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Abstract. In this paper, a novel sensor-based human tracking method that enables a 

mobile robot to follow a human with high robustness and responsiveness is presented. 

The method is based on low-level sensor data fusion combining depth data from a stereo 

camera and an infrared 2D laser range finder (LRF) to detect target human in the near 

surrounding of the robot. After initial position of target human is located by sensor 

fusion-based human detection, a novel tracking algorithm that combines a laser 

data-based search window and Kalman filter is used to recursively predict and update 

estimations of target human position in robot’s coordinate system. The use of tracking 

window contributes to reduction of computational cost by defining region of interest 

(ROI) enabling so real-time performance. The performance of proposed system was 

tested in several indoor scenarios. Experimental results show that the proposed human 

detection algorithm is robust and human tracking algorithm is able to handle fast human 

movements and keep tracking of target human in various scenarios. 

Key words: mobile robot, range finders, stereo vision, target tracking, human robot 

interaction, Kalman filter 

1. INTRODUCTION 

 Human tracking has been extremely active research area in the computer vision 

community over the past decade. The importance of this area arises from its numerous 

applications such as video surveillance, smart vehicle, virtual reality, and the mobile robot 

vision. The later represents one of the broadest application areas of vision-based human 

tracking [1]. Since the ability of environment perception is limited if the robot is relying on 

information from a single vision sensor, integrated information from multiple sensors can 

significantly improve the robot perception performance.  

Based on different levels of prerequisites and prior knowledge regarding geometry of 

system setup and sensor traits, the implemented human detection and tracking approaches 
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vary in a wide range. Approaches based on sensor data fusion between stereo camera and 

2D laser range finder (LRF) are very promising since they are able to make use of both 

robustness and accuracy features of laser data and affluent information of image data [2]. 

In most of the methods in literature on using the combination of vision and laser sensors for 

human tracking, human detection is conducted with vision sensor and laser sensor separately, 

and then the detection results are fused [3][4]. In other words, more processed high level 

segmentation and classification results are fused. In contrast, this paper addresses fusing the 

low-level data, such as depth information from laser and disparity map from stereo vision 

system. The idea behind is to develop a sensor fusion algorithm, which fuses low-level sensor 

data since those sensor data are more reliable and robust as they are less interpreted by various 

algorithms. Also, it leads to a fast algorithm for real-time tracking application. The real-time 

aspect of vision-based human detection, which represents a part of novel approach presented in 

this paper, has been validated in [5]. In this paper performance evaluation of completed system 

including low-level fusion of vision and laser sensor data is presented. 

Beside the novel approach based on low-level sensor depth data fusion for human 

detection presented in this paper, the contribution of this paper is also a novel approach 

based on first derivative of laser depth instead of using traditional laser data clustering 

methods which are based on Euclidean distance between two consecutive laser points such 

as dynamic distance threshold [6] and jump distance clustering [7]. This approach is 

presented in Section 4.2. The rest of the paper is organized as follows. Overview of the 

system is presented in section 2. Section 3 presents stereovision-based human detection. 

Section 4 contains the first part of developed algorithm, which is low-level data processing 

for laser and image sensors and fusion human detection. The second part of the algorithm 

regarding human tracking is presented in section 5. Section 6 provides the performance 

evaluation of presented fusion-based human tracking in different indoor scenarios. 

2. SYSTEM OVERVIEW 

Figure 1 shows hardware layout and software architecture of the sensor fusion-based 

robotic human follower system. The mobile robot platform is equipped with a stereo 

camera on top, and a 2D LRF in lower part of the robot. The location and orientation of 

stereo camera ensures that the complete figure of a target human is included inside the 

camera Field of View (FOV), while the human is approximately 2 meters in front of the 

robot. The vertical distance from LRF to the floor is approximately 20 cm, which is at the 

similar height of human ankle-calf area. In the software architecture, Fusion System consists of 

three main modules, which are Vision Human, Fusion Human and Laser Tracker. 

Vision Human module relies on stereo camera as its data source and conducts a 

stereovision-based human detection based on the segmentation of disparity map. Fusion 

Human obtains input data from both stereo camera and LRF, and undertakes human 

detection based on low-level data fusion. By comparing detection results from both 

modules, the target human is located and the result is fed into a Kalman filter to perform 

fusion tracking process. Laser Tracker equips the system with a fast tracking performance. 

It is supported with a Kalman filter, and is activated by the first matching human detection 

result from Vision Human and Fusion Human. Fusion tracking process is highly robust but 

low efficient with approximately 4 Hz data rate, while laser tracking process is less robust 

but highly efficient with 20 Hz data rate, so that the overall combined human tracking 
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performance is both highly robust and highly efficient. In order to guarantee a robust 

human detection result, Vision Human detection result is used to verify Fusion Human 

detection result before activation of Laser Tracker and to supervise tracking performance. 

Figure 2 represents detailed block-diagrams of Vision Human and Fusion Human. 

 

Fig. 1 Layout of mobile robot platform and Fusion System overview 

 

Fig. 2 Detailed diagram of Vision Human and Fusion Human modules 
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3. STEREOVISION-BASED HUMAN DETECTION 

A block-diagram of the Vision Human module is given in Figure 2, and the individual 

processing steps are explained in the following sections. 

3.1. Object segmentation 

Stereo image information is used to aid the definition of regions of different objects, 

including humans, in camera images. The acquired image pair is used to compute a 

disparity map using a block-matching algorithm [10]. In principle, the disparity map is 

found by computing the stereo correspondences between the image points from the left and 

right stereo images. For a given 3D point P(X, Y, Z), the corresponding points in the left and 

right image respectively are pL(uL,vL)and pR(uR,vR), where u and v are coordinates of an 

image point in the image coordinate system with the origin in the camera’s optical centre. 

The difference in u coordinates of corresponding points is known as disparity d: 

 RL uud  . (1) 

The disparity of an image point is inversely proportional to the distance of the original 3D 

point to the camera coordinate system which is known as depth vi. The resulting disparity 

map represents a 2D image in which values of pixels are equal to the disparity (1) and 

consequently inversely proportional to the depth vi. The pixel coordinates in a disparity 

map correspond to the pixel coordinates in the left stereo image as the left stereo image is 

usually considered as the reference image when building the disparity map. 

The resulting disparity map in the proposed system is segmented using a connected 

pixel labeling-based method. The main idea behind this segmentation method is to group 

the pixels with the same or very close pixel values as it is assumed that they belong to the 

same object. Namely, neighbouring pixels in the disparity map belonging to the surface of an 

object have close disparity values, while on the edges of the object the difference in disparity 

values between the pixels of the object and of the background is large. These transitions in 

disparity values are used for the segmentation. The details of the disparity map segmentation 

method used are given in [11]. The segmentation result in the case of the human tracking 

robot scenario considered here is shown in Figure 3(c). Differently coloured regions in the 

image in Figure 3(c) represent different objects, which are at different distances to the robot’s 

camera. As can be seen, the ground has been removed from the segmented image (represented 

by black colour) in order to avoid merging with other objects, including humans, placed on the 

ground. The ground plane removal was done by detecting the regions in the lower part of the 

disparity map whose disparity values gradually change, i.e., whose image gradient in the 

vertical direction gradually changes. In contrast to ground plane pixels, in the disparity map 

the regions of object surfaces have almost constant disparity values. 

3.2. Feature-based object classification 

Once the objects have been segmented in the disparity map, different features describing 

segmented object regions are calculated. The chosen features have been defined so as to enable 

distinguishing of humans from other objects in the robot’s perceived environment. The used 

features can be separated into two groups: 2D features and 3D features. The former are 

calculated from the 2D segmented image, while the later result from 3D object reconstruction.  
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(a) (b) (c) 

 

Fig. 3 Left stereo image of human walking in front of the robot (a).  

Disparity map (b). Segmented disparity map (c). 

2D features. In order to describe the shape of every segmented region, the three 

so-called Hu invariant moments [12] are used, as they are proven to be effective shape 

descriptors. They are calculated over the pixels of each segmented object region according 

to following formulas: 
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where pq is the central moment defined as: 
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In (5) u
_

c and v
_

c are image coordinates of the centre of mass of the segmented object region 

(average over all image coordinates of segmented pixels in a region). I(u,v) is the intensity 

level of an image point with coordinates u and v. In the case of a segmented image, I(u,v) is 

1 for each pixel segmented as belonging to an object and 0 for each background (not 

segmented) pixel. 

3D features. In order to effectively distinguish humans from other objects in the 

robot’s environment, Hu moments, as descriptors of shapes of segmented object regions in 

2D segmented disparity maps, are supported by two 3D objects features: object height and 

object width. To calculate these two features, first the bounding box of each segmented 

object region is defined as the smallest rectangle containing the segmented region in the 2D 

segmented disparity map. Then, the upper left corner and the bottom right corner of each 

bounding box are identified and their coordinates in the left stereo image are calculated as 

(uLU, vLU) and (uRB, vRB ) respectively. In order to calculate real 3D object width and height, 

the 3D reconstruction (so-called 2D to 3D mapping [13]) of the bounding box corner points 

is performed according to: 
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where f is focal length of the camera (in pixels) and b is the stereo camera base line (in meters) 

representing a line connecting the camera centres of stereo cameras. In (6) and (7), d is the 

disparity of the centre of mass of the segmented object region (u
_

c, v
_

c) in the segmented 

disparity map. With the 3D coordinates (6) and (7) of the corner points, the object height h and 

object width w are calculated as: 

 
LURBRBLU XXwYYh  , . (8) 

The defined features are used in the proposed system for the classification of an object as 

belonging or not belonging to the class “human being”. The used classifier is Back 

propagation Neural Network with one hidden layer [14]. The training of the classifier, i.e., 

the neural network parameters adjustment, was done using a training set of 577 feature 

vectors (H1, H2, H3, h,w) extracted from segmented human regions in disparity maps of 

stereo image pairs acquired indoors as well as outdoors. The testing of the developed 

classifier was done using another 423 feature vectors. These test features were obtained by 

extraction from segmented regions of different objects, including humans, in disparity maps 

of stereo image pairs acquired indoors as well as outdoors. The obtained classification result 

from the training set was very good, as indicated by the fact that the classification 

performance rate was 96%. Misclassification, i.e., the inability to classify an object from a 

robot’s environment as human, happened in cases of significant human occlusion or 

segmentation of humans as connected to objects from the environment. 

3.3. Vision human detection 

The last processing step in the proposed vision system is human detection. Once the 

human has been successfully classified, his/her 3D position with respect to the coordinate 

system of the left stereo camera is calculated through the 3D coordinates of the centre of 

mass of the segmented human region (u
_

HC, v
_

HC) in the segmented disparity map: 
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where coordinate ZHC represents depth. 

The coordinates (9) representing coordinates in camera coordinate system can be 

transformed to coordinates of robot coordinate system (X,Y,Z) knowing the robot’s 

geometry and using the fact that the robot coordinate system is of the same orientation as 

camera coordinate system.  

In case of object misclassification, Vision Human module does not have an output. As 

explained in previous section, it happens, for example, in cases of significant human 

occlusion or segmentation of humans as connected to objects from the environment. This 

indicates a need for integrating a module to provide an input to mobile robot control, even 

in the case of human classification failure. In [5] such a module is the modified Kalman 

filter for prediction and estimation of the 3D position of the human. In this paper, a module 

that overcomes the problem of not reliable Vision Human Detection is the Fusion Human 

Detection supported by low-level sensor data fusion as described in following sections. 
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4. LOW-LEVEL SENSOR DATA FUSION 

4.1. Fusion points 

Low-level data processing and fusion process is only conducted inside the overlapped 

FOVs of LRF and vision sensor. Figure 4 illustrates the data distribution after extrinsic 

sensor calibration of stereo camera and LRF [8]. The rectangle denotes the vision FOV 

while blue and red dots represent the planar FOV of LRF. Fusion data processing is viable 

only for Fusion Points, which are denoted with red dots. Each Fusion Point ideally should 

have low-level depth information from both LRF and vision sensors that are processed as 

described in following sections. 

 

Fig. 4 Fusion points 

4.2. Laser data processing and Laser ROI extraction 

The raw LRF data is in polar coordinate which includes range ri and angle i 

information for each Fusion Point  Pi, with ri being the horizontal distance from a target to 

LRF origin and i being the angle offset (Figure 5). In order to obtain depth information, 

conversion between polar and Cartesian coordinates is performed: 

 iiiiii rYrX  cos,sin   (10) 

Assuming LRF depth information for Pi  is li, from (10) it is: 

 , {0, , }i il X i n   (11) 

where n is the total number of Fusion Points. The vector which contains laser depth 

information is l:  

  nll ,,0 l  (13) 

The first derivative of  li (when i > 0) is di, 

  nilld iii ,,1,1    (14) 

and vector d contains the first derivatives:  

 1[ , , ],nd dd  (15) 

If di > 0,that is li > li−1, Pi is farther from the LRF origin than Pi−1. Similarly, if di < 0, Pi is 

closer to LRF than Pi−1. In order to remove noise and detect significant depth change 
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between two consecutive Fusion Points Pi−1 and Pi, di  is filtered with an appropriate 

threshold t, so that di =0 if | di| < t. 

After obtaining d, positive and negative derivatives di  can be extracted since they are 

potential indicators of start and end points of objects. In Figure 5, assuming an object is 

placed in the robot’s environment in front of a wall, then first derivative vector d contains 

dA < 0 and da+1  > 0 with 

 aaaAAA lldlld   111,  (16) 

Points PA and Pa can be located as potential start and end points of the object. Let s be the 

vector of all Fusion Points Pi with di < 0 and e be the vector of Fusion Points Pi with di > 0: 

 [ , , , ], [ , , , ]A A A a b cP P P P P P s e  (17) 

For each potential object start point in s and the corresponding potential object end 

point in e should be correctly located to form a line segment. For example, in Figure 5 the 

object line segment is LAa. The Euclidean distance DAa between laser point coordinates  

(XA, YA) and (Xa, Ya) can be calculated as: 

 2 2( ) ( )Aa A a A aD X X Y Y    . (18) 

This paper concerns human detection so that human legs can be considered as object of 

interest. In order to locate potential human leg segments, constraints can be set according 

to human body feature, which is the limited width of ankle-calf area. Assuming the upper 

threshold is DT , then LAa belongs to Laser ROI which will be used in future processing, if 

DAa ≤ DT. 

 

Fig. 5 Laser depth and laser object segments 

4.3. Low-level vision data processing 

Due to the correspondence problem while obtaining disparity map [9], if the corresponding 

pixels can not be located in low-texture regions, the depth value inside those regions can not 

be recovered. In order to improve data quality of vision depth when possible, for each Fusion 

Point Pi, vision depth vi is processed using patching, which is a process proposed in this paper. 

Patching retrieves the missing depth value vi according to its previous neighbour: 
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where n is total number of Fusion Points. In case of spurious stereo matches with poor 

match quality and false vision depth result [8], vision depth trimming is proposed in this 

paper. Trimming means that under certain circumstances, false vision depth can be 

corrected by using corresponding LRF depth information as the reference. For example, in 

case of an opaque object, ideally the depth data for a Fusion Point Pi should be vi = li. If due 

to false vision depth, vi > li (Figure 6(a) upper example), the value vi is replaced with li as 

the reference value. This is because stereo camera can not see through opaque objects. 

False vision depth can also result in vi < li (Figure 6(a) upper example), however in this 

case, described correction of vi using li as the reference can not be done. As it is illustrated 

in lower example in Figure 6(a), the same situation occurs when Pi is laying on an optical 

transparent object. In this case vi is correct but laser beam can penetrate optical transparent 

materials which results in vi < li. Proposed trimming process can be expressed as: 
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Therefore, after trimming, for each Fusion Point Pi 

 , {0, , }i iv l i n  . (21) 

There are two possible causes of vi < li. The first is due to remaining false vision depth vi 

after trimming, the other is caused by the points which are considered as Special Fusion 

Points, which are projected on the environment’s background from LRF in 3D space and 

mapped on target human in 2D disparity map (Figure 6(b)). A Special Fusion Point has two 

depth values, laser depth li from the background (wall) and vision depth vi from foreground 

(target human). Therefore the Special Fusion Point is characterized with a depth offset dlv: 

 ( ) , {0, , }lv i id i l v i n    (22) 

This is caused by width and structure difference between human upper and lower body 

and the depth offset can be used as a cue for potential human presence. 

 
(a) Vision trimming                                     (b) Special Point 

Fig. 6 Vision depth trimming 
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4.4. Sensor fusion-based human detection 

Figure 7 illustrates a scenario with a target human in front of the mobile robot. Figure 7(a) 
presents laser data projected onto the 2D disparity map with vision depth after patching and 
trimming where Fusion Points are presented as red dots. Special Fusion Points, which are 
described in section 4.3, are marked with green rectangle. Corresponding laser points are also 
marked with green rectangle in Figure 7(b). If depth offset dlv(i) > 0, Special Fusion Point Pi 
belongs to Primary Fusion ROI. Due to the remaining false vi as described in section 4.3, 
Primary Fusion ROI may contain both potential target human regions, as illustrated in Figure 
7(a), and false vision depth regions. Inside Primary Fusion ROI, Fusion Points with 
consecutive indices are merged into segments F. Vector F contains the resulted segments: 

 [ , , . ],jk lm pqF F FF  (23) 

where for Fjk, j and k are the indices of start and end Fusion Point of this segment. For each 
segment Fjk inside Primary Fusion ROI, if there exists one or more segment(s) Lab from Laser 
ROI (described in section 4.2) satisfying b+2 ≤ j or k+2 ≤ a, then segment Fjk is selected as a 
correct segment in Fjk (Figure 8). Consequently, the segments inside Primary Fusion ROI 
which do not satisfy above criteria, are filtered out as they are considered as false segments. 
Final Fusion ROI indicates the detected target human by Fusion Human module. 

      

 (a) Disparity map with laser projection (b) Laser data 

Fig. 7 Special Fusion Points inside green rectangle 

 

Fig. 8 Final Fusion ROI creation 
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5. HUMAN TRACKING 

5.1. Laser-based fast human tracking 

As shown in Figure 1, two standard Kalman filters [1] are used separately to conduct 

Fusion Tracking (FT) and Laser Tracking (LT), where FT is used to supervise LT to 

maintain tracking robustness and LT is used for fast tracking. The human detection result 

(Final ROI) from above described Fusion Human is verified with human detection from 

Vision Human described in section 3. This means the FT is initialized if Final ROI is 

considered as correct detection which is if it is within the human region detected by Vision 

Human. The (X,Y) Cartesian coordinates of the mean position of Fusion Points inside Final 

ROI (green dots in Figure 8) are calculated and used as target human position for FT.  

Assuming the state of a system at time t is derived from prior state at time t − 1 [15] 

 tttttt wuBxAx  1  (24) 

where xt is system state vector at time t, ut is the vector of control inputs, At is the state 

transition matrix, Bt is the control input matrix and wt is the vector containing process noise. 

Assuming  the model for measurements of the system zt [15] 

 tttt vxHz   (25) 

where zt is the vector of measurements, Ht is the transformation matrix which maps state 

vector into measurement domain and vt is the measurement noise vector. 

A feedback control with recursive properties is used for predicting which can be 

described with prediction update and measurement update [16] [15]. From time step t − 1 

to time step t , standard Kalman filter equations for prediction update are: 

 ttttttt
uBxAx 

 111
ˆˆ  (26) 

 
t
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where 1
ˆ

tt
x is the estimation of unknown true system state xt, covariance matrix Pt stores 

the variances and covariances for describing the Gaussian functions and Qt is the process 

noise covariance matrix [16] [15]. The equations for measurement update are: 
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where Rt is the measurement noise covariance, Kt is the Kalman gain [16] [15]. In Kalman 

filtering cycle, the prediction update predicts the future state while measurement update 

corrects the estimated value by the real measurement at present. During tracking process, a 

single measured value is usually noisy and with the estimated values from Kalman filtering, 

a more smooth and precise trajectory can be realized. 
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For Kalman filter in FT, the prediction states include the position and velocity of target 

human where the position is expressed via two Cartesian coordinates, X and Y coordinates 

in robot coordinate system,. Measurement state is position of target human. The same 

applies to Kalman filter in LT, only instead of using the average of all points inside Final 

ROI to calculate the position of target human, the average of leg segments (Laser ROI) 

points inside Final ROI is used. Once the first target human position is confirmed with 

Vision Human detection result, tracking module Laser Tracker is activated. A search 

window is initialized of size 1m × 1m and with center being the located target human 

position (Figure 9). Due to the fact that the patterns of human legs can be various and 

irregular, the most reliable feature is that they are formed of either 1 (legs overlapping) or 2 

(legs apart) laser segments with limited segment lengths. Therefore, search window is 

looking for a complete set of 1 or 2 laser segments in the neighbor area of previously 

detected human location using prediction of Kalman filter. Once Laser Tracker is activated, 

LT conducts continuous tracking with search window and the fast tracking performance is 

supervised by robust FT tracking when the Vision Human detection result is available. 

Figure 9 illustrates how search window reacts to the dynamic environments. For the 

illustration of the size decrease, a scenario is considered where the target human is near a 

table at ti. At ti+1, 3 laser segments are detected instead of 2 as besides leg segments, table 

leg is also included. In this case at ti+1, search window decrease its size until only 1 or 2 

laser segments are detected again to avoid potential false tracking. If from ti+1to ti+2, target 

human suddenly increases walking speed so that both legs are out of the search window 

and no laser segment is detected, the window size increases until at least 1 laser segment is 

included to avoid losing track of target human. 

 

Fig. 9 Decreasing and increasing size of search window 

6. IMPLEMENTATION AND EVALUATION 

The robot platform used is CORBYS Demonstrator II [17]. It consists of a mobile 

platform Neobotix MP-M470, a stereo camera Bumblebee XB3 from Point Grey and a 2D 

LRF by SICK. 
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6.1. Human detection 

As explained in section 3, the human detection performance of Vision Human heavily 

relies on segmentation result of disparity map, which result in low robustness during 

tracking. By using low-level fusion data in Fusion Human, the robustness of human 

detection is significantly improved. Figure 10(a) presents the scenario when the segmentation 

results are good (as illustrated with different color in small image), therefore both Vision 

Human (green rectangle) and Fusion Human (green dots) are able to detect target human. 

However, when target human is close to background and merged into the same blob as 

background during segmentation (Figure 10(b)), Vision Human fails to detect target 

human but Fusion System is able to detect target human which is denoted with green dots. 

In both images in Figure 10, yellow rectangular is visualization of correct Fusion Human 

result. Namely, starting from green dots an rectangular of fixed size is created. White 

rectangular in both images is the result of FT Kalman based human prediction. 

   

 (a) Good Vision Segmentation           (b) Bad Vision Segmentation 

Fig. 10 Fusion Human detection with different vision segmentation results 

6.2. Human tracking 

In addition to Fusion Human benefits described above (section 6.1), with Fusion 

Human and Laser Tracker, the proposed Fusion System is able to overcome problems of 

Vision Human not being able to conduct human detection when target human is partially 

viewed by vision as well as not being able to  conduct fast human tracking since the FOV of 

stereo camera is narrow. 

Figure 11(a) presents the corridors perceived by LRF , the axes denote the robot center, 

and the green squares are the search windows which include target human. Figure 11(b) 

shows the LT tracking trajectory of target human after entering and leaving the corridor. 

Another scenario, which can present the agility and timely tracking performance, is when 

target human is walking in circles around robot with sudden direction changes. Figure 11(c) 

shows the stereo camera’s view of sudden direction changes and Vision Human loses track 

of target human. Figure 11(d) presents LT tracking trajectory for this scenario in which the 

direction changing moments are denoted with red circles. In this case, robot is still capable 

of tracking target human by using LT. 
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(a) Narrow Corridor                       (b) LT Tracking result 

 
(c) Rapid Direction Change                 (d) High Responsiveness of LT 

Fig. 11 Fusion System tracking performance 

6.3. Performance evaluation 

The comparison of performances of Vision Human module and Fusion Human module 

proposed in this paper was conducted for three indoor scenarios. The first scenario is robot 

to follow target human in a straight line and second scenario is to follow the target human 

in and out of a corridor (Figure 11(a)). In the third scenario, target human keeps a close 

distance to background wall during the whole walking process. 

As shown in Figure 12, for the first scenario both modules have the same detection rate, 

98.5% (human detected in 134 frames out of total 136 frames). In comparison, the 

performance of Fusion Human in scenarios two and three shows more advantage. In 

scenario two, due to the small distance between human and robot in the corridor, Vision 

Human failed to detect target human for approximately 60 consecutive frames and yields a 

detection rate of 78.6% (206 frames detected out of total 262 frames). Fusion Human 

presents a detection rate of 99.2% (260 frames detected out of total 262 frames). In 

scenario three, the performance of Vision Human degraded more since target human is 

always close to background wall, which results in a detection rate of 43.3% (153 frames 

detected out of total 353 frames). In contrast, the performance of Fusion Human shows 

high-robustness with detection rate of 99.4% (351 frames detected out of total 353 frames). 

Figure 13 illustrates real-time capability of proposed method. Due to limited computational 

capacities of on- board PC, Vision Human (FT) conducts human detection and tracking at 

4Hz.By using laser data-based searching window and Kalman prediction, Laser Tracker 
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enables the robot to perform human tracking at 20 Hz. In this way, the responsiveness of 

tracking process is dramatically increased. 

 

Fig. 12 Performance of Fusion Human and Vision Human on human detection with 3 scenarios 

 

Fig. 13 Performance of LT and FT on human tracking 
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