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ON COMMON FIXED POINTS THEOREMS FOR ORDERED F -
CONTRACTIONS WITH APPLICATION

Muhammad Nazam and Ozlem Acar

Abstract. We study the conditions for existence of a unique common fixed point of
two ordered F -contractions defined on an ordered partial metric space; in particular,
we present a common fixed point result for a pair of ordered F -contractions satisfying
a generalized rational type contractive condition and discuss its consequences. It is
remarked that the notion of an F -contraction in partial metric spaces is more general
than that in metric spaces. As application of our findings, we demonstrate the existence
of common solution of the system of Volterra type integral equations.
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1. Introduction

The Banach Contraction Principle plays a fundamental role in metric fixed point
theory. A number of efforts have been made to enrich and generalize Banach Con-
traction Principle (see for example [1, 2, 3, 4, 6, 12, 16]). One of these generalizations
is for F -contraction presented by Wardowski [18]: every F -contraction defined on a
complete metric space has a unique fixed point. So the concept of an F -contraction
proved to be a milestone in fixed point theory. Numerous research papers on F -
contractions have been published (see for instant [5, 6, 11, 15, 17]). Recently, Minak
et al.[13] presented a fixed point result for Cı́ŕıc type generalized F -contraction.
In this paper, by introducing ordered F -contractions which satisfy a generalized
rational type contractive condition defined on an ordered partial metric space, we
investigate a unique common fixed point of ordered F -contractions. As an appli-
cation, we show the existence of the common solution of operators satisfying an
implicit integral equation.

The main result in this paper generalizes the results given by Durmaz [11] (Corol-
lary 3.2) and Wardowski [18] (Corollary 3.4).
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2. Preliminaries

We denote the set of natural numbers, rational numbers, (−∞,+∞), (0,+∞)
and [0,+∞) by N, Q, R, R+ and R+

0 , respectively.

Matthews generalized the notion of metric, as follows:

Definition 2.1. [12] Let M be a nonempty set. If the mapping p : M ×M → R+
0

satisfies the following properties,

(p1) r1 = r2 ⇔ p (r1, r1) = p (r1, r2) = p (r2, r2) ,

(p2) p (r1, r1) ≤ p (r1, r2) ,

(p3) p (r1, r2) = p (r2, r1) ,

(p4) p (r1, r3) ≤ p (r1, r2) + p (r2, r3)− p (r2, r2)

for all r1, r2, r3 ∈ M , then p is called a partial metric on M and the pair (M,p) is
known as a partial metric space.

Example 2.1. Define the mapping p : R+

0 × R
+

0 → R
+

0 by p(r1, r2) = max{r1, r2}. It is
easy to check that p satisfies (p1)− (p4) and hence p is a partial metric on R+

0 . Note that
p does not define a metric on R

+

0 , since, p(a, a) = a for all a ∈ R
+

0 .

Example 2.1 gives a classical example of a partial metric. We present a new non-
trivial example of a partial metric as follows:

Example 2.2. We define p : R× R → R+ by

p(r, s) =























































1 if r = s ∈ R−Q;

3

2
if r 6= s ∈ R−Q;

1

3
if r = s ∈ Q;

1 + 1

m
+ 1

n
if r = rm, s = rn and m 6= n;

1 + 1

n
if {r, s} ∩Q = {rn} and {r, s} −Q 6= φ.

Clearly, p satisfies (p1)− (p3). To prove p4, let r, s, u ∈ R−Q and m 6= n. Then

p (r, s) + p (u, u) ≤ p (r, u) + p (s, u) ;

p (rn, s) + p (u, u) = 2 +
1

n
≤ p (rn, u) + p (s, u) ;

p (rn, rn) + p (u, u) =
4

3
< p (rn, u) + p (rn, u) ;

p (rm, rn) + p (u, u) = 2 +
1

m
+

1

n
= p (rm, u) + p (rn, u) ;
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p (r, s) + p (rk, rk) < 2 < p (r, rk) + p (s, rk) ;

p (rn, s) + p (rk, rk) =
4

3
+

1

n
< 2 +

1

n
+

2

k
= p (rn, rk) + p (s, rk) ;

p (rn, rn) + p (rk, rk) =
2

3
≤ p (rn, rk) + p (rn, rk) ;

p (rm, rn) + p (rk, rk) =
4

3
+

1

m
+

1

n
≤ p (rm, rk) + p (rn, rk) .

Note that p is not a metric on R.

Notice that a metric on a set M is a partial metric p such that p(r, r) = 0 for all
r ∈ M and p(r1, r2) = 0 implies r1 = r2 ( using (p1) and (p2)) but converse may not
be true. The self distance p(r, r) referred to as the size or weight of r, is a feature
used to describe the amount of information contained in r.

Matthews [12] explored the following aspects of a partial metric p on M :

(1) : The mapping d : M ×M → R+
0 defined by

(2.1) d (r1, r2) = 2p (r1, r2)− p (r1, r1)− p (r2, r2)

for all r1, r2 ∈ M defines a metric on M (called induced metric).

(2) : Open ball has the structure Bp (r, ǫ) = {r1 ∈ M : p (r, r1) < p (r, r) + ǫ} for
all r ∈ M and ǫ > 0.

(3) : Each partial metric p on M generates a T0 topology T [p] on M . The base
of topology T [p] consists of family of open balls

{Bp (r, ǫ) : r ∈ M, ǫ > 0} .

(4) : A sequence {rn}n∈N in (M,p) converges to a point r ∈ M if and only if

p(r, r) = lim
n→∞

p(r, rn).

(5) : A sequence {rn}n∈N in (M,p) is called a Cauchy sequence if

lim
n,m→∞

p(rn, rm) exists and is finite.

(6) : A partial metric space (M,p) is said to be complete if every Cauchy sequence
{rn}n∈N in M converges, with respect to T [p], to a point r ∈ M such that

p(r, r) = lim
n,m→∞

p(rn, rm).

Matthews [12] also evinced an analogue of Banach’s fixed point theorem in partial
metric spaces. This remarkable theorem led numerous authors to obtain various
applicable fixed point results in partial metric spaces (see for example [2, 6, 7, 8, 14]
and references therein).
The following lemma will be helpful in the sequel.
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Lemma 2.1. [12]

(1) A sequence {rn}n∈N is a Cauchy sequence in the partial metric space (M,p)
if and only if it is a Cauchy sequence in the metric space (M,d).

(2) A partial metric space (M,p) is complete if and only if the metric space (M,d)
is complete.

(3) A sequence {rn}n∈N in M converges to a point r ∈ M , with respect to τ(d) if
and only if limn→∞ p(r, rn) = p(r, r) = limn,m→∞ p(rn, rm).

(4) If limn→∞ rn = υ such that p(υ, υ) = 0,

then lim
n→∞

p(rn, r) = p(υ, r) for every r ∈ M.

Wardowski [18] has introduced a useful class of mappings as follows:

Let F : R+ → R be a mapping satisfying the following conditions:

(F1) : F is strictly increasing;

(F2) : For each sequence {rn} of positive numbers, the following condition holds:

lim
n→∞

rn = 0 if and only if lim
n→∞

F (rn) = −∞;

(F3) : There exists θ ∈ (0, 1) such that limα→0+(α)
θF (α) = 0.

We denote the set of all mappings satisfying the conditions (F1)− (F3) by ∆F .

Example 2.3. Let F : R+ → R be defined by:

(a) F (r) = ln(r).

(b) F (r) = r + ln(r).

(c) F (r) = ln(r2 + r).

(d) F (r) = − 1√
r
.

It is easy to check that (a),(b),(c) and (d) are members of ∆F .

Definition 2.2. [18] Let (M,d) be a metric space. We say the mapping T : M →
M is an Fd-contraction, if there exist F ∈ ∆F and τ > 0 such that

d(T (r1), T (r2)) > 0 ⇒ τ + F (d(T (r1), T (r2)) ≤ F (d(r1, r2)), for all r1, r2 ∈ M .

Definition 2.3. Let (M,p) be a partial metric space. We say the mapping T :
M → M is an Fp-contraction, if there exist F ∈ ∆F and τ > 0 such that

p(T (r1), T (r2)) > 0 ⇒ τ + F (p(T (r1), T (r2)) ≤ F (p(r1, r2)), for all r1, r2 ∈ M .
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The following Example indicates that an Fp-contraction is more general than an
Fd-contraction.

Example 2.4. Let M = [0, 1] and define partial metric by p(r1, r2) = max {r1, r2} for
all r1, r2 ∈ M . The metric d induced by partial metric p is given by d(r1, r2) = |r1 − r2|
for all r1, r2 ∈ M . Define F : R+ → R by F (r) = ln(r) and T by

T (r) =











r

5
if r ∈ [0, 1);

0 if r = 1

Note that for all r1, r2 ∈ M with r1 ≤ r2 or r2 ≤ r1, we have

τ + F (p(T (r1), T (r2))) ≤ F (p(r1, r2)) implies

τ + F
(r1

5

)

≤ F (r1) or τ + F
(r2

5

)

≤ F (r2) .

So T is an Fp-contraction but T is neither continuous nor an Fd-contraction. Indeed, for
r1 = 1 and r2 = 5

6
, d(T (r1), T (r2)) > 0 and we have

τ + F (d(T (r1), T (r2))) ≤ F (d(r1, r2)) ,

τ + F

(

d(T (1), T (
5

6
))

)

≤ F

(

d(1,
5

6
)

)

,

τ + F

(

d(0,
1

6
)

)

≤ F

(

1

6

)

,

1

6
<

1

6
,

a contradiction for all possible values of τ .

Definition 2.4. Let (M �) be a partially ordered set. We say the mappings
S, T : M → M are weakly increasing, if S(m) � TS(m) and T (m) � ST (m) for all
m ∈ M .

Example 2.5. Let M = R+ be endowed with usual order and usual topology. Let
S, T : M → M be given by

S(m) =

{

m
1
2 if m ∈ [0, 1]

m2 if m ∈ (1,∞)
and T (m) =

{

m if m ∈ [0, 1]
2m if m ∈ (1,∞)

Then, S andT are weakly increasing mappings.

3. Main Result

Definition 3.1. Let (M,�) be an ordered set and p be a partial metric onM , then
the triplet (M,�, p) is known as an ordered partial metric space. If (M,p) is com-
plete, then (M,�, p) is called an ordered complete partial metric space. Moreover,
(M,�, p) is regular, if it satisfies the following condition:

{

If {rn} ⊂ M is a nondecreasing (nonincreasing) sequence with rn → r,

then rn � r (r � rn) for all n
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Definition 3.2. Let (M,�, p) be an ordered partial metric space. Let

O = {(α, β) ∈ M ×M : α � β, p(S(α), T (β)) > 0} .

We say the weakly increasing mappings S, T form a pair of generalized rational type
ordered F -contractions, if there exist F ∈ ∆F and τ > 0 such that

(3.1) τ + F (p(S(α), T (β))) ≤ F (R(α, β)) , for all (α, β) ∈ O and

R(α, β) = max















p(α, β),
p(α, S(β))p(α, T (β))

1 + p(α, β)
,

p(α, S(α))p(α, T (β))

1 + p(S(α), T (β))















.

Lemma 3.1. Let (M,�, p) be an ordered complete partial metric space and S, T

form a pair of generalized rational type ordered F -contractions. Then for all i =
0, 1, 2, 3, ... p(r2i, r2i+1) = 0 implies p(r2i+1, r2i+2) = 0.

Proof. Let r0 ∈ M be an initial point and take r1 = S(r0) and r2 = T (r1), then
by induction we can construct an iterative sequence rn of points in M such that,
r2i+1 = S(r2i) and r2i+2 = T (r2i+1) where i = 0, 1, 2, . . .. As there exists r0 ∈ M

such that r0 � S(r0) and S, T are weakly increasing self-mappings, we obtain

r1 = S(r0) � TS(r0) = T (r1) = r2 = T (r1) � ST (r1) = S(r2) = r3.

Iteratively, we obtain

r0 � r1 � r2 � · · · � rn−1 � rn � rn+1 � · · · .

We argue by contradiction that p(r2i+1, r2i+2) > 0. We note that

R(r2i, r2i+1) = max























p(r2i, r2i+1),
p(r2i, S(r2i))p(r2i+1, T (r2i+1))

1 + p(r2i, r2i+1)
,

p(r2i, S(r2i))p(r2i+1, T (r2i+1))

1 + p(S(r2i), T (r2i+1))























= max















p(r2i, r2i+1),
p(r2i, r2i+1)p(r2i+1, r2i+2)

1 + p(r2i, r2i+1)
,

p(r2i, r2i+1)p(r2i+1, r2i+2)

1 + p(r2i+1, r2i+2)















≤ max {0, p(r2i+1, r2i+2)} = p(r2i+1, r2i+2)

Since (r2i, r2i+i) ∈ O, by inequality (3.1) we have

τ + F (p(r2i+1, r2i+2)) = τ + F (p(S(r2i), T (r2i+1)))

≤ F (R(r2i, r2i+1))

≤ F (p(r2i+1, r2i+2))

for all i = 0, 1, 2, 3, ..., which is a contradiction to (F1). Hence, p(r2i+1, r2i+2)) =
0.

The following theorem is our main result.
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Theorem 3.1. Let (M,�, p) be an ordered complete partial metric space and S, T :
M → M be generalized rational type ordered F -contractions. If there exists r0 ∈ M

such that r0 � S(r0) and either

(a) one of S, T is continuous or

(b) (M,�, p) is regular.

Then S, T have a common fixed point.

Proof. (a) We begin with the following observation:

R(r2i, r2i+1) = 0 if and only if r2i = r2i+1 is a common fixed point of S, T.

Let R(r2i, r2i+1) > 0 for all i = 0, 1, 2, 3, .... Arguing as in Lemma 3.1, we have

r0 � r1 � r2 � · · · � rn−1 � rn � rn+1 � · · · .

Now if p(S(r2i), T (r2i+1)) = 0, then using Lemma 3.1, we can conclude that r2i is
a common fixed point of S, T . Let p(S(r2i), T (r2i+1)) > 0, so, (r2i, r2i+1) ∈ O. By
contractive condition (3.1), we get

τ + F (p(r2i+1, r2i+2)) = τ + F (p(S(r2i), T (r2i+1)))

≤ F (R(r2i, r2i+1)) ,(3.2)

where

R(r2i, r2i+1) = max























p(r2i, r2i+1),
p(r2i, S(r2i))p(r2i+1, T (r2i+1))

1 + p(r2i, r2i+1)
,

p(r2i, S(r2i))p(r2i+1, T (r2i+1))

1 + p(S(r2i), T (r2i+1))























= max















p(r2i, r2i+1),
p(r2i, r2i+1)p(r2i+1, r2i+2)

1 + p(r2i, r2i+1)
,

p(r2i, r2i+1)p(r2i+1, r2i+2)

1 + p(r2i+1, r2i+2)















≤ max {p(r2i, r2i+1), p(r2i+1, r2i+2)}

If R(r2i, r2i+1) ≤ p(r2i+1, r2i+2), then by (3.2), we get a contradiction to F1). Thus,
for R(r2i, r2i+1) ≤ p(r2i, r2i+1), we have

F (p(r2i+1, r2i+2)) ≤ F (p(r2i, r2i+1))− τ,(3.3)

for all i = 0, 1, 2, 3, .... As (r2i+1 � r2i+2 and p(S(r2i+2), T (r2i+1)) > 0 be-
cause otherwise by Lemma 3.1, r2i+1 is a common fixed point of S and T . Thus,
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(r2i+1, r2i+2) ∈ O and

R(r2i+2, r2i+1) = max























p(r2i+2, r2i+1),
p(r2i+2, S(r2i+2))p(r2i+1, T (r2i+1))

1 + p(r2i+2, r2i+1)
,

p(r2i+2, S(r2i+2))p(r2i+1, T (r2i+1))

1 + p(S(r2i+2), T (r2i+1))























= max























p(r2i+2, r2i+1),
p(r2i+2, r2i+3)p(r2i+1, r2i+2)

1 + p(r2i+2, r2i+1)
,

p(r2i+2, r2i+3)p(r2i+1, r2i+2)

1 + p(r2i+3, r2i+2)























≤ max {p(r2i+2, r2i+1), p(r2i+2, r2i+3)}

Again the case R(r2i+2, r2i+1) ≤ p(r2i+2, r2i+3) is not possible. So, for the other
case, contractive condition (3.1) implies

(3.4) F (p(r2i+2, r2i+3)) < F (p(r2i+1, r2i+2))− τ,

for all i = 0, 1, 2, 3, .... By (3.3) and (3.4), we have

(3.5) F (p(rn, rn+1)) ≤ F (p(rn−1, rn))− τ,

for all n ∈ N. Repeating these steps, we get

(3.6) F (p(rn, rn+1)) ≤ F (p(r0, r1))− nτ.

By (3.6), we obtain limn→∞ F (p(rn, rn+1)) = −∞ and (F2), implies

(3.7) lim
n→∞

p(rn, rn+1) = 0.

By the property (F3), there exists κ ∈ (0, 1) such that

(3.8) lim
n→∞

((p(rn, rn+1))
κ
F (p(rn, rn+1))) = 0.

Multiplying (3.6) by (p(rn, rn+1))
κ
, we obtain

(3.9) (p(rn, rn+1))
κ
(F (p(rn, rn+1))− F (p(r0, x1))) ≤ − (p(rn, rn+1))

κ
nτ ≤ 0.

Using (3.7), (3.8) and letting n → ∞ in (3.9), we have

(3.10) lim
n→∞

(n (p(rn, rn+1))
κ
) = 0.

There exists n1 ∈ N, such that n (p(rn, rn+1))
κ
≤ 1 for all n ≥ n1 or,

(3.11) p(rn, rn+1) ≤
1

n
1
κ

for all n ≥ n1.
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By (3.11), for m > n ≥ n1, we have

p(rn, rm) ≤ p(rn, rn+1) + p(rn+1, rn+2) + p(rn+2, rn+3) + ...+ p(rm−1, rm)

−

m−1
∑

j=n+1

p(rj , rj)

≤ p(rn, rn+1) + p(rn+1, rn+2) + p(rn+2, rn+3) + ...+ p(rm−1, rm)

=

m−1
∑

i=n

p(ri, ri+1) ≤

∞
∑

i=n

p(ri, ri+1) ≤

∞
∑

i=n

1

i
1
k

.

The convergence of the series
∑

∞

i=n

1

i
1
κ

entails limn,m→∞ p(rn, rm) = 0. Hence {rn}

is a Cauchy sequence in (M,p). By Lemma 2.1(1), {rn} is a Cauchy sequence in
(M,d). Since (M,d) is a complete metric space, there exists υ ∈ M such that
limn→∞ d(rn, υ) = 0. By Lemma 2.1(3)

(3.12) lim
n→∞

p(υ, rn) = p(υ, υ) = lim
n,m→∞

p(rn, rm).

Since limn,m→∞ p(rn, rm) = 0, by (3.12) we have

(3.13) p(υ, υ) = 0 = lim
n→∞

p(υ, rn).

By equation (3.13) it follows that r2n+1 → υ and r2n+2 → υ as n → ∞ with respect
to τ(p). Suppose that T is continuous then

υ = lim
n→∞

rn = lim
n→∞

r2n+1 = lim
n→∞

r2n+2 = lim
n→∞

T (r2n+1) = T ( lim
n→∞

r2n+1) = T (υ).

Now we show that υ = S(υ). Suppose on contrary that p(υ, S(υ)) > 0. Since υ � υ,
by contractive condition (3.1), we obtain

τ + F (p(υ, S(υ))) = τ + F (p(S(υ), T (υ)))

≤ F (R(υ, υ))

F (p(υ, S(υ))) < F (p(υ, S(υ))),

a contradiction to (F1). Thus, p(υ, S(υ)) = 0. The axioms (p1) and (p2) implies
υ = S(υ). Consequently, S(υ) = T (υ) = υ that is (S, T ) have a common fixed point
υ.
(b) In the other case, if M is regular then we have rn � υ for all n ∈ N. To show
that υ is a common fixed point of S, T , we split the proof into two cases.
Case. 1
If rn = υ for some n, then there exists i0 ∈ N such that r2i0 = υ and S(υ) =
S(r2i0 ) = r2i0+1 � υ also υ = r2i0 � r2i0+1 = S(υ). Thus, υ = S(υ) and by (3.1)
we have υ = T (υ). This completes the proof.
Case. 2
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If rn 6= υ for all n, suppose that p(υ, S(υ)) > 0. Since limn→∞ r2i = υ, there exists
η ∈ N such that

p(r2i+1, S(υ)) > 0 and p(r2i, υ) <
p(υ, S(υ))

2
for all i ≥ η.

R(r2i, υ) = max























p(r2i, υ),
p(r2i, S(r2i))p(υ, T (υ))

1 + p(r2i, υ)
,

p(r2i, S(r2i))p(υ, T (υ))

1 + p(S(r2i), T (υ))























,

R(r2i, υ) ≤
p(υ, S(υ))

2
for all i ≥ η

As (r2i, υ) ∈ O. By contractive condition (3.1), we have

τ + F (p(r2i+1, S(υ))) = τ + F (p(S(r2i), T (υ)))

≤ F (R(r2i, υ)),

F (p(υ, S(υ))) < F (
p(υ, S(υ))

2
) as i → ∞,

a contradiction to (F1). Therefore, p(υ, S(υ)) = 0. The axioms (p1) and (p2) implies
υ = S(υ) and hence by (3.1), we have υ = T (υ). Thus, the mappings S and T have
a common fixed point υ.

We denote set of common fixed points of S, T by Cfp.

Theorem 3.2. In addition to the assumptions in Theorem 3.1, if Cfp is a chain,
then it is singleton set (common fixed point is unique).

Proof. As υ ∈ Cfp and if ω is another common fixed point of S, T , then ω � υ,
also p(S(υ), T (ω)) > 0 (other wise υ = ω) so, (υ, ω) ∈ O and the contractive
condition (3.1) implies

τ + F (p(υ, ω)) = τ + F (p(S(υ), T (ω)))

≤ F (R(υ, ω)) = F (p(υ, ω))

which is a contradiction to (F1). Hence, υ = ω and υ is a unique common fixed
point of mappings (S, T ).

Theorem 3.3. In addition to the assumptions in Theorem 3.1, if there exists z in
M such that every element in the orbit OT (z) = {z, T (z), T 2(z), . . .} is comparable
to the element(s) in Cfp. Then common fixed point is unique.

Proof. As υ ∈ Cfp and if ω is another common fixed point of S, T , then there
exists an element z ∈ M such that every element in OT (z) = {z, T (z), T 2(z), . . .}
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is comparable to υ and ω. Thus, (T n−1(z), Sn−1(υ)) and (T n−1(z), Sn−1(ω)) are
elements of O for each n ≥ 1. By (3.1), we have

τ + F (p(υ, T n(z))) = τ + F (p(Sn(υ), T n(z))

≤ F (R
(

Sn−1(υ), T n−1(z)
)

)(3.14)

As

R
(

Sn−1(υ), T n−1(z)
)

= max























p
(

Sn−1(υ), T n−1(z)
)

,

p
(

Sn−1(υ), Sn(υ)
)

p
(

T n−1(z), T n(z)
)

1 + p (Sn−1(υ), T n−1(z))
,

p
(

Sn−1(υ), Sn(υ)
)

p
(

T n−1(z), T n(z)
)

1 + p (Sn(υ), T n(z))























= p
(

Sn−1(υ), T n−1(z)
)

= p
(

υ, T n−1(z)
)

thus, the inequality (3.14) implies {p(υ, T n(z))} is a non-negative decreasing se-
quence which in turn converges to 0. Similarly, we can show that {p(ω, T n(z))} is
a non-negative decreasing sequence converges to 0. Consequently, υ = ω.

Let

ξ = {(α, β) ∈ M ×M : α � β, p(T (α), T (β)) > 0} .

Definition 3.3. Let (M,�, p) be an ordered partial metric space. We say the
nondecreasing mapping T : M → M is a generalized rational type ordered F -
contraction, if there exist F ∈ ∆F and τ > 0 such that

(3.15) τ + F (p(T (α), T (β))) ≤ F (R1(α, β)) ,

for all (α, β) ∈ ξ and

R1(α, β) = max















p(α, β),
p(α, T (α))p(β, T (β))

1 + p(α, β)
,

p(α, T (α))p(β, T (β))

1 + p(T (α), T (β))















.

Corollary 3.1. Let (M,�, p) be an ordered complete partial metric space and T :
M → M be a generalized rational type ordered F -contraction. If there exists r0 ∈ M

such that r0 � T (r0) and either

(a) T is continuous or

(b) (M,�, p) is regular.

Then T has a fixed point.

Proof. Set S = T in Theorem 3.1.
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Corollary 3.2. [11] Let (M,�, d) be an ordered complete metric space and T :
M → M be an ordered F -contraction. Let T is nondecreasing mapping and there
exists r0 ∈ M such that r0 � T (r0). If T is continuous or M is regular, then T has
a fixed point.

Proof. Set R1(α, β) = p(α, β), p(α, α) = 0 for all α, β ∈ M in Corollary 3.1.

Remark 3.1. The Theorem 3.1 is valid if R(α, β) is given any value from following.

R(α, β) =
p(α, Sα) · p(β, Tβ)

1 + p(α, β)
;

R(α, β) = p(α, Sα);

R(α, β) = p(β, Tβ);

R(α, β) = max

{

p(α, β),
p(α, Sα) · p(β, Tβ)

1 + p(α, β)

}

;

R(α, β) = max {p(α, β), p(α, Sα)} ;
R(α, β) = max {p(α, β), p(β, Tβ)} ;

R(α, β) = max

{

p(α, Sα) · p(β, Tβ)
1 + p(α, β)

, p(α, Sα)

}

;

R(α, β) = max

{

p(α, Sα) · p(β, Tβ)
1 + p(α, β)

, p(β, Tβ)

}

;

R(α, β) = max {p(α, Sα), p(β, Tβ)} ;

R(α, β) = max

{

p(α, β),
p(α, Sα) · p(β, Tβ)

1 + p(α, β)
, p(α, Sα)

}

;

R(α, β) = max

{

p(α, β),
p(α, Sα) · p(β, Tβ)

1 + p(α, β)
, p(β, Tβ)

}

;

R(α, β) = max {p(α, β), p(α, Sα), p(β, Tβ)} .

We extend the Definition 3.2 for all α, β ∈ M as follows:

Definition 3.4. Let (M,p) be partial metric space. We say the mappings S, T

form a pair of generalized rational type F -contractions. If there exist F ∈ ∆F and
τ > 0 such that

τ + F (p(S(α), T (β))) ≤ F (R(α, β)) , for all α, β ∈ M and

R(α, β) = max















p(α, β),
p(α, S(β))p(α, T (β))

1 + p(α, β)
,

p(α, S(α))p(α, T (β))

1 + p(S(α), T (β))















.

Theorem 3.4. Let (M,p) be complete partial metric space and S, T : M → M be
generalized rational type F -contractions. If one of S and T is continuous, then S

and T have a common fixed point.

Proof. The arguments follow the same lines as in proof of Theorem 3.1.
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Corollary 3.3. Let (M,p) be complete partial metric space and T : M → M be
generalized rational type F -contraction. Then T has a unique fixed point.

Proof. Set S = T in Theorem 3.4.

Corollary 3.4. [18] Let (M,d) be a complete metric space and T : M → M be
an F -contraction. Then T has a unique fixed point υ ∈ M and for every r0 ∈ M

the sequence {T n(r0)} for all n ∈ N is convergent to υ.

Proof. Set R1(α, β) = p(α, β), p(α, α) = 0 for all α, β ∈ M in Corollary 3.3

The following example illustrates Theorem 3.1 and shows that condition (3.1)
is more general than contractivity condition given by Durmaz et al. ([11]).

Example 3.1. Let M = [0, 1] and define p(r1, r2) = max {r1, r2}. Let ≺1 be defined
by r1 ≺1 r2 if and only if r2 ≤ r1 for all r1, r2 ∈ M , then r1 ≺1 r2 is a partial order on
M and (M,≺1, p) is a complete ordered partial metric space. Induced metric is given by
d (r1, r2) = |r1 − r2|, so, (M,≺1, d) is a complete ordered metric space. Define mappings
S, T : M → M by

T (r) =











r

5
if r ∈ [0, 1);

0 if r = 1

and S(r) =
3r

14
for all r ∈ M

Clearly S, T are weakly increasing self mappings with respect to ≺1. Define the map-
ping F : R+ → R by F (r) = ln(r), for all r ∈ R+ > 0. Let r1, r2 ∈ M such that
p(S(r1), T (r2)) > 0 and suppose that r2 ≺1 r1. Then

R(r1, r2) = max

{

r2,
r1r2

1 + r1
,

r1r2

1 + max
{

3r1
14

, r2
5

}

}

.

Since r1
1+r1

< 1 and r1

1+max

{

3r1
14

,
r2
5

} < 1, we have that R(r1, r2) = r2. In a similar way, if

r1 ≺1 r2, we obtain that R(r1, r2) = r1, i.e., R(r1, r2) = p(r1, r2). Let τ ≤ ln( 14
3
). Then,

since (r1, r2) ∈ O

τ + ln (p(S(r1), T (r2))) = τ + ln

(

max

{

3r1
14

,
r2

5

})

≤ ln(
14

3
) + ln

(

max

{

3p(r1, r2)

14
,
p(r1, r2)

5

})

= ln(
14

3
) + ln

(

3p(r1, r2)

14

)

= ln (p(r1, r2))

= ln (R(r1, r2)) .

Thus, for F (r) = ln(r), the contractive condition (3.1) is satisfied for all r1, r2 ∈ M .
Hence, all the hypotheses of the Theorem 3.1 are satisfied, note that the mappings S and
T have a unique common fixed point r = 0. As we have seen in Example 2.4, T is not an
Fd-contraction in (M,≺1, d) and p is not a metric on M . Thus, we can not apply Corollary
3.2 and hence Corollary 3.4.
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4. Application of Theorem 3.4

Let M=C([a, b],R) be the space of all continuous real valued mappings defined
on [a, b], a > 0. Define p : M ×M → R+

0 by

(4.1) p(u, v) = sup
t∈[a,b]

|u(t)− v(t)|+ η, for all u, v ∈ C([a, b],R) and η ≥ 0.

Obviously, (M,p) is a complete partial metric space. We shall apply Theorem 3.1
to show the existence of a common solution of the system of Volterra type integral
equations given by

u(t) = q(t) +

t
∫

a

K(t, r, u(t))dr,(4.2)

v(t) = q(t) +

t
∫

a

J(t, r, v(t))dr,(4.3)

for all t ∈ [a, b], where q : M → R is a continuous mapping and K, J : [a, b]× [a, b]×
M → R are lower semi continuous operators. We prove the following theorem to
ensure the existence of a solution of the system of integral equations given by (4.2)
and (4.3).

Theorem 4.1. Let M=C([a, b],R). Define the mappings f, g : M → M by

f (u(t)) = q(t) +

t
∫

a

K(t, r, u(t))dr;

g (v(t)) = q(t) +

t
∫

a

J(t, r, v(t))dr

where q : M → R is a continuous mapping and K, J : [a, b] × [a, b] ×M → R are
lower semi continuous operators. Assume that the following conditions hold:

(i) there exists a number τ > 0 such that

|K(t, r, u(t))− J(t, r, v(t))| ≤
1

b
ln(p(u(t), v(t))e−τ )

for each t, r ∈ [a, b] and u(t), v(t) ∈ M such that

p(u(t), v(t)) > eτ ;

(ii) ln(p(f(u(t)), g(v(t)))) ≤ |f(u(t))− g(v(t))|, for all t ∈ [a, b].
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Then the system of integral equations given by (4.2) and (4.3) has a solution.

Proof. By assumption (i), we have

|fu(t)− gv(t))| =

t
∫

a

|K(t, r, u(t))− J(t, r, v(t))|dr

≤

t
∫

a

1

b
ln(p(u(t), v(t))e−τ )dr

=
1

b
ln(p(u(t), v(t))e−τ )(t− a)

≤
1

b
ln(p(u(t), v(t))e−τ )b

= ln(p(u(t), v(t))e−τ ).

By condition (ii), we have

ln(p(fu(t), gv(t))) ≤ ln(p(u(t), v(t))e−τ ) = ln(p(u(t), v(t))) − τ,

which implies

τ + ln(p(fu(t), gv(t))) ≤ ln(p(u(t), v(t))) ≤ ln(R(u(t), v(t))).

Now F (r) = ln(r) satisfies all the hypotheses of Theorem 3.4 and so the system
of integral equations given by (4.2) and (4.3) has a unique common solution.
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