
Gorripati Sreenivasulu* et al. 
  (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH 

  Volume No.4, Issue No.6, October – November 2016, 4690-4692.  

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved.  Page | 4690 

Reducing Latency And Receiving High-

Recital In Analogous Multipliers 
GORRIPATI  SREENIVASULU 

M.Tech Student, Dept of ECE 

SKR College of Engineering & Technology 

Nellore, Andhra Pradesh, India 

B DORASWAMY
 

Associate Professor, Dept of ECE 

SKR College of Engineering & Technology 

Nellore, Andhra Pradesh, India

Abstract: Partial goods are generated in parallel utilizing a signed-digit radix-10 recoding from the BCD 

multiplier using the digit set [-5, 5], and some positive multiplicand multiples (0X, 1X, 2X, 3X, 4X, 5X) 

created in XS-3. This encoding has lots of advantages. We present the formula and architecture of the 

BCD parallel multiplier that exploits some qualities of two different redundant BCD codes to hurry up its 

computation: the redundant BCD excess-3 code (XS-3), and also the overloaded BCD representation 

(ODDS). Additionally, new techniques are designed to reduce considerably the latency and section of 

previous representative high end implementations. First, it's a self-complementing code, to ensure that an 

adverse multiplicand multiple could be acquired just by inverting the items of the related positive one. 

Also, the accessible redundancy enables a easy and quick generation of multiplicand multiples inside a 

carry-free way. Finally, the partial products could be recoded towards the ODDS representation just by 

adding a continuing factor in to the partial product reduction tree. To exhibit the benefits of our 

architecture, we've synthesized a RTL model for 16 x 16-digit and 34 x 34-digit multiplications and 

performed a comparative survey from the previous most representative designs. Because the ODDS 

utilize a similar 4-bit binary encoding as non-redundant BCD, conventional binary VLSI circuit 

techniques, for example binary carry-save adders and compressor trees, could be adapted efficiently to do 

decimal operations. 

Keywords: Parallel Multiplication; Decimal Hardware; Overloaded BCD Representation; Redundant 

Excess-3 Code; 

I. INTRODUCTION 

Since area and power dissipation are critical design 

factors in condition-of-the-art DFPUs, 

multiplication and division are carried out 

iteratively by way of digit-by-digit algorithms, and 

for that reason they present low performance. 

Furthermore, the aggressive cycle duration of these 

processors puts yet another constraint on using 

parallel approaches for lowering the latency of DFP 

multiplication in high-performance DFPUs. The 

brand new IEEE 754-2008 Standard for Floating-

Point Arithmetic, containing a format and specs for 

decimal floating-point (DFP) arithmetic has 

encouraged a lot of research in decimal hardware 

[1]. Hardware implementations normally use BCD 

rather of binary to control decimal fixed-point 

operands and integer significant of DFP figures for 

simple conversion between machine and user 

representations. Furthermore, the implementation 

of BCD arithmetic has more complications than 

binary, which result in area and delay penalties 

within the resulting arithmetic units. A number of 

redundant decimal formats and arithmetic’s happen 

to be suggested to enhance the performance of 

BCD multiplication. BCD carry-save and signed-

digit radix-10 arithmetic’s offer enhancements in 

performance regarding no redundant BCD. 

However, the resultant VLSI implementations in 

current technologies of multioperand adder trees 

may lead to more irregular layouts than binary 

carry-save adders (CSA) and compressor trees. The 

BCD carry-save format represents a radix-10 

operand utilizing a BCD digit along with a carry bit 

each and every decimal position. It's meant for 

carry-free accumulation of BCD partial products 

using rows of BCD digit adders arranged in straight 

line or tree-like configurations. The extra 

redundancy obtainable in some-bit encoding can be 

used to hurry-up BCD operations while retaining 

exactly the same data path width. In addition, these 

codes are self-complementing, so the 9’s 

complement of the digit, needed for negation, is 

definitely acquired by bit-inversion of their 4-bit 

representation. The overloaded BCD representation 

was suggested to enhance decimal multioperand 

addition, and consecutive and parallel decimal 

multiplications. Within this work, we concentrate 

on the improvement of parallel decimal 

multiplication by exploiting the redundancy of two 

decimal representations: the chances and also the 

redundant BCD excess-3 (XS-3) representation, a 

self-complementing code using the digit set [-3, 

12]. We make use of a minimally redundant digit 

looking for the recoding from the BCD multiplier 

digits, the signed-digit radix-10 recoding, that's, the 

recoded signed digits. We advise using a general 

redundant BCD arithmetic to accelerate parallel 

BCD multiplication in 2 ways: Partial product 

generation (PPG). By generating positive 

multiplicand multiples created in XS-3 inside a 

carry-free-form. By performing the decrease in 

partial products created in ODDS via binary carry-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Innovative Technology and Research (IJITR)

https://core.ac.uk/display/228552077?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Gorripati Sreenivasulu* et al. 
  (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH 

  Volume No.4, Issue No.6, October – November 2016, 4690-4692.  

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved.  Page | 4691 

save arithmetic. Partial products could be recorded 

in the XS-3 representation towards the ODDS 

representation just by adding a continuing factor in 

to the partial product reduction tree. The resultant 

partial product reduction tree is implemented using 

regular structures of binary carry-save adders or 

compressors [2]. Some-bit binary encoding of 

ODDS operands enables a far more efficient 

mapping of decimal algorithms into binary 

techniques. 

II. SYSTEM DESIGN 

The suggested decimal multiplier uses internally a 

redundant BCD arithmetic to hurry up and simplify 

the implementation. This binary encoding 

simplifies the hardware implementation of decimal 

arithmetic units, because we can use condition-of-

the-art binary logic and binary arithmetic strategies 

to implement digit operations. Particularly, the 

chances representation presents interesting qualities 

for a quick and efficient implementation of 

multioperand addition. Furthermore, conversions 

from BCD towards the ODDS representation are 

straightforward, because the digit group of BCD is 

really a subset from the ODDS representation. 

Within our work we make use of a SD radix-10 

recoding from the BCD multiplier, which requires 

to compute some decimal multiples from the BCD 

multiplicand [3]. And so the redundant BCD 

representations can host the resultant digits with 

only one decimal carry propagation. An essential 

problem for this representation may be the ten’s 

complement operation. Since following the 

recoding from the multiplier digits, negative 

multiplication digits may end up, it's important to 

negate the multiplicand to get the negative partial 

products. This operation is generally made by 

computing the nine’s complement from the 

multiplicand and adding a 1 within the proper put 

on the digit array. An easy implementation is 

acquired by observing the excess-three of the 

nine’s complement of the operand is equivalent to 

the part-complement from the operand created in 

excess-3. Therefore to possess a simple negation 

for partial product generation we make the decimal 

multiples within an excess-3 code. The negation is 

conducted by simple bit inversion, that matches the 

surplus-three of the nine’s complement from the 

multiple. 

III. METHODOLOGY 

This architecture accepts conventional BCD inputs 

X, Y, generates redundant BCD partial products 

PP, and computes the BCD product P = X x Y. It 

includes the next three stages: parallel generation 

of partial products created in XS-3, including 

generation of multiplicand multiples and recoding 

from the multiplier operand, recoding of partial 

products from XS-3 towards the ODDS 

representation and subsequent reduction, and final 

conversion to some non-redundant 2d-digit BCD 

product. A SD radix-10 recoding from the BCD 

multiplier has been utilized. This recoding creates a 

reduced quantity of partial items that results in a 

significant decrease in the general multiplier area. 

Our proposal uses binary carry save adder tree to 

do carry-free additions from the decimal partial 

products. Since ODDS digits are encoded in binary, 

the guidelines for binary arithmetic apply inside the 

digit bounds, and just carries generated between 

radix-10 digits lead towards the decimal correction 

from the binary sum. We consider using a BCD 

carry-propagate adder to do the ultimate conversion 

to some non-redundant BCD product P = A  B. The 

suggested architecture is really a 2d-digit hybrid 

parallel prefix/carry-select adder, the BCD 

Quaternary Tree adder [4]. The sum of the input 

digits Ai, Bi each and every position i needs to be 

within the range [ 18] to ensure that for the most 

part one decimal carry is propagated to another 

position i   1. The partial product generation stage 

comprises the recoding from the multiplier to some 

SD radix-10 representation, the calculation from 

the multiplicand multiples in XS-3 code and also 

the generation from the ODDS partial products. 

The negative multiples are acquired by ten’s 

complementing the positive ones. This is the same 

as using the nine’s complement from the positive 

multiple after which adding 1. Observe that these 

digits keep carries generated within the 

computation from the multiplicand multiples and 

also the sign little bit of the partial product. The 

decimal carries transferred between adjacent digits 

are assimilated acquiring the right 4-bit 

representation of XS-3 digits NX. The constraint 

for NXi still enables different implementations for 

NX. For any specific implementation, the 

mappings for Ti and Di need to be selected. The 

resultant partial product sum needs to be remedied 

from the-critical-path with the addition of a pre-

computed term. Really, adding these -3 constants is 

the same as convert the XS-3 digits from the partial 

products towards the ODDS representation. The 

PPR tree includes three parts: (1) a normal binary 

CSA tree to compute an estimation from the 

decimal partial product sum inside a binary carry-

save form (S, C), (2) an amount correction block to 

count the carries generated between your digit 

posts, and (3) a decimal digit 3:2 compressor which 

increments the carry-save sum based on the carries 

count to get the final double-word product (AB), A 

being symbolized with excess-6 BCD digits and B 

being symbolized with BCD digits. The digit posts 

from the binary CSA tree are implemented 

efficiently using 4-bit 3:2, 4:2 and greater order 

compressors made from full adders. These 

compressors make use of the delay difference from 

the inputs as well as the sum and carry outputs 

from the full adders, allowing significant delay 

reductions. However, to balance pathways and 



Gorripati Sreenivasulu* et al. 
  (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH 

  Volume No.4, Issue No.6, October – November 2016, 4690-4692.  

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved.  Page | 4692 

lower the critical path delay we considered some 

optimizations. Particularly, the enhanced 

implementation of the block heavily depends upon 

the truth from the decimal representation therefore 

its implementation is just outlined here, without 

entering details. The reduced-level implementation 

information on the x6 module relies on the amount 

of carry-outs. The partial product array generated 

within the suggested 16 x 16-digit BCD multiplier 

is proven. The utmost height from the partial 

product array through the 34 x 34-digit BCD 

multiplier is h = 35. The suggested implementation 

for that maximum height posts from the PPR tree is 

proven. The chosen architecture is really a 2d-digit 

hybrid parallel prefix/carry-select adder, the BCD 

Quaternary Tree adder. The delay of the adder is 

slightly greater towards the delay of the binary 

adder of 8d bits having a similar topology [5]. The 

decimal carries are computed utilizing a carry 

prefix tree, while two conditional BCD digit sums 

are computed from the critical path using 4-bit digit 

adders which implements. To create the carry 

prefix tree we examined the signal arrival profile in 

the PPRT tree, and regarded using different prefix 

tree topologies to optimize the region for that 

minimum delay adder. 

 

Fig.1.Area-delay space 

IV. CONCLUSION 

Partial products could be generated extremely fast 

within the XS-3 representation while using SD 

radix-10 PPG plan: positive multiplicand multiples 

(0X, 1X, 2X, 3X, 4X, 5X) are pre-computed inside 

a carry-free way, while negative multiples are 

acquired by bit inversion from the positive ones. 

Within this paper we've presented the formula and 

architecture of the new BCD parallel multiplier. 

The enhancements from the suggested architecture 

depend on prescribed medication redundant BCD 

codes, the XS-3 and ODDS representations. 

However, recoding of XS-3 partial products 

towards the ODDS representation is easy. The 

Chances representation uses the redundant digit-set 

[, 15] along with a 4-bit binary encoding (BCD 

encoding), which enables using a binary carry-save 

adder tree to do partial product reduction in an 

exceedingly efficient way. The region and delay 

figures believed from both a theoretical model and 

synthesis reveal that our BCD multiplier presents 

20-35 % less area than other kinds for any given 

target delays. We've presented architectures for 

IEEE-754 formats, Decimal64 and Decimal128. 

V. REFERENCES 

[1]  M. A. Erle and M. J. Schulte, “Decimal 

multiplication via carrysave addition,” in 

Proc. IEEE Int. Conf Appl.-Specific Syst., 

Arch., Process., Jun. 2003, pp. 348–358. 

[2]  R. D. Kenney, M. J. Schulte, and M. A. 

Erle, “High-frequency decimal multiplier,” 

in Proc. IEEE Int. Conf. Comput. Des.: 

VLSI Comput. Process., Oct. 2004, pp. 26–

29. 

[3]  L. Han and S. Ko, “High speed parallel 

decimal multiplication with redundant 

internal encodings,” IEEE Trans. Comput., 

vol. 62, no. 5, pp. 956–968, May 2013. 

[4]  S. Carlough, S. Mueller, A. Collura, and M. 

Kroener, “The IBM zEnterprise-196 

decimal floating point accelerator,” in Proc. 

20
th

 IEEE Symp. Comput. Arithmetic, Jul. 

2011, pp. 139–146. 

[5]  E. M. Schwarz, J. S. Kapernick, and M. F. 

Cowlishaw, “Decimal floating-point support 

on the IBM System z10 processor,” IBM J. 

Res. Develop., vol. 51, no. 1, pp. 4:1–4:10, 

Jan./Feb. 2009. 

AUTHOR’s PROFILE 

Gorripati  sreenivasulu completed 

his Btech in Audisankara 

Engineering And Technology 

,Gudur, Nellore dt, Ap in 2013. 

Now pursuing Mtech in Electronics 

& Communication Engineering in SKR College of 

Engineering & Technology, Manubolu 

B Doraswamy , received his 

M.Tech degree, currently He is 

working as an Associate 

Professor in SKR College of 

Engineering & Technology, 

Manubolu 

 


