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Abstract. The aim of our research was to develop an algorithm for estimation and 

visualisation of radiopharmaceutical uptake based on time-activity-curve (TAC) analysis in 

small regions of interest (ROI) in scintigraphic studies. The algorithm is implemented in 

Labview environment (National Instruments, Texas, Austin) and comprises the following 

steps: 1) delineation of grid of small ROIs over the examined tissue and corresponding TAC 

processing; 2) background vs tissue separation; 3) the extraction of all “suspected“ ROIs 

where TACs are not exponentially descendent; 4) correlation analysis between a TAC 

corresponding to the central suspected ROI and TACs of neghboring ROIs; 5) the extraction 

of representative TAC for “suspected“ area by Principal Component Analysis technique; 

and 6) visual interpretation of radiopharmaceutical distribution in the “suspected“ area. 

The application of algorithm is presented in data recorded in case of histopathologically 

proven parathyroid tumors. 
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1. INTRODUCTION 

Scintigraphy is a nuclear medicine diagnostic test for the visualization of spatial 

distribution of radioactivity uptake in a tissue. Radioactivity is taken by injection, inhalation 

or swallowing of medical agents (radiopharmaceuticals) with incorporated radioisotopes 

and the spatial distribution of radioactivity uptake is monitored by planar scintillation 

camera, SPECT (Single Photon Emission Computer Tomography) or PET (Positron Emission 

Tomography) camera. 

Dynamic scintigraphy is a diagnostic test for examining the function of organs and 

physiological systems. The result of this type of scintigraphy is a series of frames (dynamic 

scintigrams) recorded in short time intervals (10 seconds to 1 minute apart, depending on 

the type of organ and disease). Time activity curve (TAC) is a quantitative indicator of 
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radioactivity uptake changes in a specific region of interest (ROI) over time. Distinguishing 

typical TAC patterns is of great importance for diagnostic purposes. 

Beside the diagnostic application, scintigraphy has a very important place as a technique 

of preoperative imaging whose main goal is the precise localization of lesions in order to 

perform minimally invasive surgery [2-5]. In our previous work, we presented a Submarine 

method, based on TAC monitoring in small ROIs and finding abnormal TAC patterns 

corresponding to lesions [6]. Submarine method has proven useful for preoperative dynamic 

scintigraphic imaging of small lesions, especially in case of parathyroid imaging [6-8]. 

In this paper we introduce an algorithm that allows the precise uptake assessment in small 

lesions based on dynamic scintigrams and visual interpretation of uptake distribution in lesion 

area based on visualization of correlation matrix [1,8]. This algorithm is implemented as an 

additional tool in Submarine software. 

2. METHODS AND MATERIALS 

Typical TAC pattern of health tissue consists of three phases: increasing vascular 

phase (the radioactivity in the target ROI is rapidly growing), accumulation uptake phase 

(radioactivity is accumulated in the target ROI) and washout phase (phase of exponential 

radioactivity decrease in the target ROI), [9]. In the case of lesions, the atypical TAC 

pattern (prolonged retention of radiopharmaceutical in the target tissue or even a peak of 

radioactivity in washout phase) could be observed, Fig. 1. 

 

Fig. 1 Difference in TAC patterns for healthy tissue and lesion 

In case of small lesions (<1 cm
3
), it is very difficult or impossible to visually detect 

abnormal radioactivity uptake in individual frames, while it is clearly visible in the washout 
phase of TAC, Fig. 2. 

Central ROI of lesion is delineated by black color in Fig. 2A, and another three ROIs 
shifted relative to the central ROI are also delineated. TACs corresponding to highlighted 
ROIs are presented in Fig. 2B (TAC1, TAC2, TAC3, TAC4). A high degree of correlation 
between curves TAC1 and TAC2 (r=0.93), TAC1 and TAC3 (r=0.97) could be observed, 
versus substantially less correlated TAC1 i TAC4 (r=0.67). TACs corresponding to regions 
positioned over the lesion are not exponential in washout phase and are strongly correlated. 
This fact is used for defining the algorithm for uptake assessment and its visualization in 
small lesions. 
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Fig. 2 A) A single frame from a dynamic image sequence, taken at the 23
th

 minute,  

with delineation of ROIs in the region of lesion (44 pixels, 66 mm)  

B) TACs corresponding to ROIs delineated in A) 

2.1. Software 

The algorithm is implemented in the software for reading and processing dynamic 

studies introduced by authors in previous work [10]. Software is developed in Labview 8.6 

environment (National Instruments, Texas, Austin) and additional NI Labview Biomedical 

Toolkit. 

Realized application enables: 

 Selection and readout of a dynamic scintigraphic study consisted of DICOM [11] 

images (each frame is archived as a separate .dcm file); 

 Rectangular cropping of frames to the region that is to be processed further – 

selection cropping position is performed on selected frame with visual inspection 

of cropping position in all frames; 

 Localization and visualization of small lesions by algorithm for uptake assessment 

presented in Section 1.2. 
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Checking Principal Component Analysis conditions (see Section 1.3) for examples 

presented in Section 2 was performed in RStudio, version 0.98.976. 

2.2. Algorithm description 

The algorithm for small lesion localization and visualization consists of six steps 

shown in Fig. 3. 

 

Fig. 3 Flowchart of the algorithm for the uptake assessment in small lesions.  

ROI – region of interest, TAC – time activity curve 

Step 1 Cropped area, containing the tissue that will be examined, is automatically divided 

into N small square ROIs, equal in size n x n, where n is a number of pixels (n=4 is a default 

value, but user can change it). This number of ROIs (N) will be reduced in Step 2 into the 

number of ROIs (T) which belongs to the tissue (TN). The number of tissue ROIs (T) will be 

reduced in Step 3 into the number of ROIs (M) whose TACs are not exponentially descendent 

(MT) and thereby indicate the abnormal radioactivity uptake and the potential lesion. 

TACs corresponding to all N ROI cells are calculated and smoothed by cubic spline 

technique using Labview function Cubic Spline Fit.vi [12]. User can adjust the value 

(range [0,1]) of balance parameter (input parameter of cubic spline function) taking into 

consideration the requirement that the coefficient of determination (R-square) is greater 

than 80% (user sets minimum balance parameter for which R-square>80%). Labview 

function Goodness of Fit.vi is used for estimation of R-square value based on the raw 

TAC and the cubic spline filtered TAC. 

Step 2 Maximum values of radioactivity TAC
CS

i max are calculated for all TAC
CS

i (i=1, N). 

Reference value P for discriminating tissue from background is calculated according to the 

following equation: 

 NiTACP i ,1),max( max
CS   (1) 
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Further analysis continues only for those T ROIs (TN) that belong to the tissue, which 

means that satisfy the condition TAC
CS

i max > m  P, 0<m<1. Coefficient m is 0.8 at default, 

but user can change it. 

Step 3 After background vs tissue separation, normalization of TACs for all selected ROI 

cells is performed. Normalization to maximum values TAC
CS

i max (i=1,T) is used. The washout 

phase of each normalized TAC
CSN

i (i=1,T) is fitted by exponential function of the form Ae
-kt

 (A, 

k – constants, t – time variable). Labview function Exponential Fit.vi (tolerance=0.0001, 

Bisquare method) is used for fitting implementation. As well as in the Step 1, coefficient of 

determination (R-square) based on TAC
CSN

i and the exponentially fitted TAC
CSN

i is estimated 

(i=1,T). The criterion for selection of ROIs with non-exponential TAC pattern is defined as: 

R-square < 0.6 (0.6 is the empirically determined threshold). Next step is performed only for 

those M ROIs (MT) that satisfy the non-exponential criterion. 

Step 4 For each suspected ROI, a correlation matrix Cj is determined in the following 

form: 
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where cxy is a Spearman correlation between a TAC
CSN

 of suspected ROI (central ROI in the 

origin (0,0), see Fig. 4) and TAC
CSN

 of neighboring ROIs (central ROI moved pixel by pixel in 

all directions, for x-pixels along the horizontal axis and y-pixels along the vertical axis, where 

x and y gets any integer value from the range [-n,n], see Fig. 4). The maximum displacement 

in pixels of central ROI is equivalent to the pixel ROI length n, which means that most 

number of moved ROIs are overlapped with the central ROI. For example, in case of n=4 

pixels, correlation matrix has (2n+1)
2
=81 coefficients of correlation. 

Step 5 For „suspected“ area around each suspected ROI (see Fig. 4), the representative 

radioactivity uptake pattern is calculated using Principal Component Analysis (PCA) that 

transforms a set of correlated original variables into a set of uncorrelated new variables [13]. 

A subset of L ROIs (LM), well correlated to the central suspected ROI, is selected according 

to the criterion 0.8<cxy<0.9 (see Section 1.3). Selected TAC
CSN

i (i=1,L) are input vectors in the 

following equation: 

 CSN

1

CSN

221

CSN

1111 TAC...TACTAC LLaaaPC   (3) 

where PC1 is the first principal component (has the greatest variance and gives the shape for 

representative uptake TAC pattern) and coefficients a1p, 0<p<L are known as principal 

coefficients. The sum of squares of the coefficients is one, which means that the amount of 

total variance of all original TAC
CSN

i (i=1,L) is equal to the amount of total variance of all 

principal components. 

Step 6 Correlation matrix Cj can be visually represented by assigning colors from standard 

palettes (e. g. rainbow or grayscale palette) to correlation coefficients. Moving away from the 

lesion, correlation coefficients decrease that can be visually displayed as the transition 

from light to dark colors. Visualization images presented in this paper are resampled to 

the 32  32 matrix by a standard bilinear interpolation method [14]. 
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Fig. 4 An example of moving ROI (dimension 44 pixels, 66 mm) around the central 

suspected ROI (green color) when determining a correlation matrix. The suspected 

area is defined by arrows around the central suspected ROI. Other ROIs that 

belong to the tissue are presented by red color 

2.3. PCA criteria 

Preparation and pre-analysis PCA data are very important to demonstrate the validity 

of results. Analysis which need to be performed before running PCA are: 1) observing 

correlation matrix of selected TAC
CSN

i (i=1,L) and calculating the determinant; 2) the 

Kaiser-Meyer-Olkin (KMO) measure; 3) the Bartlett's test of sphericity. 

Values in correlation matrix needn’t be  too low (cxy>0.8), because the prerequisite for 

PCA is good correlation, or too high in order to avoid multicollinearity (cxy<0.9) [13]. The 

value of determinant indicates on multicollinearity or singularity among original variables and 

it should not be less than 0.00001. In the case when the value of determinant is less than 

0.00001, it means that some variables are highly correlated. 

The Kaiser-Meyer-Olkin (KMO) is a measure of sampling adequacy [15]. It compares 

correlation and partial correlations between variables. KMO takes values between 0 and 1. 

The value of KMO should be greater than 0.5 if the sample is adequate. The Bartlett's test of 

sphericity is a test used to examine the null hypothesis: “Variables are uncorrelated, 

correlation matrix is an identity matrix”. Therefore, we need to get p-value < 0.05 in this test 

and conclude that null hypothesis can be rejected.  

For choosing the number of principal components we used the Kaiser rule and Screeplot 

combined with the amount of total variance that the chosen principal components have (the 

amount of total variance above 80 % is usually suggested) [16]. 

The rotation of principal components is used for improving interpretation of results. 

We have chosen the orthogonal rotation – varimax [16]. 
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3. RESULTS AND DISCUSSION 

We demonstrated the results of suggested algorithm for radioactivity uptake assessment 

in two patients who underwent parathyroid scintigraphy in the National Cancer Research 

Center of Serbia, Belgrade. Scintigraphic recording was performed in patients suspected of 

having primary hyperparathyroidism (PHPT) based on previous biochemical analysis 

(increased level of parathyroid hormone) and positive ultrasound findings. Patient data 

(biochemical, ultrasound, biopsy) are shown in Table 1. 

Table 1 Patients: biochemical, ultrasound and biopsy data.  

PHPT – primary hyperparathyroidism, PTH - parathyroid hormone 

Data Patient 1 Patient 2 

Gender female male 

Age [years] 69 19 

PTH [pg/ml] 223 125 

PHPT ultrasound positive positive 

Previous thyroidectomy no yes, right 

Histopathology parathyroid adenoma parathyroid cancer 

Tumor position right inferior left superior 

Tumor volume [mm3] 60 55 

Siemens e.cam camera and Siemens Syngo e.soft 2007 software (Siemens AG, Erlangen, 

Germany) have been used for image acquisition. After intravenous 
99m

Tc MIBI administration 

(with the radioactivity of 500 MBq, 13.5 mCi), 35 minutes of dynamic parathyroid 

scintigraphy (1 frame/min, dimension of image matrix: 128x128, pixel size 1.5 mm, zoom 

3.2, anterior view) were performed. 

Results of pre-analysis PCA data are presented in Table 2. All PCA criteria from Section 

1.3 are satisfied (determinant value>0.00001, KMO>0.5, p-value<0.05 for Bartlett's test). First 

principal component carries more than 80% of total variance, which means that it is 

representative of TAC changes. 

Fig. 5 shows results of algorithm applied in Patient 1 for two dimensions of ROI cells 

(33 pixels and 44 pixels). Visual inspection of standard dynamic scintigram at the 

moment of radioactivity peak in washout phase cannot distinguish lesion from healthy 

tissue, unlike suggested parametric imaging (Fig. 5A). Better discrimination between lesion 

and healthy tissue is evident in case of smaller ROI dimension, closer to the real lesion 

localization (compare Fig. 5A left and right). Representative TAC patterns are presented in 

Fig. 5B. The position of small parathyroid adenoma (right inferior) was surgically confirmed. 

Table 2 Results of pre-analysis PCA data 

Parameters 

Patient 1 Patient 2 

33 pixels 

(4.54.5 mm) 

44 pixels 

(66 mm) 

44 pixels 

(66 mm) 

Determinant value 0.00006 0.00009 0.00008 

Kaiser-Meyer-Olkin value 0.855 0.806 0.805 

Bartlett's test (p-value) 0.000 0.000 0.000 

Number of principal components 1 1 1 

Amount of total variance [%] 89.97 91.19 89.02 
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Fig. 5 A) A single frame from a dynamic image sequence, taken at the 22
nd

 minute  

and visual interpretation of lesion localization by introduced algorithm 

B) Representative TAC patterns obtained by Principal Component Analysis 

Fig. 6A shows results of visualization algorithm applied in Patient 2. Representative 

TAC pattern is presented in Fig. 6B. The position of small parathyroid cancer (left superior) 

was surgically confirmed. 

 

Fig. 6 A) A single frame from a dynamic image sequence, taken at the 24
th

 minute  

and a visual interpretation of lesion localization by suggested algorithm 

B) Representative TAC pattern obtained by Principal Component Analysis 
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4. CONCLUSION 

In this paper, we introduced an algorithm that enables the display of orientation, shape 

and boundaries of lesions. The algorithm visualizes the propagation of TAC correlation in 

the lesion area. The application of such algorithms is desirable in preoperative diagnostics 

in order to plan surgery. Further investigation will be related to the development of fully 

automated algorithm for lesion localization from dynamic scintigrams and its evaluation in 

a larger population with different oncological diseases. 
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