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Abstract. To ensure safe human-robot interaction impedance robot control has arisen 

as one of the key challenges in robotics. This paper elaborates control of bidirectional 

antagonistic drives – qbmove maker pro. Due to its mechanical structure, both position 

and stiffness of bidirectional antagonistic drives could be controlled independently. To 

that end, we applied feedback linearization. Feedback linearization based approach 

initially decouples systems in two linear single-input-single-output subsystems: position 

subsystem and stiffness subsystem. The paper elaborates preconditions for feedback 

linearization and its implementation. The paper presents simulation results that prove 

the concept but points out application issues due to the complex mechanical structure 

of the bidirectional antagonistic drives. 
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1. INTRODUCTION  

This paper presents a further elaboration of the approach for stiffness control of 

classical antagonistic drives in robotics [1]
1
to bidirectional antagonistic drives. 

The long term desire of scientists to design and build a faithful copy of a human being 

finally coincides with the latest efforts of in-house service robotics - how to design a 

robot which fully matches the house environment. Because humans shape their living 

environment to fully meet their comfort and necessities, home robots have to be built to 

fit such areas and therefore they must move and behave in the same manner as humans. 
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Therefore, there are numbers of actual research projects with the ultimate goal of 

creating musculoskeletal (or so-called anthropomimetic robots [2], [3]). The most popular 

among them are famous Japanese robot Kenshiro [4] and Eccerobot as an anthropomimetic 

robot of European consortium [5]. 

Following the anthropomimetic approach, key issues are human-like actuators and their 

control. The design of an anthropomimetic actuator has to follow guidelines set by its 

human paragon: it should be tendon driven, compliant (of changeable compliance - VSA) 

and therefore it has to be driven by at least two motors – to control both position and 

compliance (opposite of stiffness). The control of such drives, which are inevitably multi-

variable and non-linear, has to be reliable, safe and robust. This paper presents one instance 

of a bio-inspired robotic drive of changeable stiffness – bidirectional qbmove maker pro, 

and an approach to control such drive initially based on our work on puller-follower 

approach [6].     

A brief overview of bidirectional antagonistic joints in robotics, as well as our target 

one, is given in Section 2. Special attention of our group from Robotics Laboratory at the 

School of Electrical Engineering, University of Belgrade, is paid to the control of novel bio-

inspired robot actuators in general and the control of bidirectional antagonistic drives as one 

of the instances available in the laboratory. Generalized puller-follower approach based on 

feedback linearization to the control of qbmove maker pro is introduced in Section 3. The 

validity of the proposed control algorithm is proven via simulation in Section 4. Section 5 

brings conclusions about a prospective application of the proposed methodology, gives tips 

for future work and points out the already tested alternative approaches for stiffness control 

of bidirectional antagonistic drives. 

2. BIDIRECTIONAL ANTAGONISTIC DRIVES - QBMOVE MAKER PRO  

A subgroup of VSAs that mimics biological paragon of mammals is antagonistic 

actuators. Although classical antagonistic actuation is the prime example of a fully 

biologically inspired actuation, lately, the engineers turned to bidirectional antagonistic 

actuation as a big step towards real antagonistic actuation. The most significant advantage 

of bidirectional antagonistic actuation is bidirectional torque achieved by two antagonistically 

coupled motors. Namely, both motors could either pull or push, contrary to classical 

antagonistic, tendon driven actuators and human muscles. Therefore, slacking of the 

tendons is not possible, and controllability of such drives is ensured. 

Pioneering works in antagonistic actuation exploited intrinsic compliance of hydraulic 

and pneumatic actuators as antagonistically coupled drives. Therefore, the first widely 

known implementation of antagonistic drives were: the Utah/M.I.T. Dexterous Hand [7], 

McKibben pneumatic artificial muscles in antagonistic arrangements [8] such as work of 

Tondu et al. [9] or Boblan et al. [10], biped walking robots with antagonistically actuated 

joints at Waseda University [11], or European pneumatic biped Lucy build at Vrije 

University of Brussels [12]. In parallel, electric drives have been gradually developed and 

prevailed in antagonistic drives due to control issues when pneumatic actuators are 

employed [13]. To achieve variable stiffness, non-linear tendon transmission has to be 

designed [14]. The non-linear transmission could be obtained either by placing non-linear 

elastic elements ([15] and [16]) or placing linear elastic elements with a controlled system 
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dedicated to shaping non-linearity in transmission. The latter approach was employed by 

Migliore [17], Hurst [18], and Tonietti [19]. In this research we opted for the first approach.   

Although VSA is a topic of an increasing importance towards safe human-robot 

interaction, a limited number of VSA is available on the market due to high costs and 

complex mechanical design. With an idea to bring an instance of such compliant actuator to 

a broad audience, to researchers and academy, The Natural Motion Initiative [20] developed 

qbmove maker series of the actuator. Their latest prototype, qbmove maker pro is a low-

cost 3D printed bidirectional spring antagonistic actuator design which is affordable and it 

has all features of bidirectional antagonistic VSA. All parts of the actuator are on-the-shelf 

and could be either purchased from The Natural Motion Initiative or their models could be 

downloaded from the internet free-of-charge. Furthermore, all software dedicated to real-

time control of qbmove maker pro is open source [21]. 

A prototype of qbmove maker pro actuator and its functional scheme are depicted in 

Fig.1. Therefore, both motors can contribute to the  overall shaft torque symmetrically. 

This is the basic difference when compared to the traditional antagonistic structure where 

each motor can contribute only in one direction due to a pulling constraint. Joint shaft and 

motors are coupled via non-linear springs. The non-linear force-deflection characteristic 

is of fundamental importance since it enables variable stiffness of the joint which 

depends on spring pretensions [17].  Experiments which confirm this non-linear coupling 

are given in [22]. 

 

Fig. 1 qbmove maker pro: prototype (left), functional scheme (right) 

A mathematical model of qbmove maker pro actuator is given by equations (1) - (7). 

Non-linearity in force-deflection characteristics causes that relatively small displacement 

of motors positions and/or output shaft induces a significant change in stiffness for high 

stiffness values. Equation (1) describes joint/shaft dynamics, equation (2)-(3) stands for 

motor dynamics. Resulting driving torques are given by (4)-(7).  

 

 ( ) ̈   (   ̇) ̇    ̇    ( )    (       ) (1) 
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 (    )         ( (    )) (5) 

 

 (    )        ( (    )) (6) 

 

 (       )         ( (    ))       ( (    )) (7) 

 

Actuator dynamics is specified by shaft inertia -  ( ), velocity related terms (centrifugal 

and Coriolis) -  (   ̇) ̇, viscous damping -  , gravity load   ( ), and overall actuator 

torque  (       ) as a sum of both bidirectional antagonistic tendon/drive torques - 

 (    ) and  (    ). The bidirectional antagonistic drives are assumed to be symmetric 

with inertia –   and damping term –  .  Note that non-linearity in the transmission given by 

(5) and (6) is a prerequisite for variable stiffness of qbmove maker pro actuator. Since both 

drives influence actuator position as well as actuator stiffness, decoupling of position and 

stiffness subsystem is demanding control challenge which is considered in this paper.  

Since our final goal to control joint stiffness, let us briefly recall the definition of joint 

stiffness equivalent to the stiffness of a translational spring. The force acting on the spring 

depends on its extension and this static dependence is defined as the spring stiffness     ⁄  . 
Thus, the spring of length    in its equilibrium position (   ) stays undeformed, whereas if 

the spring is extended to a length  , it generates  force    . If this relation is linear, then we 

consider the spring as linear (8) and the stiffness is constant. Otherwise, the spring is 

considered as non-linear (9) and the stiffness is variable. Likewise, the stiffness of the robot 

joint (usually denoted in the literature as        ⁄  ) is defined by (10), where    stands for 

the torque generated in the joint and   denotes the joint position.  

 

    (    )        ⁄        (8) 

 

   (  )  (    )   (  )      ⁄        (9) 

 

          (10) 

 

Analogously, joint stiffness can be constant or changeable which is a desirable feature 

from an exploitation point of view since it enables tradeoffs between safe and precise 

manipulation. Since we focus on robot joints that exploit antagonism, the stiffness of 

such joints is presented in accordance with the source of mechanical stiffness in 

antagonistically coupled tendons. Therefore, the overall shaft/joint stiffness of qbmove 

maker pro actuator is estimated as follows in (11). For unloaded shaft, equilibrium position 

is given by (12).  

 

     (       )          ( (    ))        ( (    )) (11) 
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3. FEEDBACK LINEARIZATION FOR DECOUPLED POSITION/STIFFNESS CONTROL 

OF BIDIRECTIONAL ANTAGONISTIC DRIVES 

Since both bidirectional antagonistic motors contribute to joint position and joint 

stiffness, static feedback linearization is employed to decouple this multivariable system 

into two decoupled and linearized single-input-single-output systems. The original 

system can be written in state-space representation - (13).  

 

 ̇   (   )

   ( )
 

(13) 

 

 

Here, joint and motor positions and velocities are considered as state space variables 

                
       ̇   ̇    ̇  

 , while motor torques       
   

   are considered 

as control inputs. Joint position   and overall joint stiffness   are outputs:          
    . 

By straightforward application of feedback linearization [23], outputs   and   were 

differentiated until a linear relation to inputs    
 and/or    

 was obtained. To that end, 

outputs   and   were differentiated four times (14) and two times (15) respectively. Since 

the sum of the relative degrees (=4+2) of the outputs was equal to the state dimension of 

the system (=6), zero dynamics does not exist and all states are fully observable.  

 

 ( )    
   ( )        

       
 (14) 

 

 ( )    
   ( )        

       
 (15) 

 

   ( ) denotes Lie derivative of  ( ) along vector function  ( ). Lie derivatives in 

cases of position and stiffness of the model representing qbmove maker pro are depicted 

in (16) and (17) respectively. Decoupling the matrix  ( ), defined as in (18), has to be 

non-singular to prove controllability of the system, which is always valid for positive 

joint stiffness. At the same time, this is the second precondition for the application of 

static feedback linearization. For the sake of simplicity, the following notation is 

adopted:         ( (     )),         ( (   –   )),         ( (     )), and  

        ( (     )). 
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Finally, in accordance to [23], original input   can be transformed as in (19) to 

achieve independent control of both the joint position and stiffness via the newly-defined 

intermediate input   [    ]
 

. The result of this input transformation is two linear 

single-input-single-output systems controlled by intermediate input   which can be 

written in linear state space form (20). New state vector contains all output derivatives up 

to the highest order   [   ̇ ̈ ( )    ̇]
 
. 

 

     ( *
  
   ( )

  
   ( )

+  *
  

  
+) (19) 

 

 ̇        (20) 

 

From (14) through (20) follows that   ( ) ( )   [    ]
 
. Thus, if we choose    as 

the desired joint position and     as the desired joint stiffness, a basic control law (21) 

can be applied. Accordingly, state feedback linearization allows control of both the 

positions and stiffness of the bidirectional antagonistic robot joint, using two totally 

independent linear controllers, composed of static state feedback and feed-forward action. 

As demonstrated in [24] and [25], the stability of the proposed control methodology (21) 

is ensured if the gains in                           are chosen so the polynomials 

depicted in (22) are Hurwitz's.  

 

     
( )     (  

( )    
   ( ))     ( ̈    

   ( ))     ( ̇      ( ))     (     ( ))

    ̈     ( ̇      ( ))     (     ( ))
 (21) 

 

       
      

            

              
 (22) 

 

Theoretically, if the desired joint positions and stiffness are smooth trajectory, 

asymptotic trajectory/force tracking is possible. In this paper, the desired trajectories are 

set manually without considering higher control levels and optimization issues. An 

illustrative scheme of the proposed algorithm is depicted in Fig 2. 
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Fig. 2 Decoupled position/stiffness control scheme for qbmove maker pro actuator 

4. RESULTS AND DISCUSSION   

The mathematical model (presented in Section 2) and the presented control approach 

(Section 3) are implemented in user-defined dedicated Matlab/Simulink model. 

The validation of the proposed approach is given in Fig 3 through Fig 6. Fig 3 

presents joint position tracking - the desired trajectory combines an interval of smooth 

increase in position for   ⁄     and sine trajectory with an amplitude of   ⁄    . 

Desired and achieved stiffness are depicted in Fig 4. Desired stiffness comprises flat and 

sine part of an amplitude of            which is in accordance with desired trajectory 

to demonstrate simultaneous control of both joint position and stiffness for different 

trajectory patterns. Theoretically, as elaborated by Palli et al. [24], [25], if the desired 

joint positions are continuous up to the 4
th 

order     ( )  
          , and the stiffness is 

planned to be continuous up to the 2
nd

 order     ( )  
          , asymptotic trajectory/ 

force tracking is achieved.  Fig 5 presents coordinated actions of two antagonistically 

coupled motors which contribute to the joint position but also stiffness. One can see that 

while the desired stiffness is constant (     ) both motors move in the same direction 

equally contributing to the joint position which follows its pattern. When stiffness starts 

changing its value motors act as follows: when joint stiffen (rise in stiffness) motors 

move in opposing directions while a decrease in joint stiffness results in a decrease in the 

difference in antagonistic motor positions. The overall resulting joint torque is depicted in 

Fig 6 which fits the pattern of the desired joint trajectory. Demonstrated results are 

obtained for parameters adopted as shown in Table 1. Control parameters (23) and (24) 

are adopted from [6]. 
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Table 1 Simulation parameters  

Label Numerical value Unit Description 

  0.000003        Motor inertia 

  0.015        Joint inertia 

  0.000001 [  s/rad] Motor damping 
  0 [  s/rad] Joint damping 
  6.7328         Spring coefficient 

  0.0227      Spring coefficient 

 

 

Fig. 3 Joint position tracking 

 

Fig. 4 Joint stiffness tracking 
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Fig. 5 Positions of bidirectional antagonistically coupled motors 

 

 

Fig. 6 Resulting joint torque as contribution of both  

bidirectional antagonistically coupled motors 

5. CONCLUSION 

The paper elaborated exploitation of the stiffness control method proposed in [1] to 

robot joint driven by a bidirectional antagonistic actuators - qbmove maker pro actuator. 

Therefore, an increasing topic of variable stiffness actuation was presented. The approach 

which enables simultaneous decoupled control of joint position and joint stiffness was 

demonstrated. The concept is validated through simulations.  
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However, the key issue in the implementation of this feedback linearization based 

control approach is model dependence. The model itself is very complex and non-linear, so 

model identification must be considered comprehensively before the approach is used. 

Moreover, it is well known that systems that are linearized by decomposing their structure 

to two or more linear subsystems are prone to behave erratically when disturbed. The 

robustness of the presented approach is discussed by authors’ previous work [6]. To 

overcome the dependence on the model, alternative approaches to simultaneous position/ 

stiffness control of bidirectional antagonistic drives were pointed out in authors’ previous 

works [27] and [28], while neural networks for system modeling and feed-forward control 

were presented in [29].  

Future work on the topic will consider the implementation of the proposed approach 

for stiffness control on the laboratory setup driven by qbmove maker pro actuators, on a 

model-based multi-jointed robot with bidirectional antagonistic drives, as well as its 

implementation for Cartesian stiffness control. An ultimate goal of this research is the 

development of a control scheme which should shape Cartesian stiffness by symbiosis of  

joint stiffness control and posture planning of the robot. 
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