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Abstract. In this paper, we present research work related to processing and analysis of 

big trajectory data using MapReduce framework. We describe the MapReduce-based 

algorithms and applications implemented on Hadoop for processing spatial join 

between big trajectory data and set of POI regions and appropriate aggregation of 

join results. The experimental evaluation and results in detecting trajectory patterns of 

particular users and the most popular places in the city demonstrate the feasibility of 

our approach. The visual analytics of MapReduce job output improve the trajectory 

and movement analysis. 
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1. INTRODUCTION 

Advances in remote sensors, sensor networks, and the proliferation of location sensing 

devices lead to the massive generation of dynamic and geographically distributed spatio-

temporal data in the form of moving object trajectories. These ever-increasing volumes of 

spatio-temporal data call for new models and computationally effective algorithms for 

efficient storage, processing, analysing and visualization in advanced data-intensive 

systems and applications.  

During the last decade there has been a growing interest in research of parallel and 

distributed computing applied to the management, processing and analysis of massive 

geo-spatial data [1]. Advanced GIS applications, such as emergency management, climate 

change analysis, traffic monitoring, smart cities, etc., impose strengthen performance and 

response time constraints which cannot be met by contemporary Geographic Information 
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Systems (GIS) and spatial databases. Thus, high-performance computing (HPC) may meet 

the requirements of these applications [2].  

Various high performance methods and techniques have been proposed for processing 

and analysis of big spatial data based on cluster and cloud computing [3], as well as on 

personal computers equipped with multiprocessor CPUs and massively parallel GPUs [4]. 

The recent proliferation of distributed and cloud computing infrastructures, both public 

clouds (e.g., Amazon EC2) and private computer clusters, has given a rise for processing 

and analysis of complex Big data. Especially, the implementation of MapReduce framework 

as open-source Hadoop software stack, that can work on clusters of commodity computers, 

have set this paradigm as an emerging research and development topic [5]. The MapReduce 

paradigm hides details about data distribution, data availability and fault-tolerance, and 

can scale to thousands of computers in a cluster or cloud. The MapReduce processing 

consists of two phases, namely Map and Reduce that are performed through map and 

reduce functions over data records formatted as key-value pairs [6].  

In this paper we implement two MapReduce jobs and corresponding applications 

using Hadoop to perform spatial join between trajectory data set and places of interest 

(POI), and further aggregation of join results, to generate the symbolic trajectories of 

mobile users, as well as to detect the most popular POI in the city. 

The rest of the paper is structured as follows. Section II presents the research work 

related to processing and analysis of spatial and spatio-temporal data using MapReduce. 

In section III we describe the Hadoop implementations for processing of big trajectory 

data set over set of places of interest (POI). Section IV gives the results and presents the 

evaluation of our implementation. Section V presents the visual analysis of the results. 

Section VI concludes the paper and gives directions for future research. 

2. RELATED WORK 

Recently, there is a growing research interest in spatio-temporal data management, 

processing analysis and mining using MapReduce model [7].  

Cary et al. in [8] present their experiences in applying the MapReduce framework to 

important spatial database problems. They investigate R-tree bulk-loading issues in 

MapReduce, as well as aerial image quality computation and prove excellent scalability in 

parallel processing of spatial data. In [9] some efficiency issues regarding spatial data 

management are considered and an implementation of the all-nearest-neighbor query 

algorithm is provided. The authors present performance evaluation and show that the 

MapReduce-based spatial applications outperform the traditional one on a DBMS. 

Spatial joins in MapReduce are studied in [10]. The authors present SJMR (Spatial 

Join with MapReduce) algorithm that includes strip-based plane sweeping algorithm, tile-

based spatial partitioning function and duplication avoidance technology to perform 

spatial join on MapReduce. The performance evaluation of SJMR algorithm over the real- 

world data sets shows the applicability of MapReduce for data-intensive spatial applications on 

small clusters. 

Regarding spatio-temporal and trajectory data, a first approach is presented in [11] 

where massive trajectory management issues are investigated. The authors present a new 

framework for query processing over trajectory data based on MapReduce in order to 
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utilize the parallel processing power of computer clusters. They perform preliminary 

experiments showing that this framework scales well in terms of the size of trajectory data 

set [12]. 

SpatialHadoop is developed as the first extension of MapReduce framework with 

support for spatial data and operations [13]. SpatialHadoop employs a high level spatial 

language, a two-level spatial index structure, and three basic spatial operations: range 

queries, k-NN queries, and spatial join. SpatialHadoop demonstration has been done on 

an Amazon EC2 cluster against two real spatial data sets. 

Although there is a considerable recent research interest related to spatial and spatio-

temporal data management on MapReduce, there is limited work performed for trajectory 

(mobility) data processing and analysis using the MapReduce framework. Our work aims 

to provide efficient MapReduce solution for a fundamental mobility data processing task 

related to big trajectory data sets. 

3. TRAJECTORY DATA PROCESSING AND ANALYSIS USING HADOOP 

The research presented in this paper aims to provide efficient MapReduce solution for 

a big mobility data processing and analysis task related to the trajectory data set 

representing movement of mobile users and the points/places of interest they visit.  

The problem we investigate in this work is actually the spatial join between a big set 

of spatio-temporal trajectory data T and a (potentially large) set of spatial regions R. The 

trajectory data represent the movement of a large collection of moving objects/mobile 

users tracked for a certain time period with the specified frequency of location updates. 

Each trajectory is seen as a collection of points <oid, xi, yi, ti>, where xi, yi represent the 

location in a geographic/geometric reference system and ti is the corresponding time 

stamp at which the moving object (oid) is detected at the specified location. Trajectories 

of a large number of moving objects collected continuously for a long time period are 

characterized by very large volumes, considered as Big Data and therefore their processing and 

analysis is a challenging issue.  

Each spatial region R represents an area around point/place of interest (POI) visited 

by mobile users that stay there for certain time periods. A mobile user visits particular 

POI if its recording location at corresponding time stamp is within the area of POI; 

otherwise a mobile user is considered to be on a trip between two POIs. 

The objective of our MapReduce implementation is to provide: 

 Analysis of user’s movement and trajectory to detect places she visited and at 

which she stayed for a certain time period in the form of symbolic trajectory 

(POI1,Period1)→(POI2,Period2)→…→(POIn, Periodn). 

 Detection of the most popular places regarding the number of users that visited 

them and the total amount of time they stayed at a particular place. 

For such analysis we develop two MapReduce application/jobs over the trajectory 

and region data sets.  

The first job, named SemanticTrajectory, performs processing and analysis of 

trajectory data related to mobile users and detects their visits to POIs (Fig. 1). During the 

Map phase, each mapper reads its input, which is a collection of records of the form <oid, 
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location, time> and performs the spatial join with POI data set containing records of the 

form <pid, area, attributes>, according to the spatial relation Within(location, area). The 

output of mappers is in the form <(oid, pid), time> where the pair (oid, pid) represents 

the composite key and the parameter time is a value. In the Reduce phase, each reducer 

collects the identifiers of the same (oid, pid) and process and aggregate the time values 

detecting the time period(s) during which the object stays at the POI. The output of the 

reducers contains records of the form <oid, pid, (t1,t2)> and is written back to HDFS. 

Each record of the output represents the period during which a mobile user oid visits the 

place pid and represents the semantic trajectory of a mobile user, i.e. the symbolic pattern 

of user’s movement. 
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Fig. 1 The outline of the SemanticTrajectory job 

 

The second MapReduce job we developed, named PopularPlaces, focuses on POIs 

and detects their popularity according to the number of visits and the total duration of 

stays. During the Map phase, each mapper reads the same big trajectory data set as the 

first job and performs the spatial join with POI data set. This time the output of mappers 

is in the form <pid, (oid, time)> where the pid represents the key and (oid, time) is a 

value. In the Reduce phase, each reducer collects the identifiers of the same pid, and 

process and aggregate the oid and time values detecting the total number of unique mobile 

users that visited particular place and the total time periods of their visits to POI. The 

output of the reducers contains records of the form <pid, nr_oid, total_time> and is 

written back to HDFS. Each record of the output represents the total number of users 

(nr_oid) that visited a place pid, and the total time (total_time) that these users stay at 

place pid. 
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4. EXPERIMENTAL EVALUATION 

In this section, we present the experimental evaluation of the implemented algorithms 

described previously. 

The algorithms have been implemented in Hadoop 1.2.1 (http://hadoop.apache.org/) 

and experiments have been conducted in a pseudo-distributed mode, as well as on a small 

cluster of 5 nodes/commodity computers. A master node is a physical machine Pentium 

IV with 3 GHz CPU and 4GB of RAM, while worker nodes are virtual machines on a 

private IaaS cloud equipped with Intel Xeon CPU 1.6GHz Dual Core. Each node runs 

Ubuntu 12.10 Linux and has Java SDK 1.7 installed. In addition, each node runs both a 

Task Tracker and Data Node daemon, while a master node acts as Job Tracker and Name 

Node, as well. 

In implementation and evaluation of our algorithms we have used MilanoByNight 

simulated datasets that have been provided by the EveryWare Lab, University of Milano 

[14]. The authors of the data set consider a typical deployment scenario for a friend-finder 

service: a large number of young people using the service on a weekend night in large city 

like Milan. The simulation includes a total of 30,000 home buildings, 10,000 office 

buildings and 1,000 entertainment places which represent a POI dataset. The trajectory 

data set contains 180 million of records for 100,000 mobile users moving over the city of 

Milan while location updates are made at every 2 minutes. The movement has been 

recorded over 6 hours long time period, from 7pm - 1 am, which amounts for about 1.05 

GB in total. 

Both data sets are stored in the HDFS. The trajectory data set is available to all started 

mappers through HDFS partitioning mechanism. For the POI data set, we exploit the 

features of the distributed cache mechanism supported by Hadoop, meaning that all POI 

data are available to all Map and Reduce tasks. Since in our setting the size of the POI 

dataset is significantly smaller than the size of the trajectories dataset, the distributed 

cache is a convenient way to share data across Hadoop nodes. 

We have run our MapReduce jobs on a small commodity cluster containing 5 nodes. 

The SemanticTrajectory MapReduce job engages 17 Map tasks and 10 reduce tasks that 

finish the job in 8 minutes and 15 seconds in average, producing an output of about 56 

MB stored on HDFS. The job output is in the form of records shown on Table 1 for 

particular users. 

Table 1 The output of the SemanticTrajectory job. 

OID PID Time period 

10233 2091 [09.01.2009. 07:02 - 09.01.2009. 07:52] 

10233 1362 [09.01.2009. 08:58 - 09.01.2009. 11:30] 

10233 4560 [09.01.2009. 11:45 - 10.01.2009. 00:58] 

...   

14215 3195 [09.01.2009. 07:00 - 09.01.2009. 08:30] 

14215 1587 [09.01.2009. 08:42 - 09.01.2009. 10:04] 

14215 1890 [09.01.2009. 10:24 - 09.01.2009. 12:02] 

14215 2964 [09.01.2009. 12:10 - 10.01.2009. 1:00] 

...   
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The PopularPlaces job engages the same number of Map and Reduce tasks and 

performs faster than previous one, completing its processing for 7 minutes and 35 second. 

The excerpt of the output of the PopularPlaces job for the most popular places, having 

about 100 KB in size, is shown in Table 2 sorted according the total number of visitors. 

Table 2 Top popular places sorted by total number of unique visitors. 

PID Total visitors Total time 

17 1635 140892 

83 1530 117016 

136 1466 126504 

96 1458 121378 

180 1435 116852 

416 1341 113436 

… 

  

The main objective of our work is not to evaluate the overall performance of trajectory 

data processing, since we implement our algorithms on a small, commodity cluster. We just 

examine the benefits of using MapReduce paradigm in processing and analysis of big 

trajectory data. As an illustration, the SemanticTrajectory algorithm took about 21 minutes 

and 36 seconds processed on a computer with Intel i5 CPU/ 4GB RAM. We evaluate and 

fine tune the performance of SemanticTrajectory job by varying different Hadoop runtime 

parameters, such as the number of reduce tasks. The runtime is reduced by increasing the 

number of reduce tasks, up to the certain threshold, which is in our cluster is achieved for 

10 reducers and then start to increase slowly (Fig. 2).  

 

Fig. 2 The runtime of SemanticTrajectory job vs. number of reduce tasks 

MapReduce and its Hadoop implementation provide excellent scalability in terms of 

bigger data sets, as well as larger computing resources. We evaluate and prove such 

scalability regarding increasing trajectory data set (Fig. 3).  
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Fig. 3 The runtime of SemanticTrajectory job vs. trajectory data size 

Also our Hadoop applications can be easily scaled to more powerful computer nodes 

than those we have used and much larger cluster with thousands of machines (e.g. Amazon 

Elactic MapReduce  EMR) to achieve much higher performances. 

5. VISUAL ANALYSIS OF MAPREDUCE JOB RESULTS 

The results produced by SemanticTrajectory and PopularPlaces jobs can be visually 

analyzed using specified tools that supports analytics of spatio-temporal and trajectory 

data, such as Microsoft SQL Server Business Intelligence tools. The Fig. 4 shows the 

visual analysis of SemanticTrajectory job result displaying the places visited by a 

particular user (UserID=60127) and the time periods spent at these places. 

 

Fig. 4 The SemanticTrajectory job output - the places visited by user ID 60127 

 

The Fig. 5 shows the fifty most popular places according to a number of unique visitors 

that visit them. 
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Fig. 5 The PopularPlaces job output  the 50 most popular places 

It confirms the huge potential of visual analytics based on big trajectory data 

processing for discovering mobility knowledge, patterns and trends. 

6. CONCLUSION 

In this paper, we propose the design and implementation of efficient algorithms for 

processing of spatio-temporal data that represent moving object trajectories using MapReduce. 

These algorithms consist of spatial join between a big trajectory data set and a POI (region) 

data set, and appropriate aggregation of join results. The algorithms implementation has been 

performed using Hadoop, an open source MapReduce implementation and an Apache project. 

The deployment and evaluation of our solution performed on a small cluster of commodity 

computers, show feasibility of our approach in usability of MapReduce/Hadoop in Big spatio-

temporal and trajectory data processing and analysis.  

There are significant issues that are considered very important for further research and 

development. Since the MapReduce model is mainly batch oriented it should be 

interesting to explore its possibilities and extensions toward real-time stream data 

processing of trajectory data, as well as integration of spatio-temporal data, operation and 

indexing methods in Hadoop, in accordance with [13]. Since trajectories change 

frequently by location updates and addition of new location data, it is very interesting to 

explore update and monitoring issues in a MapReduce setting. Also, a very challenging 

task is to explore and adapt the MapReduce framework in a mobile environment (mobile 

cloud computing). 



 Processing and Analysis of Big Trajectory Data Using MapReduce 27 

Acknowledgement: This paper was realized as a part of the projects "Studying climate change and 

its influence on the environment: impacts, adaptation and mitigation" (III 43007), and “The 

infrastructure for electronically supported learning in Serbia” (III-47003), financed by the Ministry of 

Education, Science and Technological Development of the Republic of Serbia within the framework of 

integrated and interdisciplinary research for the period 2011-2014. 

REFERENCES 

  [1] A. Clematis, M. Mineter, R. Marciano, "High performance computing with geographical data," Parallel 

Computing, vol. 29, no. 10, pp. 1275–1279, 2003. 

  [2] S. Shekhar, "High performance computing with spatial datasets," in Proceedings of the ACM 

SIGSPATIAL International Workshop on High Performance and Distributed Geographic Information 

Systems - HPDGIS, 2010, pp. 1–2. [Online]. Available: http://dx.doi.org/10.1145/1869692.1869693 

  [3] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, J. Saltz, "Hadoop-GIS: A High Performance Spatial 

Data Warehousing System over MapReduce," in Proceedings VLDB Endowment, vol. 6, no. 11, Aug. 

2013. [Online]. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814183/ 

  [4] J. Zhang, "Towards Personal High-Performance Geospatial Computing (HPC-G)," in Proceedings of the 

ACM SIGSPATIAL International Workshop on High Performance and Distributed Geographic 

Information Systems - HPDGIS, 2010, pp. 3–10. [Online]. Available: http://dx.doi.org/ 

10.1145/1869692.1869694 

  [5] J. Dean, S. Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters," Communications of 

ACM, vol. 51, no. 1, p. 107, Jan. 2008. [Online]. Available: http://dx.doi.org/ 10.1145/1327452.1327492 

  [6] T. White, Hadoop: The Definitive Guide, 3rd Edition. O’Reilly Media, 2012. 

  [7] V. Mayer-Schönberger, K. Cukier, Big Data: A Revolution That Will Transform How We Live, Work, and 

Think. Eamon Dolan/Houghton Mifflin Harcourt, 2013, p. 256. 

  [8] A. Cary, Z. Sun, V. Hristidis, N. Rishe, "Experiences on Processing Spatial Data with Using MapReduce 

in Practice," in Proceedings of 21st International Conference on Scientific and Statistical Database 

Management, 2009, pp. 302 – 319. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-02279-1_24 

  [9] K. Wang, J. Han, B. Tu, J. Dai, W. Zhou, X. Song, "Accelerating Spatial Data Processing with 

MapReduce," in Proceedings of the 2010 IEEE 16th International Conference on Parallel and 

Distributed Systems, 2010, pp. 229–236. [Online]. Available: http://dx.doi.org/10.1109/ICPADS.2010.76 

[10] S. Zhang, J. Han, Z. Liu, K. Wang, Z. Xu, "SJMR: Parallelizing spatial join with MapReduce on 

clusters," in Proceedings of the IEEE International Conference on Cluster Computing and Workshops , 

2009, pp. 1–8. [Online]. Available: http://dx.doi.org/10.1109/CLUSTR.2009.5289178 

[11] Q. Ma, B. Yang, W. Qian, A. Zhou, "Query Processing of Massive Trajectory Data based on 

MapReduce," in Proceeding of the Ffirst international workshop on Cloud Data Management - 

CloudDB ’09, 2009, pp. 9–16. [Online]. Available: http://dx.doi.org/10.1145/1651263.1651266 

[12] B. Yang, Q. Ma, W. Qian, A. Zhou, "Truster: Trajectory data processing on clusters," in Proceedings of 

14th International Conf. on Database Systems for Advanced Applications, 2009, pp. 768–771. [Online]. 

Available: http://dx.doi.org/10.1007/978-3-642-00887-0_69 

[13] A. Eldawy, M. F. Mokbel, "A Demonstration of SpatialHadoop: An Efficient MapReduce Framework for 

Spatial Data," Proceedings VLDB Endowment, vol. 6, no. 12, pp. 1230–1233, Aug. 2013. [Online]. 

Available: http://dx.doi.org/10.14778/2536274.2536283 

[14] S. Mascetti, D. Freni, C. Bettini, X. S. Wang, S. Jajodia, "On the Impact of User Movement Simulations 

in the Evaluation of LBS Privacy-Preserving Techniques," in Proceedings of the 1st Internationl 

Workshop on Privacy in Location-Based Applications, 2008, vol. 397. [Online]. Available: 

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-397/paper5.pdf 
 


