

Fig. 4.6: The inverse transformation of the rectangular equidistant grid in ASC
planar space and the continent coastlines to a globe surface.

ASC was published for the first time in 1996, with slightly different formulae
based on colatitude [22]. It was reinvented and used for the planet-sized terrain
rendering many years later, in 2009 [12]. Like TSC, ASC is neither conformal
nor equal-area. However, the proposed adjustment of TSC effectively reduces area
distortion. Graticule spacing increases toward the midpoints of the edges of the
cube (Fig. 4.4), which indicates the texture area is shrinking. The distribution of
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distortions is depicted in Fig. 4.5. Texel aspect distortion stays the same, except
that the space the axes are inverted compared to TSC. Λx increases along the X-
axis, while Λy increases along the Y-axis. Far better property of ASC, considering
the area distortion, can be verify also by comparing Fig. 4.6 and Fig. 4.3.

4.3. Outerra Spherical Cube

Outerra Spherical Cube (OSC) is an SCM projection used in the Outerra plan-
etary 3D engine [8]. The engine has the ability to render the whole planet with a
full range of detail levels, from space down to individual blades of grass, and thus
requires more uniform sampling than previous schemes. Unlike the other described
projections, OSC does not have a closed form for the forward transformation. Hence,
a Newton’s iterative method is used in algorithm 1.

x = sinϕ cos θ
y = sin θ
z =

√

1− x2 − y2
M = (1/(2

√
2− 2)− 1) = 0.207106781

a =Mx2y2

b = −M(x2 + y2)
c = −z
d = 1 +M
repeat

F = az4 + bz2 + cz + d
F ′ = 4az3 + 2bz + c
dF = F

F ′

z = z − dF
until |dF | < ǫ
x = zx
y = zy

Algorithm 1: OSC forward transformation

Inverse transformation:

M = (1/(2
√
2− 2)− 1) = 0.207106781

z = 1 +M(1− x2)(1− y2)
l =

√

x2 + y2 + z2

x = x/l

y = y/l

ϕ = arcsin

(

x

cos (arcsin (y))

)

θ = arcsin (y)

(4.5)
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Fig. 4.7: Front and top faces of the OSC projection.

Fig. 4.8: The distribution of the aspect (left side) and area (right side) distortion
over the face of the cube when OSC projection is used. The texel aspect distortion
ranges from 0.934 to 1.006 (δmax

aspect/δ
min
aspect = 1.013), while the texel area distortion

ranges from 0.324 to 1.0 (δmax
area/δ

min
area = 3.088).

OSC has the least aspect distortion of all SCM projections described in this
paper. There is another approach with no aspect distortion - a conformal SCM
projection proposed in [21]. However, it is based on infinite Taylor series, and as
such it is less suitable for our purpose.

The OSC texel area distortion (δarea) is significant and it radially increases with
the distance from the center of the cube face (Fig. 4.8). It is less than in the case
of TSC, but much greater than for any other SCM projection.
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Although the forward transformation requires iterations, the convergence is fast.
With at most five iterations, a very high precision is achieved. The maximum error
for the Earth-sized sphere, imposed by transformations, is less than 1nm if double
extended precision is used.

Fig. 4.9: The inverse transformation of the rectangular equidistant grid in OSC
planar space and the continent coastlines to a globe surface.

4.4. COBE Quadrilateralized Spherical Cube

COBE quadrilateralized Spherical Cube (CSC) is an SCM projection based on
research on the feasibility of a Quadrilateralized Spherical Cube (QLSC) Earth
Data Base system, carried out in the early 1970s [3]. The purpose of the proposed
projection was to minimize both area and shape distortion, and it was used, at least
as it was reported, primarily in the U.S. Navy and later at NASA for the COsmic
Background Explorer (COBE) project.

Forward transformation:

x̃ =tanϕ

ỹ =
tan θ

cosϕ

x =F (x̃, ỹ)

y =F (ỹ, x̃)

(4.6)
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F (x, y) =xγ + x3(1− γ)

+xy2(1 − x2)
[

Γ + (M − Γ)x2

+(1− y2)
∞
∑

i=0

∞
∑

j=0

(Cijx
2iy2j)

]

+x3(1− x2)
[

Ω− (1− x2)
∞
∑

i=0

Dix
2i
]

(4.7)

However, QLSC has wrong forward transformation (or inverse transformation, if
the notation from the original paper is used), which disqualifies it from any serious
usage. That is the reason it is omitted from this paper, although it was a very
important reference for all later spherical cube map studies. CSC was probably an
effort to modify QLSC to be used in COBE project. As reported by Calabretta [1],
the initial numeric parameters and equations derived in [3] were changed, as defined
in the following formulae.

Fig. 4.10: Front and top faces of the CSC projection.

Instead of an infinite series, practical implementations use only a few terms.
The following set of parameters is in use for the CSC:

(4.8)

γ = 1.37484847732 C00 = 0.141189631152
M = 0.004869491981 C10 = 0.0809701286525
Γ = −0.13161671474 C01 = −0.281528535557
Ω = −0.159596235474 C20 = −0.178251207466
D0 = 0.0759196200467 C11 = 0.15384112876
D1 = −0.0217762490699 C02 = 0.106959469314
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Inverse transformation:

x̃ =I(x, y)

ỹ =I(y, x)

I(x, y) =x+ x(1 − x2)
N
∑

j=0

N−j
∑

i=0

Pijx
2iy2j

ϕ =arctan x̃

θ =arctan (ỹ · cosϕ)

(4.9)

The COBE implementation confines N to 6 and uses the following set of best-
fitting values for coefficients Pij :

(4.10)

P00 = −0.27292696 P12 = −0.56800938 P30 = 0.54852384
P01 = −0.02819452 P13 = 1.50880086 P31 = −1.74114454
P02 = 0.27058160 P14 = −1.41601920 P32 = 0.98938102
P03 = −0.60441560 P15 = 0.52032238 P33 = 0.08693841
P04 = 0.93412077 P20 = −0.22797056 P40 = −0.62930065
P05 = −0.63915306 P21 = 0.48051509 P41 = 1.71547508
P06 = 0.14381585 P22 = 0.30803317 P42 = −0.83180469
P10 = −0.07629969 P23 = −0.93678576 P50 = 0.25795794
P11 = −0.01471565 P24 = 0.33887446 P51 = −0.53022337
P60 = 0.02584375

Fig. 4.11: The distribution of the aspect (left side) and area (right side) distortion
over the face of the cube when CSC projection is used. The texel aspect distortion
ranges from 0.65 to 1.538 (δmax

aspect/δ
min
aspect = 2.365), while the texel area distortion

ranges from 0.94 to 1.325 (δmax
area/δ

min
area = 1.41).

CSC is an approximately equal-area projection with δarea ∈ [0.94, 1.32]. The
ratio of maximum and minimum texel area distortions is the same as for ASC



Spherical Cube Map Projections Used In Planet-Sized Terrain Rendering 279

(δmax
area/δ

min
area = 1.41), but the distribution of values is much better (RMSD(δarea =

0.019)). The texel aspect distortion is worse than all previously mentioned projec-
tions (δaspect ∈ [0.65, 1.54]).

Fig. 4.12: The inverse transformation of the rectangular equidistant grid in CSC
planar space and the continent coastlines to a globe surface.

Worse than the texel aspect distortion is the imprecision of the projection. The
approximation imposed by using a finite number of terms and best-fitting coeffi-
cients in Eq. 4.6 and 4.9 causes a significant error in positioning. After successive
inverse and forward transformations, the maximum absolute error of the position
on the equivalent sphere is 1.39km. Moreover, CSC stretches an area toward the
cube edges. It can be clearly seen in Fig. 4.12. The middle part of Europe al-
most disappeared at the edge of the cube, while Greenland is much wider than it
should be. All these properties disqualify CSC for the application in any geographic
information system and, hence, in SCM also.

4.5. Quadrilateralized Spherical Cube

Quadrilateralized Spherical Cube (QSC) is another SCM projection based on the
work of Chan and O’Neill [3], described in Sec. 4.4. O’Neill and Laubscher [20]
defined an equal-area projection to map the sphere surface to a cube face with the
purpose of storing data in hierarchical structures for each cube face. In addition to
being equal-area, the QSC projection was designed to limit angular distortions.
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Forward transformation:

q =cos(θ) cos(ϕ)

r =cos(θ) sin(ϕ)

s =sin(θ)

ϕ̃ =arccos(q)

θ̃ =arctan(s, r)

µ =arctan

(

12

π

)

· (θ̃ + arccos(sin(θ̃) cos(
π

4
))− π

2
)

ν =arctan

(√

1− cos(ϕ̃)
cos2(µ) · (1− cos(arctan(1/ cos(θ̃))))

)

x =tan(ν) cos(µ)

y =tan(ν) sin(µ)

(4.11)

Inverse transformation:

ν =arctan(
√

x2 + y2)

µ =arctan
(y

x

)

t =
π

12
tan(µ)

θ̃ =arctan

(

sin(t)

cos(t)− 1/
√
2

)

ϕ̃ =arccos(1 − cos2(µ) tan2(ν)(1 − cos(arctan(1/ cos(θ̃)))))

q =cos(ϕ̃)

s =
√

1− q2 sin(θ̃)
r =
√

1− q2 − s2

θ =arccos(−s)− π

2

ϕ =arctan

(

r

q

)

(4.12)

The formulae for forward and inverse transformations, given above, apply to
one-quarter of the front cube face; the other three-quarters are handled by rotating
this definition. This is done by first determining the interval of θ̃, which defines the
quarter, then shifting θ̃ to the interval of definition [−π

4
, π
4
] by adding or subtracting

a multiple of π
2
, then computing µ as described, and finally shifting µ back to the

original quarter by again adding or subtracting a multiple of π
2
. Furthermore, other

cube faces than the front cube face are handled by adapting the computation of θ̃,
e.g. θ̃ = arctan(s,−q) for the appropriate cube face.

As can be seen in Fig. 4.13, QSC suffers from significant shape distortion. Fur-
thermore, there are discontinuities at the x = |y| directions (diagonals of the cube
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Fig. 4.13: Front and top faces of the QSC projection.

Fig. 4.14: The distribution of the aspect (left side) and area (right side) distortion
over the face of the cube when QSC projection is used. The texel aspect distortion
ranges from 0.649 to 1.539 (δmax

aspect/δ
min
aspect = 2.37), while the texel area distortion

ranges from 0.89 to 0.93 (δmax
area/δ

min
area = 1.042).

faces). These discontinuities change the direction of aspect distortion (which is also
at its maximum), cause severe additional texture distortion if intersecting trian-
gles of the underlying mesh and also slightly disturb the equal-area property of the
projection. The left side of Fig. 4.16 depicts a distortion caused by intersecting
triangles, while the underlying mesh is shown on the right side of the Fig. 4.16.
This issue can be solved by splitting the cube faces into four triangular regions,
using a very fine tessellation (a pixel-sized triangles) or ray casting rendering (per
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Fig. 4.15: The inverse transformation of the rectangular equidistant grid in QSC
planar space and the continent coastlines to a globe surface.

Fig. 4.16: Discontinuities at the cube face diagonals can cause severe texture dis-
tortion if they intersect triangles of the textured mesh. Diagonals toward the pole
and India ripple the grid, while the diagonal toward the center of Africa does not,
since the line of discontinuity is aligned with triangles’ edges.

pixel texture sampling).

4.6. Cartesian Spherical Cube

Cartesian Spherical Cube (KSC) emerged from mapping a square to a circle [18]
and its generalization to mapping a cube to a sphere [17], proposed by Philip Now-
ell. The proposed mapping is actually the inverse transformation in a closed form
with coordinates defined in Cartesian coordinate system (Eq. 4.15). The initial in-
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tent was not to provide a cartographic mapping, but just a sphere parametrization
example posted on the Web blog [17]. However, some nice properties of this trans-
formation yielded an implementation of the forward transformation [25] five years
later. Prior to the forward transformation (Eq. 4.14), the polar coordinates have
to be transformed to the Cartesian coordinates (Eq. 4.13) and the cube face has to
be determined (the third row in the Tab. 4.1) according to one-sixth the maximum
of all three Cartesian coordinates (the first row in the Tab. 4.1) and its sign (the
second row in the Tab. 4.1). Depending on the cube face, input variables for the
transformation have to be rearranged (the fourth row in the Tab. 4.1), so that each
face can be transformed to the front face of the cube.

Fig. 4.17: Front and top faces of the KSC projection.

(|x| ≥ |y|) ∧ (|x| ≥ |y|) (|y| ≥ |x|) ∧ (|y| ≥ |z|) (|z| ≥ |x|) ∧ (|z| ≥ |y|)
x > 0 x < 0 y > 0 y < 0 z > 0 z < 0
Face 1 Face 3 Face 4 Face 5 Face 0 Face 2
(right) (left) (top) (bottom) (front) (back)
x’ = -z x’ = z y’ = -z y’ = z x’ = -x
z’ = x z’ = x z’ = y z’ = y

Table 4.1: Face selection and mapping to a front face before KSC forward transfor-
mation.

Forward transformation:

χ = cos θ sinϕ

ψ = sin θ

ζ = cos θ cosϕ

(4.13)
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Fig. 4.18: The distribution of the texel aspect (left side) and area (right side)
distortion over the face of the cube when KSC projection is used. The texel aspect
distortion ranges from 0.577 to 1.731 (δmax

aspect/δ
min
aspect = 3.0), while the texel area

distortion ranges from 1.0 to 1.155 (δmax
area/δ

min
area = 1.155).

ξ = −
√

(2ψ2 − 2χ2 − 3)2 − 24χ2

x = sign(χ) ·min

(
√

max(ξ + 2χ2 − 2ψ2 + 3, 0)

2
, 1

)

y = sign(ψ) ·min

(
√

max(ξ − 2χ2 + 2ψ2 + 3, 0)

2
, 1

)

z = sign(ζ)

(4.14)

Inverse transformation:

x′ = x ·
√

max(1− 1

2
y2 − 1

2
z2 +

1

3
y2z2, 0)

y′ = y ·
√

max(1 − 1

2
x2 − 1

2
z2 +

1

3
x2z2, 0)

z′ = z ·
√

max(1 − 1

2
x2 − 1

2
y2 +

1

3
x2y2, 0)

(4.15)

ϕ =arctan
x′

z′

θ =arcsin y′
(4.16)

KSC is an approximately equal-area SCM projection (15% deviation), with a
severe texel aspect distortion. It has worse aspect distortion than any other previ-
ously mentioned SCM. Another unusual property of the KSC is both shrinking and
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Fig. 4.19: The inverse transformation of the rectangular equidistant grid in KSC
planar space and the continent coastlines to a globe surface.

stretching of the texels at the same time along different axes, while moving from the
center of the cube face toward the middle of the edges. The texel aspect is constant
at the diagonals.

4.7. Hierarchical Equal Area isoLatitude Pixelization

Hierarchical Equal Area isoLatitude Pixelization (HEALPix) [6] is a class of
spherical projections with a property of distributing 12N2 points as uniformly as
possible over the surface of the unit sphere. These hybrid projections combine the
Lambert cylindrical equal-area projection, for the equatorial region with the inter-
rupted Collignon projection for the polar regions. This infinite class of projections
is parameterized by Nθ and Nφ [6] (often referred to as K and H, respectively [2]).
Nθ is the number of base-resolution pixel layers between the north and south poles
and Nφ is the multiplicity of the meridional cuts, or the number of equatorial or
circumpolar base-resolution pixels. In this paper, we discuss only the HEALPix
projection with Nθ = 3 and Nφ = 4 (Fig. 4.20), since it is the only projection of
the whole class that can be rearranged to a cube-based hexahedral projection.

The equatorial and the polar regions meet at latitude θ̃. This particular latitude
can be calculated based on the fact that the polar region, as a part of an equal-area
projection, needs to be one-sixth of the total area, and that the area of the spherical
cap can be calculated as P = 2π(1− sin θ) [2]. Hence, θ̃ = arcsin (2/3) ≈ 41.81◦.

Since the projection differs for the equatorial and polar regions, we will provide
forward and inverse transformations separately. The forward transformation of the
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Fig. 4.20: The world map based on HEALPix projection with Nθ = 3 and Nφ = 4.

equatorial region (|θ| < θ̃) is:

x =ϕ · 4
π

y =
3

2
· sin θ

(4.17)

Inverse transformation for equatorial region:

ϕ =x · π
4

θ =arcsin
2y

3

(4.18)

As it can be seen in the Fig. 4.22, HEALPix is an exact equal-area projection
for the equatorial region. Also, the texel aspect distortion (δaspect) is less than for
any other SCM projection, except for OSC.

HEALPix projections are not cube-based, but the four triangles of the inter-
rupted Collignon projection for the polar regions can be rearranged and grouped to
form a face of the cube. The process of rearrangement after the forward transfor-
mation is summarized in Tab. 4.2. This process should be reversed in the inverse
transformation.

Forward transformation for polar regions:

σ =
√

3(1− | sin θ|)

x =σϕ · 4
π

y =1− σ

(4.19)
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Fig. 4.21: Front and top faces of the HEALPix (Nθ = 3 and Nφ = 4) projection.

Fig. 4.22: . The distribution of the aspect (left side) and area (right side) distortion
over the equatorial face of the cube when HEALPix (Nθ = 3 and Nφ = 4) projection
is used. The texel aspect distortion ranges from 0.654 to 1.178 (δmax

aspect/δ
min
aspect =

1.8). There is no area distortion.

Inverse transformation for polar regions:

σ =1− y
ϕ =

x

σ
· π
4

θ =± arcsin

(

1− σ2

3

)

(4.20)
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Fig. 4.23: The inverse transformation of the rectangular equidistant grid in
HEALPix (Nθ = 3 and Nφ = 4) planar space and the continent coastlines to a
globe surface.

ϕ
[

−π
4
, π
4

] [

π
4
, 3π

4

] [

3π
4
, 5π

4

] [

5π
4
, 7π

4

]

y = y-1 z = x x = -x z = x

θ > θ̃ x = 1-y y = 1-y x = y-1
y = z y = -z

y = 1-y z = x x = -x z = x

θ < −θ̃ x = 1-y y = y-1 x = y-1
y = -z y = z

Table 4.2: Rearrangement of interrupted Collignon projection’s triangles into a
quad after the forward transformation.

Subface y ≤ |x| −x ≤ y ≤ x y ≥ |x| −y ≤ x ≤ y
North y = 1+y z = y x = -x z = y
polar y = 1-x y = 1-y y = 1+x
face x = z x = -z
South x = -x z = y y = 1-y z = y
polar y = 1+y y = 1+x y = 1-x
face x = z x = -z

Table 4.3: Splitting the polar quads into interrupted Collignon projection’s triangles
before the inverse transformation.
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Fig. 4.24: The distribution of the aspect (left side) and area (right side) distortion
over the polar face of the cube when HEALPix projection is used. The texel aspect
distortion ranges from 0.548 to 1.826 (δmax

aspect/δ
min
aspect = 3.33), while the texel area

distortion ranges from 1.0 to 1.27 (δmax
area/δ

min
area = 1.27).

Texel aspect distortion is very high in the polar regions (left side of Fig. 4.24).
It has the highest value of all described projections, and it can be clearly seen on
the graticule and continents shape (right side of the Fig. 4.21). Like in QSC, there
are discontinuities at x = |y| directions on the polar faces of the cube, with even
higher magnitude. These discontinuities cause the same problems as with QSC, like
further increase of the aspect distortion (it is at maximum and change direction at
the line of discontinuity), texture rippling over triangles that intersect discontinuity
and also disturbing the equal-area property (right side of the Fig. 4.24).

5. Spherical Cube Map Projection Comparison

In this section, we summarize the characteristics of the projections, covered in
the previous sections, and present a side-by-side comparison according to the tests
described in Sec. 3.

Although precision was not the main criteria used in SCM projection evaluation,
poor precision can certainly limit a projections field of application. For example,
precision is very important in location services, cadastral surveys and geographic
information systems. Almost all SCM projections maintained good precision, with
the error introduced by an inverse transformation followed by a forward transfor-
mation less than or equal to 1µm for an Earth-sized planet. The only exception is
CSC (and also QLSC, but this projection is not covered in the paper). Because of
its imprecision and tendency to stretch the surface toward the edges of the cube,
CSC cannot be used for Earth mapping.
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Another property used in the evaluation process is the execution time of both
forward and inverse transformations. Execution time significantly depends on im-
plementation optimization, compiler, CPU architecture, working frequency, caching
scheme, etc. Therefore, Fig. 5.1 depicts normalized values. The normalization is
done using the shortest execution time. The tests were executed on Intel Core
i7-4700HQ CPU using the Microsoft Visual Studio 2013 C++ compiler on the Mi-
crosoft Windows 8.1 operating system. As can be seen in Fig. 5.1, HEALPix is
the fastest projection, while OSC and QSC are the slowest ones. The OSC forward
transformation, due to its iterative nature, has a relatively long execution time,
but even so it has approximately the same speed as QSC. On the other hand, the
inverse transformation of OSC is much faster than QSC. KSC has approximately
the same execution time for both transformations. Generally, excluding HEALPix,
all other SCM projections have the same order of magnitude execution time.

Fig. 5.1: Forward and inverse transformation execution time comparison. Values
are normalized using HEALPix equatorial inverse transformation time.

The most important property used in evaluating the quality of SCM projections
is distortion. Table 5.1 gives a comparative review of relevant distortion parameters:
minimum (min) and maximum (max ) values, maximum-to-minimum ratio (ratio)
and root-mean-square deviation (RMSD) of both texel aspect and area distortion.
HEALPix for the polar regions and KSC have the worst aspect distortion. QSC
has a significant texel aspect distortion, while TSC and ASC are slightly better.
HEALPix and QSC are actually not hexahedral projection. In order to reduce the
effects of discontinuities, faces of the cube have to be divided into, at least, four
triangular areas with edges aligned with discontinuities. OSC is the only SCM
projection that eliminates aspect distortion.

TSC has the worst texel area distortion. OSC is better than TSC, but still has
significant area distortion at the corners of the cube faces. ASC has a relatively low
area distortion, while KSC can be considered approximately equal-area projection.
QSC is classified as an equal-area projection, although the discontinuities slightly
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disturb that property. Furthermore, in the tests of this property, we have compared
texels all over the cube face with the texel in its center. However, the central texel
in the QSC projection crosses both lines of discontinuities, hence its size is bigger
than any other texel in the map. That is the reason the maximal value of the
QSC area distortion is less than one. The even number of texels is assumed along
each axis, which eliminates the extreme value and gives a little better overall equal-
area property of QSC. HEALPix for the equatorial region is an exact equal-area
projection, while the polar regions suffer from discontinuities the same way as QSC,
but even with a higher magnitude.

δaspect δarea
Projection min max ratio RMSD min max ratio RMSD

TSC 0.707 1.414 2.000 0.155 0.222 1.000 4.500 0.506
ASC 0.707 1.414 2.000 0.146 0.707 1.000 1.414 0.153
OSC 0.994 1.006 1.013 0.001 0.324 1.000 3.088 0.280
CSC 0.650 1.538 2.365 0.218 0.940 1.325 1.410 0.019
QSC 0.650 1.539 2.369 0.271 0.894 0.931 1.042 0.099
KSC 0.577 1.732 3.000 0.227 1.000 1.155 1.155 0.063
HEALPixE 0.654 1.178 1.800 0.156 1.000 1.000 1.000 0.000
HEALPixP 0.548 1.826 3.334 0.437 1.000 1.272 1.272 0.108

Table 5.1: Comparative review of SCM projections relevant distortion parameters:
minimum (min) and maximum (max ) values, maximum-to-minimum ratio (ration)
and root-mean-square deviation (RMSD) of both texel aspect and area distortion.

Even though a tabular review is useful for comparing values, a visual represen-
tation is usually more convincing. Fig. 6.1 gives a side-by-side comparison of all
evaluated SCM projections. A comparison is done through topographic view with
the graticule, texel aspect distortion and texel area distortion distribution over the
face of the cube. Since projections may differ in the equatorial and polar regions,
both equatorial (front) and polar (top) faces are provided.

Fig. 6.2 compares the inverse transformation effects by reprojecting regular grids
from the projection planes back to the spherical surface. The figure reveals how
the grid is distorted and also the issues with CSC projection. It can be clearly
seen that the shapes of the continents are incorrect in the case of CSC. CSC was
used for mapping cosmic background radiation, where the equal-area property was
important in representing its density, while the distortion effects were of secondary
importance if they were relevant at all or even noticed.

6. Conclusion

A spherical surface cannot be mapped to a plane without distortion. If a projec-
tion preserves shapes, it does not preserve area and vice versa. The choice of map
projection must therefore always consider the requirements of the application area.
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For planet-sized terrain rendering, projections from the sphere onto the six faces
of a cube are of particular interest, since the rectangular cube faces allow use of ex-
isting file formats for image and data storage, textures with mipmap and anisotropic
filtering capabilities as are typical in graphics pipelines, and quadtree hierarchies
and clipmaps are commonly used for level-of-detail purposes.

The rendering stage, in particular the texture sampling stage in modern graphics
pipelines, dictates the quality of the rendering result of such applications. We,
therefore, derive the following quality criteria for the evaluation of map projections:
texel aspect distortions, texel area distortions, and efficiency of transformations
required for texture sampling.

Both texel aspect and area distortion increase texture size required for the cer-
tain level of fidelity, while texel aspect distortion also spends a certain amount of
the hardware supported anisotropy range. The efficiency of the transformations
directly dictates the time needed for the data preparation and the rendering itself.

Using these criteria, we evaluated a comprehensive list of suitable SCM projec-
tions. Each projection has its advantages and disadvantages. A few projections are
clearly unsuitable for the task; QLSC because of the wrong forward transformation
and CSC because of imprecision and distortion that cannot be corrected by texture
filtering. Among other presented projections, both QSC and HEALPix are actually
not hexahedral and they introduce discontinuities if they are treated as such. Also,
both QSC and HEALPix introduce high texel aspect distortion.

Comparing all presented SCM projections, ASC is probably the best choice,
combining easy implementation, relatively fast transformation and moderate dis-
tortion. ASC requires the texture storage space twice the size of the nominal value.
OSC enables sharper rendering than any other SCM, since the available anisotropy
filtering range in not spent on the aspect distortion. However, OSC may require
bigger texture storage space (about 54% more than ASC, if the same texture levels
blending scheme is used). Also, OSC has slower forward transformation than ASC.

KSC requires approximately the same texture size as OSC, but results in the
blurrier rendering of flat, nearly horizontal surfaces, because of spending a signif-
icant range of available anisotropic filtering for correcting aspect distortion. TSC
is the worst choice considering required texture size (2.25 times more than ASC).
Although the texel aspect distortion of the TSC is the same as of ASC, the texel
area distortion is far worse than any other SCM projection.

Among the vast number of known projections (and the infinite number of as
yet unknown projections), there are certainly more that can be applied to map a
sphere to cube faces. Future work will, therefore, include the search for more pro-
jections, and their evaluation. Since the particular needs of the planet-sized terrain
rendering were not considered when constructing most known map projections, it
is possible that a projection specifically created for this task could be superior to
the projections evaluated in this paper.
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Fig. 6.1: Side-by-side comparison of all evaluated SCM projections.
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Fig. 6.2: Side-by-side comparison of the SCM inverse transformations effects. The
effects are visualized by reprojecting regular grids from the projection planes back
to the spherical surface.
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