
U. Abhishek* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.6, October – November 2016, 4341-4344.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 4341

BCD Repetitive Strategy To Decrease The Latency
U.ABHISHEK

VLSI&ES Branch

Department of ECE

Holy Mary Institute of Technology

Hyderabad, T.S

Mrs. Y.B.T.SUNDARI M.Tech.,MIEEE

Assistant Professor

Department of ECE

Holy Mary Institute of Technology

Hyderabad, T.S

Abstract: We present the formula and architecture of the BCD parallel multiplier that exploits some

qualities of two different redundant BCD codes to hurry up its computation: the redundant BCD excess-3

code (XS-3), and also the overloaded BCD representation (ODDS). Additionally, new techniques are

designed to reduce considerably the latency and section of previous representative high end

implementations. Partial goods are generated in parallel utilizing a signed-digit radix-10 recoding from

the BCD multiplier using the digit set [-5, 5], and some positive multiplicand multiples (0X, 1X, 2X, 3X,

4X, 5X) created in XS-3. This encoding has lots of advantages. First, it's a self-complementing code, to

ensure that an adverse multiplicand multiple could be acquired just by inverting the items of the related

positive one. Finally, the partial products could be recoded towards the ODDS representation just by

adding a continuing factor in to the partial product reduction tree. Because the ODDS utilize a similar 4-

bit binary encoding as non-redundant BCD, conventional binary VLSI circuit techniques, for example

binary carry-save adders and compressor trees, could be adapted efficiently to do decimal operations. We

reveal that the suggested decimal multiplier comes with an area improvement roughly within the range

20-35 % for similar target delays with regards to the fastest implementation.

Keywords: BCD Codes; Multiplier; VLSI Circuit; Adder

I. INTRODUCTION

Power dissipation is known as a vital parameter in

modern VLSI design field. To fulfill MOORE‘S

law and also to produce electronic devices goods

with increased backup and fewer weight, low

power VLSI design is essential. Fast multipliers are

crucial areas of digital signal processing systems.

The rate of multiply operation is crucial in digital

signal processing plus the overall purpose

processors today, especially because the media

processing required off. Previously multiplication

was generally implemented using a sequence of

addition, Subtraction, and shift operations [1].

Multiplication can be viewed as a number of

repeated additions. The delayed, gated

demonstration of the multiplicand must be within

the same column from the shifted partial product

matrix. They're then put into make up the product

bit for that particular form. Multiplication thus

remains a multi operand operation. To increase the

multiplication to both signed and unsigned figures,

a handy number system will be the representation

of figures in two‘s complement format. Multipliers

are critical factors of numerous high end systems

for example FIR filters, microprocessors, digital

signal processors, etc. A system‘s performance is

usually based on the performance from the

multiplier since the multiplier is usually the slowest

clement within the system. In addition, it's usually

the most area consuming. Hence, optimizing the

rate and part of the multiplier is really a major

design issue. To ensure that improving speed

results mostly in bigger areas. Consequently, whole

spectrums of multipliers with various area-speed

constraints are made with fully parallel processing.

These multipliers have moderate performance both

in speed and area. However, existing digit serial

multipliers happen to be affected by complicated

switching systems and/or irregularities in design.

Radix 2^n multipliers which work on digits inside a

parallel fashion rather of bits bring the pipelining

towards the digit level and steer clear of the

majority of the above problems. The pipelining

done in the digit level brings the advantage of

constant operation speed regardless of how big the

multiplier. The time speed is just based on the digit

size that is already fixed prior to the design is

implemented. The SPST (Spurious Power

Suppression Technique) can be used for digital

signal processing (DSP), Transformations of

Digital Image Processing and versatile multimedia

functional unit (VMFU) etc. The Booth's radix-4

formula, Modified Booth Multiplier, 34-bit CSA

are improves speed of Multipliers and SPST adder

will lessen the power consumption additionally

process. The multiplicand will be multiplied by

each digit from the multiplier starting with the

rightmost, Least Significant Digit (LSD).

Intermediate results (partial-products) are put one

atop another, offset by one digit to align digits of

the identical weight.

II. BOOTH MULTI-PLIER

The fundamental approach to enhance the

performance from the final adder would be to

decrease the amount of input bits. The multiple

partial goods are compressed right into a sum along

with a carry by CSA [2]. The amount of items of

sums and carries to become used in the ultimate

adder is reduced with the addition of the low items

of sums and carries ahead of time inside the range

where the efficiency won't be degraded. A Couple-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Innovative Technology and Research (IJITR)

https://core.ac.uk/display/228549692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

U. Abhishek* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.6, October – November 2016, 4341-4344.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 4342

bit CLA can be used to include the low bits within

the CSA. Additionally, to improve the output rate

when pipelining is used, the sums and carries in the

CSA are accrued rather from the outputs in the

final adder in the way the sum and carry in the

CSA in the last cycle are inputted to CSA. A CSA

architecture is modified to deal with the sign bit the

sum and carry in the CSA in the last cycle are

inputted to CSA. The multiple partial goods are

compressed right into a sum along with a carry by

CSA.

III. PROPOSED SPST MODEL

VMFU consists of an adder, multiplier as well as

an accumulator. Usually adders implemented are

Carry- Select or Carry-Save adders, as speed is

very important in DSP. One implementation from

the multiplier may be as a parallel array multiplier

[3]. The inputs for that VMFU should be fetched

from memory location and given towards the

multiplier block. This whole process will be

achieved in one clock cycle. This has been

developed in the work. The look includes one 16

bit register, one 16-bit Modified Booth Multiplier,

33-bit accumulator using ripple carry and two16-bit

accumulator registers.

IV. METHODOLOGY

The proposed decimal multiplier uses internally a

redundant BCD arithmetic to speed up and simplify

the implementation. This arithmetic deals with

radix-10 ten‘s complement integers of the form:

Where d is the number of digits, sz is the sign bit,

and Zi €[l-e; m-e]is the ith digit, with parameter e

is the excess of the representation and usually takes

values 0 (non excess), 3 or 6. The redundancy

index ρ is defined as ρ=m-l+1-r being r=10.]. On

the other hand, the binary value of the 4-bit vector

representation of Zi is given by

zi;j being the jth bit of the ith digit. Therefore, the

value of digit Zi can be obtained by subtracting the

excess e of the representation from the binary value

of its 4-bit encoding, that is,

Note that bit-weighted codes such as BCD and

ODDS use the 4-bit binary encoding (or BCD

encoding) defined in Expression (2). Thus, Zi=[Zi]

for operands Z represented in BCD or ODDS. This

binary encoding simplifies the hardware

implementation of decimal arithmetic units. For

input digits of the multiplicand in conventional

BCD, the multiplication by 3 leads to a maximum

decimal carry to the next position of 2 and to a

maximum value of the interim digit of 9. Therefore

the resultant maximum digit is 11. Therefore the

redundant BCD representations can host the

resultant digits with just one decimal carry

propagation. An important issue for this

representation is the ten‘s complement operation.

Since after the recoding of the multiplier digits,

negative multiplication digits may result, it is

necessary to negate. The implementation of [9-Zi]

leads to a complex implementation, since the Zi

digits of the multiples generated may take values

higher than 9. A simple implementation is obtained

by observing that the excess-3 of the nine‘s

complement of an operand is equal to the bit-

complement of the operand coded in excess-3. We

show how the nine‘s complement can be performed

by simply inverting the bits of a digitZi coded in

XS-3.

Fig.1.BCD conversion logic

V. PROPOSED SYSTEM

Within our method the sum correction is evaluated

concurrently using the binary carry-save additions

using posts of binary counters. Essentially we

count the amount of carries per decimal column

along with multiplication by 6 is conducted. It

makes sense added like a correction term towards

the creation of the binary carry-save reduction tree

[4]. This improves considerably the latency from

the partial product reduction tree. The suggested

architecture accepts a random quantity of ODDS or

BCD operand inputs. A number of PPR tree

structures presented also exploit an identical idea.

But depend on the custom-designed ODDS adder

to do a few of the stage reductions. Our proposal

aims to supply an ideal reuse associated with a

binary CSA tree for multi operand decimal

addition, because it was one out of for that 4221

and 5211 decimal coding. The array ofdþ1ODDS

partial products may very well be adjacent digit

posts of height hdþ1. Since ODDS digits are

encoded in binary, the guidelines for binary

arithmetic apply inside the digit bounds, and just

carries generated between radix-10 digits (4-bit

posts) lead towards the decimal correction from the

binary sum. Stage 1) Decimal partial product

generation: A SD radix-10 recoding from the BCD

multiplier has been utilized. This recoding creates a

reduced quantity of partial items those results in a

U. Abhishek* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.6, October – November 2016, 4341-4344.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 4343

significant decrease in the general multiplier area.

Therefore, the recoding from the d-digit multiplier

Y into SD radix-10 digits Ybd-1...Yb0,produces d

partial products PP[d-1]...PP[]. One per digit

choosing the right multiplicand multiple, . Yet

another partial product PP[d] is created by the most

important multiplier digit following the recoding,

so the final amount of partial products generated is

dþ1. As opposed to our previous SD radix-10

implementations, 3X is acquired inside a reduced

constant time delay (˜3 XOR-gate delays) using the

XS-3 representation. Consequently, the latency is

reduced and also the hardware implementation is

simplified. The plan suggested also produces 3X in

constant time but using redundant signed-digit

BCD arithmetic. Stage 2) Decimal partial product

reduction. Within this stage, the variety of d 1

ODDS partial goods are reduced to 2 2d-digit

words (A,B). Our proposal uses binary carry save

adder tree to do carry-free additions from the

decimal partial products. The array ofdþ1ODDS

partial products may very well be adjacent digit

posts of height hdþ1. Since ODDS digits are

encoded in binary, the guidelines for binary

arithmetic apply inside the digit bounds, and just

carries generated between radix-10 digits (4-bit

posts) lead towards the decimal correction from the

binary sum. The binary sum should be incremented

by 6 in the appropriate position to get the correct

decimal sum (modulo 10 additions). Two previous

designs implement tree structures for adding

ODDS operands. A combinational logic block can

be used to look for the sum correction in the end

the operands happen to be put in a binary CSA tree,

using the most of inputs restricted to 19 BCD

operands. 2 By comparison, within our method the

sum correction is evaluated concurrently. The

binary carry-save additions using posts of binary

counters. This improves considerably the latency

from the partial product reduction tree. Our

proposal aims to supply an ideal reuse associated

with a binary CSA tree for multioperand decimal

addition, because it was one out of for that 4221

and 5211 decimal codlings. Stage 3) Conversion to

(non-redundant) BCD. We consider using a BCD

carry-propagate adder to do the ultimate conversion

to some non-redundant BCD product P=A B -. The

suggested architecture is really a 2d-digit hybrid

parallel prefix/carry-select adder. Decimal Partial

Product Generation: The partial product generation

stage comprises the recoding from the multiplier to

some SD radix-10 representation, the calculation

from the multiplicand multiples in XS-3 code and

also the generation from the ODDS partial products

[5]. Decimal Partial Product Reduction: The PPR

tree includes three parts: (1) a normal binary CSA

tree to compute estimation from the decimal partial

product sum inside a binary carry-save form (S, C),

(2) an amount correction block to count the carries

generated between your digit posts. A decimal digit

3:2 compressor which increments the carry-save

sum based on the carries count to get the final

double-word product (A B -), A being symbolized

with excess-6 BCD digits and B being symbolized

with BCD digits. The PPR tree may very well be

adjacent posts of h ODDS digits each, h to be the

column height, and h=d 1. Final Conversion To

Bad: The chosen architecture is a2d-digit hybrid

parallel prefix/carry-select adder, the BCD

Quaternary Tree adder. The delay of the adder is

slightly greater towards the delay of the binary

adder of8dbits having a similar topology. The

decimal carries are computed utilizing a carry

prefix tree, while two conditional BCD digit sums

are computed from the critical path using 4-bit digit

adders which implements [Ai] Bi and [Ai] Bi

1.VLSI Technology: VLSI systems tend to be

smaller sized and eat fewer power compared to

discrete components accustomed to build electronic

systems prior to the 1960s. Integration enables us

to construct systems with lots of more transistors,

allowing a lot more computing capacity to be

relevant to solving an issue. Integrated circuits will

also be much simpler to create and manufacture

and therefore are more reliable than discrete

systems that assists you to develop special-purpose

systems which are more effective than general-

purpose computers to complete the job at hands.

Fig.2.Technology schematic & Synthesis result

VI. CONCLUSION

Within this paper we've presented the formula and

architecture of the new BCD parallel multiplier.

The enhancements from the suggested architecture

depend on prescribed medication redundant BCD

codes, the XS-3 and ODDS representations. Partial

products could be generated extremely fast within

the XS-3 representation while using SD radix-10

PPG plan: positive multiplicand multiples (0X, 1X,

2X, 3X, 4X, 5X) are recomputed inside a carry-free

way. However, recoding of XS-3 partial products

towards the ODDS representation is

straightforward. The Chances representation uses

the redundant digit-set [, 15]. Along with a 4-bit

binary encoding (BCD encoding), which enables

using a binary carry-save adder tree to do partial

product reduction in an exceedingly efficient way.

We've presented architectures for IEEE-754

formats, Decimal64 and Decimal128. The region

and delay figures believed from both a theoretical

model and synthesis reveal that our BCD multiplier

presents 20-35 % less area than other kinds for any

given target delays.

U. Abhishek* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.6, October – November 2016, 4341-4344.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 4344

VII. REFERENCES

[1] A. Aswal, M. G. Perumal, and G. N. S.

Prasanna, ―On basic financial decimal

operations on binary machines,‖IEEE Trans.

Comput., vol. 61, no. 8, pp. 1084–1096,

Aug. 2012.

[2] M. F. Cowlishaw, E. M. Schwarz, R. M.

Smith, and C. F. Webb, ―A decimal

floating-point specification,‖ inProc. 15th

IEEE Symp. Comput. Arithmetic, Jun.

2001, pp. 147–154.

[3] M. F. Cowlishaw, ―Decimal floating-point:

Algorism for computers,‖ inProc. 16th IEEE

Symp. Comput. Arithmetic, Jul. 2003, pp.

104–111

[4] S. Carlough and E. Schwarz, ―Power6

decimal divide,‖ inProc. 18
th
 IEEE Symp.

Appl.-Specific Syst., Arch., Process., Jul.

2007, pp. 128–133.

[5] S. Carlough, S. Mueller, A. Collura, and M.

Kroener, ―The IBM zEnterprise-196

decimal floating point accelerator,‖ inProc.

20
th

 IEEE Symp. Comput. Arithmetic, Jul.

2011, pp. 139–146.

	page36
	page38

