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Abstract: While the field of one-dimensional constrained codes is mature,
with theoretical as well as practical aspects of code- and decoder-design being
well-established, such a theoretical treatment of its two-dimensional (2D) coun-
terpart is still unavailable. Research has been conducted on a few exemplar 2D
constraints, e.g., the hard triangle model, run-length limited constraints on the
square lattice, and 2D checkerboard constraints. Excluding these results, 2D
constrained systems remain largely uncharacterized mathematically, with only
loose bounds of capacities present. In this paper we present a lozenge constraint
on a regular triangular lattice and derive Shannon noiseless capacity bounds.
To estimate capacity of lozenge tiling we make use of the bijection between the
counting of lozenge tiling and the counting of boxed plane partitions.
Keywords: 2D constrained codes, 2D constraints, lozenge tiling, colored
tiling.

1 Introduction

Real-world communications channels, in contrast to channels of theoretical in-
terest, often suffer from physical and systemic limitations that constrain the
nature of data that may be transmitted through them. One such often-quoted
example is the magnetic recording system, where information is translated to
a direction of magnetization of the recording medium. Magnetic recording sys-
tems place constraints on the duration between two consecutive transitions of
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magnetization direction [1]. Transitions too close to each other degrades the
signal-to-noise ratio (SNR) during readback. On the other hand, transitions
too far apart make vulnerable to failure the timing-recovery sub-systems which
typically rely on these transitions to derive symbol-level timing information. A
solution to satisfy channel constraints is to use constrained codes (or modula-
tion codes) – codes that transform user information to symbol-sequences that
satisfy the constraints.

One dimensional (1D) constraints have been well-studied. The mathemati-
cal framework for determining the Shannon noiseless capacity of 1D constraints
– the growth rate of the number of sequences satisfying a given constraint –
has been comprehensively laid out. Further, development of 1D constrained
codes and decoders is mature (refer [1] for a review on this topic). In contrast,
analysis and code development for two-dimensional (2D) constraint systems
have been less successful.

Initial work on 2D constraints was done by Ashley and Marcus [2] who con-
sidered 2D low-pass filtering codes for eliminating bit-patterns with large high-
frequency components. Subsequently, considerable research was conducted on
numerous classes of 2D constraints, e.g., [3–9]. In spite of these efforts, these
constrained systems remain largely uncharacterized mathematically with only
loose bounds of capacities existing. With an exception of a few cases, the
channel capacity of 2D constrained channels is unknown (see [10]), and there
is no systematic procedure to design encoders and decoders. Nonetheless, the
need two-dimensional constrained codes has come to the fore in light of the
recent work in two-dimensional magnetic recording (TDMR). In [11], it was
shown that constrained coding which restricts the occurrence of certain 2D
patterns greatly reduces system complexity and improves the detection per-
formance. Also, there exist media models for TDMR that rely on polyomino
tiling [12,13], which are closely related to the 2D constrained systems.

In this paper, we consider a class of low-pass constraint on the triangular
lattice termed segregation constraint and it special case, no isolated bit (NIB)
constraint. We provide an upper bound on the Shannon noiseless capacity
for this constraint. The key novelty of the our approach is to view our 2D
constraint as a colored tiling of a plane. Thus, the estimation of the number of
permissible colored tilings leads to upper bounds on Shannon noiseless capacity
of 2D channels represented by this constraint. In addition, the tools used for
analysis also lead to a framework for encoders and decoders for the constraint.

The rest of the paper is organized as follows. Section 2 gives the necessary
background and motivation of the problem. In Section 3, we define lozenge
codes and establish their connection with boxed plane partitions, and in Section
4 we derive bounds on capacity. Section 5 introduces encoding and decoding
schemes for lozenge codes, and Section 6 concludes the paper.
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2 Preliminaries

A two-dimensional constrained encoder may be visualized as a mapping from
an unconstrained binary sequence into a colored tiling. A tiling of the plane is
a collection of plane figures that fills the plane with no overlaps and no gaps.
The plane figures used as building blocks for tilings are called tiles. Two tiles
are said to be neigbors if they share an edge (side), and to be touching if they
share only a single vertex. A regular tiling uses congruent regular polygons as
tiles. There are only three regular tilings: triangular, square, and hexagonal.
Figure 1 illustrates each of these tilings. A tiling of a plane figure or finite
region can be defined analogously. A tiling is said to be colored or labelled if
each of its tiles is asigned a color/symbol from a finite set of colors/symbols. A
colored tiling is also referred as a pattern or a configuration. A binary coloring
employs black and white tiles, while generally in M -ary coloring each tile is
colored by one of M > 1 colors.

Consequent to the definitions above, a two-dimensional constraint can be
expressed as a restriction on a coloring (or labeling) of tiles in a regular tiling.
The most famous example is a hard-hexagon constraint [14] – a planar hexag-
onal lattice with nearest-neighbor exclusion. This is used as a gas model in
statistical mechanics. The hard-hexagon constraint allows only those (binary)
colorings in which black hexagons are isolated, i.e., have all white neighbors.
A hard-triangle [3] and hard-square constraints are defined similarly. A two-
dimensional runlength (d, k) constraint is a restriction on the separation space
between black tiles, so that the number of white tiles between two black tiles
in any direction is at least d and at most k (0 ≤ d < k). Indeed, it can
be seen that the hard-hexagon, hard-triangle and hard-square constraints are
instances of the (d, k) constraints. In particular, they are (d, k) = (1,∞) run-
length constraints on their respective lattices. Constraints for which a coloring
depends on both neigboring and touching tiles is referred to as a checkerboard
constraint [9]. One example of a checkerboard constraint is a square tiling in
which black squares are not permitted to share a vertex. As mentioned previ-
ously, both runlength and checkerboard constraints have been an active area
of research, but the progress has been slow because of inherent hardness of
two-dimensional tiling problems.

3 Lozenge Codes

Consider a regular tiling of a plane. A (d, k) segregation constraint is a tiling
that limits the number of neighboring tiles (neighborhood size) of same color to
be no less than d+1 and no more than k+1. A 2D bit pattern is said to satisfy
a no isolated bit (NIB) constraint if every bit has at least one bit of the same
polarity adjacent to it. Thus the NIB is a (d, k) = (1,∞) segregation constraint.
Note that the parameters d and k in runlength and segregation constraints have
different meanings. In rectangular latices runlength constraint can be converted
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to a segregation constraint by precoding [1], while for other two latices in Fig.
1(a) this is not the case. In other words segregation constraints are not in
bijection to simple runlength (d, k) constraints.

Using Fig. 1, the NIB constraint can be explained as follows: for any given
tile (for example, the tile marked gray in the figure), if none of its neighbouring
tiles (tiles marked black) are of the same colour, then the NIB constraint is
said to be violated. Our recent experimental results show that if input bits are
mapped to bit patterns satisfying the NIB constraint, then the probability of
rewriting a grain is reduced [12,15].

The goal of this paper is to establish a bound of Shannon noiseless capacity
and designing of encoders and decoders for NIB constraint on the triangular
lattice.

(a) (b) (c)

Fig. 1. Regular two-dimensional tilings (a) triangular, (b) square, and (c) hexagonal tiling.
In the triangular, square and hexagonal tilings, each tile has three, four and six neighbors,
respectively. The tiles shaded black are the neighbors that share an edge with the tile
shaded gray.

To describe lozenge codes, we start by considering a hexagon H with sides of
lengths a, b, c, a, b, c and angles of 2π/3, subdivided into equilateral triangles of
unit side by lines parallel to the hexagon sides. We will henceforth refer to such
equi-angular triangularized hexagons as (a, b, c) hexagons. Figure 2(a) shows
such a (2, 3, 4) hexagon. As mentioned earlier, two triangles are neighbors if
they share a side.

(a) (b)

Fig. 2. Lozenge tilings in a triangular lattice: (a) A (2, 3, 4) hexagon H embedded in a
triangular lattice. (b) Colored tiling of a (2,3,4) hexagon.
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(a) (b) (c)

Fig. 3. The prototype tiles used in the tiling of hexagons.

We are interested in coloring the triangles using M > 1 different colors in
such a way that no isolated triangle is colored differently than its neighbors.
In the paper we focus on the M = 2 case. We require a segregation of at least
two neighboring triangles of the same color. Fig. 2(b) shows one such coloring
of the (2, 3, 4) hexagon shown in Fig. 2(a).

Two neighboring triangles form a rhombus with side of unit length and
internal angles π

3 and 2π
3 . Such a rhombus is known as a lozenge. A lozenge

created in this way may have three different orientations. Fig. 3 shows these
orientations. We refer to the prototiles shown in Fig. 3(a), 3(b) and 3(c) as
to type-A, type-B and type-C lozenges, respectively. The last two prototiles
are referred to as vertical lozenges.

Now, suppose each of the lozenges is colored independently, we can ensure
that for any triangle there is at least one neighboring triangle with the same
color, i.e. (d, k) = (1,∞).

The constrained coding problem can be now formulated as follows: given
a hexagonal region of a triangular lattice, one would like to find a one-to-one
mapping from a set of integers representing user’s binary data (this bijection
is trivial) to a set of NIB-permissible colored tilings. In addition, due to com-
plexity constrains, it is desirable that the mapping is described by an algorithm
which operates locally on a small lattice region.

We propose a mapping which is a composition of two mappings: tiling and
coloring. Now the NIB coloring can be separated into two steps as illustrated
in Fig. 4. First, the hexagon (Fig. 4(a)) is tiled with (uncolored) lozenges
(to obtain lozenge tiling in Fig. 4(b)), and then the lozenges are colored, (to
obtain colored tiling in Fig. 4(c)). It is important to note that the reader does
not have knowledge of the tiling and retrieves encoded bits solely based on the
colored pattern. Thus, not all colorings can guaranty retrievability. Of interest
are only those colorings that ensure retrievability.

Dividing the hard coloring hard problem into two manageable operations
results into an unavoidable rate penalty, however the rate penalty due this
simplification is a tradeoff for tractability. As we show in the following sections,
it is now possible to use elegant combinatorial methods to design encoders and
decoders. Moreover we can establish bounds on capacities, i.e., achievable
density. We start with deriving the capacity bounds.
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(a) (b) (c)

Fig. 4. Colored lozenge tilings in a triangular lattice: (a) A hexagon with side-length of
6 embedded in a triangular lattice. (b) An uncolored lozenge tiling of the hexagon. (c) A
colored lozenge tiling of the hexagon.

4 Bounds on Capacity

For the NIB constraint defined above, we can define the Shannon noiseless
capacity using an (n, n, n) hexagon as follows:

C = lim
n→∞

log2 M(n, n, n)
log226n2 (1)

= lim
n→∞

log2 M(n, n, n)
6n2

. (2)

Note that since the number of triangles constituting the (n, n, n) hexagon
is 6n2, in Eqn. 1, the denominator is logarithm of the total number of indepen-
dent colorings of the constituent triangles. The numerator M(n, n, n) is the
logarithm of the number of colorings of the constituent triangles that satisfy
the NIB constraint. Similarly, if N(n, n, n) denotes the number of uncolored
patterns (tilings), the asymptotic growth rate of N(n, n, n) – we call it tiling
capacity ( CT ) is defined as

CT = lim
n→∞

log2 N(n, n, n)
log226n2 . (3)

Finally, we define a coloring capacity (CC) based on the number of distinct
patterns, i.e. number K(n, n, n) of ways of distinctly coloring a lozenge tiling
so that the constraints are satisfied. This is defined as follows:

CC = lim
n→∞

log2 K(n, n, n)
log226n2 . (4)

We are interested in calculating the number of colored lozenge tilings of a
given lattice. Observe that this will yield bounds on the capacity of the NIB
constraint because the capacity C(1,∞) of the NIB constraint for the triangular
lattice model, can be bounded by the tiling density and coloring densuty, CT

and CC , respectively, as

C(1,∞) ≥ CT + CC (5)
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To estimate capacity of lozenge tiling we make use of the bijection between
the two enumeration problems: the counting of lozenge tiling and the counting
of boxed plane partition. Then, we will make use of the work of MacMahon on
calculating the number of boxed plane partition [16] to determine CT . Before
this, we briefly discuss the problem of enumeration of boxed plane partition.

The use of colored tilings to estimate capacity is attractive due to the fact
that the theory of counting domino tilings is well-explored [17,18]. Early work
in counting domino tilings includes the work of Kasteleyn [19], who calculated
the number of domino tilings of a square lattice. Another work is that of
MacMahon [16] in which the number of lozenge tilings of a hexagon embedded
in a triangular lattice was calculated. Desreux and Remila [20] gave optimal
algorithms for the generation of domino tilings and lozenge tilings.

4.1 A Method Based on Boxed Plane Partitions

A plane partition π is a collection of non-negative integers πx,y indexed by
non-negative integers x, y such that (a) only finite number of πx,y are non-zero
and, (b) ∀x, y πx,y ≤ πx,y+1 and πx,y ≤ πx+1,y. The plane partition is said to
fit inside a box of dimension a × b × c if there exist integers a, b, c such that
πx,y ≤ c for all x, y and πx,y = 0 for all x > a, y > b. Such partitions are
called boxed plane partitions. A more intuitive way of visualizing the boxed
plane partitions is by constructing the Young’s solid diagram corresponding
to a boxed partition π. For instance, consider the following partition boxed
within a box of dimension 2 × 3 × 4.

π =
(

4 2 2
2 1 1

)

The dimension of the matrix is 2 × 3 with all entries ≤ 4. To build its
corresponding Young’s solid diagram, we first consider a box of dimension
2×3×4. To one of the vertices, we assign the Cartesian co-ordinate (0, 0, 0). To
the opposite vertex we assign the co-ordinate (2, 3, 4). For each x ≤ 2, y ≤ 3,
we start at (x − 1, y − 1, 0) and stack πx,y cubes of unit side length. This
construction will fit inside the box.

Fig. 5. Tiling corresponding to the boxed plane partition π.

The tiling given in Fig. 5 corresponds to the boxed plane partition π given
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non-negative integers x, y such that (a) only finite number of πx,y are non-zero
and, (b) ∀x, y πx,y ≤ πx,y+1 and πx,y ≤ πx+1,y. The plane partition is said to
fit inside a box of dimension a × b × c if there exist integers a, b, c such that
πx,y ≤ c for all x, y and πx,y = 0 for all x > a, y > b. Such partitions are
called boxed plane partitions. A more intuitive way of visualizing the boxed
plane partitions is by constructing the Young’s solid diagram corresponding
to a boxed partition π. For instance, consider the following partition boxed
within a box of dimension 2 × 3 × 4.

π =
(

4 2 2
2 1 1

)

The dimension of the matrix is 2 × 3 with all entries ≤ 4. To build its
corresponding Young’s solid diagram, we first consider a box of dimension
2×3×4. To one of the vertices, we assign the Cartesian co-ordinate (0, 0, 0). To
the opposite vertex we assign the co-ordinate (2, 3, 4). For each x ≤ 2, y ≤ 3,
we start at (x − 1, y − 1, 0) and stack πx,y cubes of unit side length. This
construction will fit inside the box.

Fig. 5. Tiling corresponding to the boxed plane partition π.

The tiling given in Fig. 5 corresponds to the boxed plane partition π given
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above. The Young’s solid diagram construction is also apparent if the tiled
(2, 3, 4) hexagon is visualized as a 2 × 3 × 4 box. For ease of visualization, the
top face of the topmost box is colored black. The relationship between lozenge
tiling and boxed plane partition is given by the Theorem 1 in [18].

Lemma 1 The number of boxed plane partitions fitting inside a a × b × c box is
equal to the number of lozenge tilings of an (a, b, c) hexagon.

Proof: The proof is based on MacMahon [16] formula.

4.2 Bounds on CT

By Lemma 1, the number of lozenge tiling of any (a, b, c) hexagon is equal to the
number of boxed partitions fitting inside an a×b×c box. MacMahon [16] found
the number of such partitions, N(a,b,c), to be N(a,b,c) =

∏a
i=1(c+ i)b/(i)b where

(i)n := i(i + 1)(i + 2) . . . (i + n − 1) is the rising factorial. For an equilateral
hexagon, we were able to find the capacity of tiling (without coloring) in a
closed form. It is given by Theorem 1.

Theorem 1 The capacity of the lozenge tiling for an equilateral hexagon is CT =
3
4 log2 3 − 1.

Proof: The proof follows from Lemma 1 as given in Appendix 7
Note that closed forms solutions for the capacity such as one given by the

above theorem are quite rare in problems involving 2D constraints.

4.3 Bounds on CC

The capacity of the coloring problem, CC , can be estimated by counting the
number of ways the lozenges constituting a lozenge tiling can be colored. Given
a lozenge tiling of an (n, n, n) hexagon, H, the coloring of the lozenges cannot
be done arbitrarily. To explain this, we consider a colored lozenge tiling of the
(2, 1, 1) hexagon which is shown in Figure 6. Figure 6(a) shows the colored
lozenge tiling without any boundaries. In the absence of the tiling information,
the decoder would not be able to decode this tiling correctly. Figures 6(b) and
6(c) show two possible lozenge tilings this can be decoded to. This means that
in the absence of knowledge of the tiling pattern, the colored tiling in Figure
6(a) is not uniquely decodable. In particular, the two tilings of the (1, 1, 1)
hexagon formed at the bottom of the larger hexagon (marked with bold edges)
cannot be identified uniquely.

We denote the (1, 1, 1) hexagon formed in Fig. 6(b) and Fig. 6(c) as type-
1 and type-2 hexagon, respectively. To distinguish the two hexagons, we apply
the following rule: Whenever a type-1 hexagon is encountered, the vertical
lozenges of different orientation, i.e., type-B and type-C lozenges constituting
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(a) (b) (c)

Fig. 6. Figure (a) shows a colored lozenge tiling for a (2, 1, 1, ) hexagon. In the absence of
tiling information, the colored tiling in Figure (a) can be decoded to either of the colored
tilings shown in Figures (b) and (c)

it are colored differently. One such coloring scheme is shown in Fig. 7, where
type-B prototiles are always colored black, and type-C prototiles are always
colored white. By using this coloring scheme, no information is stored in the
vertical lozenges of the type-1 hexagon. We refer to this coloring scheme as
fixed-color vertical lozenges (FCVL) coloring. The FCVL coloring constraint
reduces the number of ways of coloring for each tiling. This reduction depends
on the number of type-1 hexagons formed in a tiling. The capacity can be
bounded by calculating the number of type-1 hexagons formed for every tiling.

Fig. 7. The coloring scheme adopted for type-1 hexagon.

The coloring capacity, CC , can be estimated by counting the number of
ways the lozenges constituting a lozenge tiling can be colored. Given a lozenge
tiling of an (n, n, n) hexagon, H, the coloring of the lozenges cannot be done
arbitrarily.

Theorem 2 For the coloring of a lozenge tiling of an (n, n, n) hexagon H, the
capacity CC ≥ 1

3 .

Proof: The proof is based on the equivalence between tilings and boxed
plane partitions and Lemma 1 It is given in Appendix 8.

Note that the above bound on CC may be strengthen at the expense of
much harder combinatorial argument considering colors of tiles.
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5 Encoding and Decoding Lozenge Codes

We refer to the assignment of a distinct element from the set of integers to an
element of the set of all possible colored tilings as encoding of colored tilings.
Again, we divide the problem into two separate problems: the encoding of
tilings and the coloring of tiles. To facilitate this, we assume that the FCVL
coloring constraint is imposed. The first step of the encoding process is the
encoding of tilings for which we seek a bijective assignment between the set
of integers and the set of all tilings. The second step is the coloring of the
tiling. The second step is trivial since for the FCVL coloring, n2 horizontal
prototiles, which is the third of all prototiles in a (n, n, n) hexagon, can be
colored independently. Thus we focus on the first step of an encoding algorithm.

Before discussing the proposed encoding algorithm we give an intuition be-
hind our approach. We begin by recalling that there is a unique boxed plane
partition corresponding to any lozenge tiling. Consider an (a, b, c) hexagon
tiled with equilateral triangles with unit side-lengths. An alternative way to
unambiguously specify a boxed plane partition is to traverse a paths covering
only vertical prototiles as illustrated in Fig. 8(d) for the case of the (3, 3, 3)
hexagon. We refer to these paths as routings. Each section of the path corre-
sponds to one type-B or type-C lozenge and it is drawn as a line segment of
”NorthEast” or ”SoutEast” orientation in Fig. 8(d). A collection of n such
paths determines the tiling. Note, however, that the n paths in a collection
cannot be chosen arbitrarily. This is simply because we do not allow that a
box at any level “levitates” without being supported by boxes the beneath it.
We describe this requirement though combinatorial objects known as moun-
tain ranges illustrated in Fig. 8(c). Each path correspond to one mountain
range, but “lower” paths cannot have mountain ranges higher than “upper”
paths. We formalize this concept through lexicographical ordering and ranking
of mountain ranges. A collection of n nondecreasing mountain ranges repre-
sent an instance of a tiling. The set of all such collections represent the set
of all tilings. To perform encoding and decoding we need to enumerate moun-
tain ranges and enumerate collection of mountain ranges. Thus the encoding
procedure involves the step of converting an integer to a routing on a graph,
which is represented by a set of constant-weight sequences and then converting
it to a tiling. In the following subsections we introduce rigorously the combi-
natorial objects given in the above intuitive explanation. Before discussing the
details of the proposed algorithm, we describe the problem of enumeration of
the routings on a graph.

5.1 Routings on a Graph

Recall that the idea is to use the bijection between tiling and routings on a
graph. Consider an (a, b, c) hexagon H tiled with equilateral triangles with
unit side-lengths. For this tiling, an associated graph G can be constructed
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as follows. The vertices of G are the mid-points of the vertical sides in the
tiling of H. Two vertices of G are connected if their corresponding sides lie
on adjacent triangles. Fig. 8 shows a (3, 3, 3) hexagon (Fig. 8(a)) and its
corresponding graph (Fig. 8(b)). The leftmost nodes of G are designated as
sources and the rightmost nodes as drains. Notice that the number of sources
is equal to the number of drains. Traversing the sources (drains respectively)
from top to bottom, each of the sources is denoted as s1, s2, . . . , sc (t1, t2, . . . , tc
respectively). Now, the routings on the graph G is the set of c shortest non-
intersecting paths from si to ti for each i. The routings on the graph G are
associated to the tilings of H with lozenges by the following theorem.

(a) (b) (c) (d)

Fig. 8. (a) A (3,3,3) hexagon H tiled with equilateral triangles of unit side. (b) The graph
G associated with H. (c) Example of a routing on the graph associated with a (3,3,3)
hexagon. (d) The corresponding tiling on the hexagon.

Theorem 3 The lozenge tilings on H corresponds bijectively to the set of routings
on the associated graph G.

Proof: To prove this we make use of the Theorem 1 in [21].
Figures 8(c) and 8(d) show an example of the relationship between lozenge

tiling on H and a given lattice routing on G. Fig. 8(c) shows a routing on a
graph associated with a (3, 3, 3) hexagon (marked in bold). Fig. 8(d) shows
the corresponding tiling on the hexagon. The routing overlaid on the hexagon
illustrates how the tiling can be generated from the routing. It can be seen
that each of the a paths of the routing has a+ b moves with b “Northeast (NE)
moves” and c “Southeast (SE) moves” between nodes. By mapping the NE
move to “1” and the SE move to “0”, each routing can be represented as an
ordered collection of constant weight sequences. Thus the problem reduces to
coding of constant weight sequences. We now describe the encoding.

Let R be the ordered set of routings on the graph G. The ith element
of R, Ri, is an ordered collection of a constant weight sequences of length
a + b and weight b. We denote the ordered set of all sequences with length n
and weight k as D(n,k). Hence, each element of Ri is a member of D(a+b,b).
The encoding process consists of assigning to the number i, 0 ≤ i ≤ |R|, the
ith element of R, Ri. In order to perform this operation without physically
storing R, algorithms which directly map an integer i to a distinct ordered
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sets in R have been designed. To explain this, we consider the following: Let
Ri =

{
di, i = 1, 2, . . . , c|di ∈ D(a+b,b)

}
. There exists an ordering of elements of

D(a+b,b) such that ∀i, j 1 ≤ i, j ≤ c, if i < j, then rank(di) ≤ rank(dj) where
rank(.) denotes the rank of an element in the ordered set. Hence, instead of
storing individual sequences, Ri can be represented using the ranks of di as
Ri = {rank(di), i = 1, 2, . . . c| di ∈ D(a+b,b)} (we will later show that this can be
further simplified by the use of non-decreasing strings. This will be dealt with
in detail in section 5.3). We refer to this as the rank-based representation. We
now describe the reverse lexicographical ordering of constant weight sequences
which is one such ordering of sequences.

5.2 Reverse Lexicographical Ordering of Constant Weight Se-
quences

In this section, methods to obtain a bijective mapping between members of
D(n,k) and integers will be developed. Firstly, we note that the size of D(n,k),

∣∣D(n,k)

∣∣,
is

(
n
k

)
. Also, note that each n-bit sequence has a decimal equivalent between

0 and 2n − 1. Let the decimal equivalent be denoted as dE(.). The lexico-
graphical ordering of the sequences is the arrangement of all the sequences in
the ascending order of their decimal equivalent. The reverse lexicographical
ordering can be defined analogously. In our description, we use the reverse
lexicographical ordering. Table 1 shows the reverse lexicographical ordering
for D(4,2). The first column is the rank which gives the position of the sequence
in the reverse lexicographically ordered set. Again, we use rank(.) to denote
the rank of a particular element. It is easily seen that if dE(A) ≥ dE(B), then
rank(A) ≤ rank(B).

Next, we consider the transformation of the members of D(n,k), to paths in
a Cartesian plane. We refer to these paths as mountain ranges (similar to the
Catalan mountain ranges [22]). Let b be a member of D(n,k). The mountain
range Mountain(.) corresponding to b can be calculated as follows:

The mount ranges can also be represented by the n-tuple containing y co-
ordinates of points traced by the sequence, denoted by y. Figure 9 shows the

Table 1. Ordering of elements in D(4,2).

Rank String Decimal
equivalent

0 1100 12
1 1010 10
2 1001 9
3 0110 6
4 0101 5
5 0011 3
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Algorithm 1 The Mount Range Algorithm
Start from (x = 0, y = 0)
for i = 1 to n do

if b(i) = 1 then
move to (x + 1, y + 1)

else
move to (x + 1, y − 1)

end if
end for
Output the mount range Mountain(.)

Fig. 9. Mountain range corresponding to the string 100101, Mountain(100101)

mountain range corresponding to the sequence 100101, a member of D(6,3).
We now establish a relation between the lexicographical ranking and the

containment of mountain ranges within one another. For any A, B ∈ D(n,k),
Mountain(A) is said to be contained within Mountain(B) (denoted as Mountain(A) ⊂
Mountain(B)) if each element of the n-tuple corresponding to A, yA is never
more than the corresponding element of the n-tuple corresponding to B, yB.
For instance, the mountain range Mountain(1010) is contained in Mountain(1100).
The following theorem relates the lexicographical ranking to containment.

Theorem 4 For any A, B ∈ D(n,k), if Mountain(A) ⊂ Mountain(B), then rank(A) ≥
rank(B)

Proof: The proof is given in Appendix 9
The converse is not true. One counter-example in D(4,2) is 1001 and 0110.
It is easily seen that an ordered set {di, i = 1, 2, . . . , a|di ∈ D(a+b,b)} such

that Mountain(di) ⊂ Mountain(di+1) for all i, is a member of R and hence
corresponds to a valid tiling. This implies that the rank-based representation
of Ri is a string of integers in which the integers are non-decreasing.

We now address ranking and unranking of members. Ranking, denoted by
rank refers to the process mapping of a member of an ordered set to a distinct
integer. Unranking is its inverse operation. We use ranking and unranking
algorithms on the reverse lexicographically ordered set D(n,k) for encoding data

532 B. VASIC, A. R. KRIShNAN  Lozenge Tiling Constrained Codes 533



532 A. R. KRISHNANAN AND B. VASIĆ
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Fig. 10. Ranking of string 110010. Vertex labels denote the number of possible sequences
from the corresponding node to a Drain. The edge labels on the mountain range, shown
as a bold path, correspond to intermediate steps of rank computation.

to tilings. Ranking and unranking algorithms for this set are available [23,24].
We have designed algorithms using methods similar to [22].

To perform the ranking, first the number of paths passing through every
node (x, y) in G, n(x,y) is calculated. The rank is calculated by starting with an
initial estimate of rank (= 0) and then refining the estimate as the sequence is
parsed bit by bit. From any node (x, y), if the next bit is 0, the corresponding
point in the Cartesian plane is (x + 1, y − 1). This implies that all sequences
which start from the node (x+1, y+1) have a lower rank. Thus, given that the
current estimate is e, the rank of this sequence is greater than e + n(x+1,y+1).
Hence the estimate can be refined by adding the number to the current estimate.
This process is continued till all the bits are parsed. The final estimate is the
rank of the sequence.

Figure 10 shows flow of the algorithm for the sequence 110010, a member
of D(6,3). The number of sequences passing through every node is marked next
to the node. The refinement of the rank at every bit is shown in the figure. At
the last bit, the rank is calculated as 2.

Similar approach can be used to unrank an integer. Through the rest of
this document, the ranking and unranking on this set will be denoted rD and
r−1
D respectively.

It was earlier stated that Ri can be represented as Ri = {rank(di), i = 1, 2, . . . , c}.
We note that the rank of each dsi is between 0 and

(
a+b

b

)
−1. Also, we noted that

for all di, dj such that i < j, rank(di) ≤ rank(dj). Now, we consider the rank-
based representation which is the ordered set

{
rank(di), i = 1, 2, . . . , a|di ∈ D(a+b,b)

}
.

This set can be expressed as a non-decreasing string of length c with members
of the set

{
1, 2, . . . ,

(
a+b

b

)}
. We can further reduce the complexity of represen-

tation of elements of R if the non-decreasing strings can be ordered. Section
5.3 deals with this.

5.3 Lexicographical Ordering of Non-Decreasing Strings

This section deals with the lexicographical ordering in the set of non-decreasing
strings of length n consisting of members of the set N = {1, 2, 3, ..., N}. This
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set is denoted SN
n and is defined as the set of all strings, d of length n such

that for all i, 1 ≤ i ≤ n−1, d(i), d(i+1) ∈ N and d(i) ≤ d(i+1). The set SN
n is

said to be lexicographically ordered if for any d1, d2 ∈ SN
n , d1(i) ≤ d2(i) ∀i ⇔

rank(d1) ≤ rank(d2), where, as before, rank of a member is the position of the
member in the ordered set. Table 2 shows the set S2

3 along with the rank of
each element.

Table 2. Ordering of elements in S2
3 .

Rank String
0 111
1 112
2 122
3 222

To calculate the size of SN
n we analyze the construction of strings of length

k using strings of length k − 1 for k < n. Consider a number i such that
1 < i ≤ N . The number of strings of length k ending in i, N i

k is equal to the
number of strings of length (k−1) ending in digits less than or equal to i. That
is,

N i
k =

i∑
j=1

N j
k−1 (N i

1 = 1, N1
k = 1)

=
i−1∑
j=1

N j
k−1 + N i

k−1

= N i−1
k + N i

k−1 (6)

This yields the recursive relation

N i
k = N i−1

k + N i
k−1 (N i

1 = 1, N1
k = 1) (7)

The generating function for this recursion is given by Bi(x) = x
(1−x)i . The

coefficient of xk in Bi(x) gives the total number of sequences of length k ending
in i. Since only the members of SN

n can be used to make sequences of length
n + 1 ending in N , we have

∣∣SN
n

∣∣ = NN
n+1. By using the generating function,

this is evaluated as
(
N+n−1

n

)
.

The ranking algorithm for the lexicographical ordering of members involves
mapping an integer between 0 and

(
N+n−1

n

)
− 1 to a sequence in SN

n . As
in the previous case, the ranking algorithm starts with an initial estimate (
e0 =

(
N+n−1

n

)
− 1 ) and refines its estimate as the string is parsed digit by

digit. Given the estimate of the rank at the (b − 1)th digit, eb−1, and that
the bth digit is d(b), the following conclusion can be drawn about the rank.
The rank is less than or equal to eb−1 −

(
N ′+b′−1

b′

)
where N ′ = N − d(b) and
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Fig. 10. Ranking of string 110010. Vertex labels denote the number of possible sequences
from the corresponding node to a Drain. The edge labels on the mountain range, shown
as a bold path, correspond to intermediate steps of rank computation.
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To perform the ranking, first the number of paths passing through every
node (x, y) in G, n(x,y) is calculated. The rank is calculated by starting with an
initial estimate of rank (= 0) and then refining the estimate as the sequence is
parsed bit by bit. From any node (x, y), if the next bit is 0, the corresponding
point in the Cartesian plane is (x + 1, y − 1). This implies that all sequences
which start from the node (x+1, y+1) have a lower rank. Thus, given that the
current estimate is e, the rank of this sequence is greater than e + n(x+1,y+1).
Hence the estimate can be refined by adding the number to the current estimate.
This process is continued till all the bits are parsed. The final estimate is the
rank of the sequence.

Figure 10 shows flow of the algorithm for the sequence 110010, a member
of D(6,3). The number of sequences passing through every node is marked next
to the node. The refinement of the rank at every bit is shown in the figure. At
the last bit, the rank is calculated as 2.

Similar approach can be used to unrank an integer. Through the rest of
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D respectively.
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b
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b
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b′ = n − b + 1. N ′ gives the total number of members of N greater than
d(b) and b′ gives the total number of available digits including the current
digit. The second term in the refined estimate is the total number of strings
of length b′ that can be generated using the members of N larger than d. The
strings having these substrings will have a higher ranking. Table 3 shows the
progression of the algorithm for the member 112, a member of the set S2

3 . At
each step, the strings which are eliminated are shown in parentheses.

Table 3. Progression of the ranking algorithm for an example.

b db eb

3
1 1 3 − 1 = 2

(222)
2 1 2 − 1 = 1

(122)
3 2 1

The unranking of an integer can be achieved by using a similar approach.
Through the rest of this document, the ranking and unranking on this set will
be denoted rS and r−1

S respectively.

5.4 Encoding by Routing

Given the lattice H of dimension (a, b, c), the set of valid routings, R, on G
consists of ordered sets of size a consisting of members of the set D(a+b,b).
Also, the ordered sets will be in non-decreasing order of rank. Hence, these
will correspond to a non-decreasing string of length a with members from the

set {1, 2, 3, ...,
∣∣D(a+b,b)

∣∣}. This set is S|D(a+b,b)|
c . Hence, we have established a

transitive relationship between R and S|D(a+b,b)|
c . However, all the sequences

in this set do not correspond to valid tilings (as the converse of Theorem 4 is
not true). Hence, we generate a look-up table (LUT) to map the integers in
[0, |R| − 1] to the ranks of members of SD(a+b,b)

c corresponding to valid tilings.
The encoding process is given by Algorithm 2.

The ranking algorithms, along with the LUT, can be used to map a tiling
to a digit in [0, |R| − 1].

6 Conclusion

In this paper we first introduced a class of two dimensional constraints we call
segregation constraints. In contrast to isolation runlength constraints consid-
ered in literature, we limit the minimal number of neighboring or touching tiles
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c corresponding to valid tilings.
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6 Conclusion

In this paper we first introduced a class of two dimensional constraints we call
segregation constraints. In contrast to isolation runlength constraints consid-
ered in literature, we limit the minimal number of neighboring or touching tiles

Detection and Coding for TDMR channel 537

Algorithm 2 The Encoding Algorithm
Use the lookup table (LUT) to find the rank of the corresponding string

in S|D(a+b,b)|
c

Use the r−1
S to find the string Si in the set SD(a+b,b)

c . Each digit in Si,
Si(j), corresponds to the rank of a sequence in D(a+b,b).
for all Si(j) do

Use the r−1
D to find the sequence corresponding to the rank Si(j).

end for
Assemble the sequences to find the ordered set in R.

of the same color and restrict the shape of equaly-colored regions. For most two-
dimensional recording systems such constraints are more natural than isolation
constraints. The reason is that in high density recording systems recorded pat-
tern features (areas of same physical properties) are smaller than what can be
reliably distinguished by a reading device. For a particular constraint on a
triangular lattice called the no-isolated bit constraint we introduced a method
for encoding and decoding. Future work include studying the effect of lozenge
constraints on a TDMR detector performance in the spirit of what we have
done for the square lattice [25].
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7 Appendix

Proof:[Proof of Theorem 1] In this appendix we prove the Theorem 8. MacMa-
hon formula [16] gives the number N(a, b, c) of restricted plane partitions in
the form

N(a, b, c) =
a∏

i=1

b∏
j=1

c∏
k=1

i + j + k − 1
i + j + k − 2

It can be rewritten as

N(a, b, c) =
a∏

i=1

(c + i)b

(i)b
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where (i)n := i(i + 1)(i + 2)...(i + n − 1) is the rising factorial.
Since (i)n = (i + n − 1)!/(a − 1)!, we have

a∏
i=1

(c + i)b

(i)b
=

a∏
i=1

(c + i + b − 1)!(i − 1)!
(c + i − 1)!(i + b − 1)!

Each product of factorials in 7 is of the form
∏a

i=1 (d + i − 1)! and can be
written as

a∏
i=1

(d + i − 1)! =
∏d+a−1

i=1 i!∏d−1
i=1 i!

The superfactorials
∏a

i=1 i! in 7 can be expressed as
∏n−1

i=1 i! = G(n + 1).
Therefore we obtain

N(a, b, c) =
a∏

i=1

G(a + b + c + 1)G(a + 1)G(b + 1)G(c + 1)
G(a + b + 1)G(a + c + 1)G(b + c + 1)

(8)

where in Eq. 8 G denotes the Barnes G-Function [26] defined by

G(d + 1) = (2π)
d
2 e−

1
2 (d(d+1)+γd2) ·

·
+∞∏
i=1

((
1 +

d

i

)i

e−d+d2/(2i)

)

For a regular hexagon with a = b = c = n we have

N(n, n, n) =
a∏

i=1

G(3n + 1) (G(n + 1))3

G(2n + 1)3
(9)

Using the asymptotic of G(d + 1)

lnG(d + 1)˜z2(
1
2

ln z − 3
4
) +

1
2

ln(2π)z −

− 1
12

ln z + ξ
′
(−1)O(

1
2
)

we obtain

lnN(n, n, n) ∼ lnG(3n + 1) + 3 ln G(n + 1) −
−3 lnG(2n + 1)

∼ n2

(
9
2

ln 3 − 6 ln 2
)

+

+n ln 2π − 1
12

lnn − 1
12

ln
3
2

By changing the base of the logarithm we obtain

log2 N(n, n, n) ∼ n2

(
9
2

log2 3 − 6
)

(10)
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The area of the hexagon with sides a, b and c is A(a, b, c) = 2(ab + ac + bc)
√

3
4 .

For a regular hexagon A(n, n, n) = 2
√

3
2 n2, so that finally the density is

D = lim
n→∞

log2 N(n, n, n)
A(n, n, n)

= lim
n→∞

n2
(

9
2 log2 3 − 6

)
2
√

3
2 n2

=
√

3(log2 3 − 4
3
)

8

Proof:[Proof of Theorem 2] Consider the equivalence between tilings and boxed
plane partitions. It can be seen that each box in the Young’s solid diagram of
an (a, b, c) hexagon with 3 visible faces corresponds to a type-1 hexagon. To
find the maximum number of type-1 hexagon in H, the Young’s solid diagram
corresponding to an n× n× n box with the maximum number of visible boxes
is constructed. This can be constructed as follows: Start at (x, y) = (0, 0) of
the n × n × n box and stack n boxes. Now, at (x, y) = (1, 0), stack n − 1
boxes. Step in the x direction reducing the number of boxes stacked by 1 at
each step. This is continued till (x, y) = (n−1, 0) where 1 box is stacked. Next,
start at (x, y) = (0, 1) and stack n − 1 boxes. Continue the same process till
(x, y) = (n− 2, 1) is reached where 1 box is stacked. This process is continued
till (x, y) = (n − 1, 0) is reached where 1 box is stacked. This corresponds to
the Young’s solid diagram with the maximum number of visible boxes. The
boxed plane partition corresponding to this Young’s diagram is given by:

π =




n n − 1 . . . 3 2 1
n − 1 n − 2 . . . 2 1 0
n − 2 n − 3 . . . 1 0 0

...
...

1 0 . . . 0




As an example, Figure 11 shows the lozenge tiling of a (4, 4, 4) hexagon with
the maximum number of type-1 hexagons. Alternatively, it can be visualized
as a the Young’s solid diagram corresponding to a 4 × 4 × 4 box.

The number of visible boxes is equal to the number of non-zero entries in
π. This is equal to n(n+1)

2 . This is equal to the number of type-1 hexagons
formed in H. The number of lozenges where no information is stored is twice
the number of such hexagons. By subtracting this from the total number of
lozenges in H, the number of bits that can be stored in this region can be
found.

The total number of lozenges is half the number of equilateral triangles
tiling H. By calculating the areas of H and a unit triangle, the number of
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Fig. 11. The lozenge tiling of a (4, 4, 4) hexagon with maximum number of type-1 hexagons.
It can also be visualized as the Young’s solid diagram of a 4×4×4 box with the maximum
number of visible boxes.

triangles is calculated as 6n2. Hence, the number of lozenges is 3n2. Since for
any lozenge tiling of H, the number of type-1 hexagons is always less than or
equal to n(n + 1), we have a lower bound on the capacity CC as follows:

CC ≥ lim
n→∞

3n2 − n(n + 1)
6n2

=
1
3

(11)

9

Proof:[Proof of Theorem 3] If Mountain(A) ⊂ Mountain(B), then yA(i) ≤ yB(i)
for all i. It is enough to prove that if yA(i) ≤ yB(i) ∀ i = 1, 2, . . . , n, then
A ≤ B. In order to do this, reconstruct the sequences A and B from yA and
yB. Let t, 1 ≤ t ≤ n such that ∀i < t, yA(i) = yB(i) and yA(t) �= yB(t). This
means that the ith term of A is 0 and that of B is 1 (to satisfy the inequality
in the terms of yA and yB). Hence, dE(A) ≤ dE(B) (inequality occurs if they
differ in one or more bits and equality occurs if they do not differ). Hence
rank(A) ≥ rank(B)/
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Fig. 11. The lozenge tiling of a (4, 4, 4) hexagon with maximum number of type-1 hexagons.
It can also be visualized as the Young’s solid diagram of a 4×4×4 box with the maximum
number of visible boxes.
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means that the ith term of A is 0 and that of B is 1 (to satisfy the inequality
in the terms of yA and yB). Hence, dE(A) ≤ dE(B) (inequality occurs if they
differ in one or more bits and equality occurs if they do not differ). Hence
rank(A) ≥ rank(B)/
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