
FACTA UNIVERSITATIS  

Series: Automatic Control and Robotics Vol. 13, No 3, 2014, pp. 169 - 181 

OPTIMAL SLIDING MANIFOLD DESIGN FOR LINEAR 

SYSTEMS SUBJECTED TO A CLASS OF UNMATCHED 

DISTURBANCES

 

UDC ((681.5.01+616.8-009.1):681.5.072) 

Boban R. Veselić 

University of Niš, Faculty of Electronic Engineering, Department of Automatic Control, 

Niš, Republic of Serbia 

Abstract. This paper offers the optimal sliding manifold design for the traditional 

sliding mode and integral sliding mode control of linear systems that minimizes the 

impact of unmatched constant or slowly-varying external disturbance vector. System 

sensitivity upon the unmatched disturbances is assessed by the steady-state dependent 

criterion function. The ability and efficiency of the adopted control strategies in solving 

the given optimization problem are analyzed. The proposed approach has been 

demonstrated and verified on numerical examples by computer simulations. 
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1. INTRODUCTION 

Theoretical invariance to parameter perturbations and exogenous disturbances in ideal 

sliding mode (SM) [1] is the most important feature of SM control (SMC) systems. In order 

to gain such valuable property, system disturbances need to meet the invariance conditions 

[2], as originally termed by Draženović in 1969, i.e. may enter the system through the 

control channels only. SM dynamics is insensitive to such ‘matched’ disturbances, but is 

affected by the unmatched ones. However, in reaching of the sliding manifold, a system is 

sensitive both to matched and unmatched disturbance. To completely eliminate the reaching 

phase, integral SM (ISM) method was introduced in [3], where SM exists from the initial 
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time, thus making the system sensitive only to unmatched disturbances. ISM control has 

been thoroughly studied (see [4] and the references therein). 

Depending on their generic nature, unmatched disturbances have various detrimental 

effects on SMC systems, so that a significant attention is directed to alleviating their 

impact to SM motion. When unmatched disturbances have parametric nature or are state 

dependent, asymptotic stability can be achieved by adequate sliding manifold design [5-

7], since disturbance diminishes as the system state approaches the origin. 

If unmatched disturbances are both parametric and external, asymptotic stability 

cannot be attained. A non-vanishing unmatched disturbance forces the system trajectory 

to wander along the sliding manifold in the neighborhood of the origin. The only 

possibility to alleviate this impediment is to design a sliding manifold that in some sense 

minimizes the impact of unmatched external disturbances onto SM, which was considered 

in the subsequent papers. A sliding manifold that guarantees convergence of the linear 

system trajectory into a minimal invariant ellipsoid is given in [8]. Another optimization 

criterion, proposed in [9-10] for integral sliding manifold design in case of nonlinear 

systems, is to minimize the equivalent disturbance that affects SM dynamics. It is shown 

that the sliding manifold needs to be designed so that the ISM controller leaves the 

unmatched disturbance untouched. Any attempt in compensating it would actually amplify 

the unmatched disturbance. 

Another sliding manifold design method for linear systems in a conventional SM was 

developed in [11], for constant and slowly varying unmatched external disturbances. This 

class of disturbances is frequent in practice and therefore important enough to deserve 

special treatment. A new steady-state dependent quadratic optimization criterion was 

employed in order to minimize the impact of the considered class of disturbances onto 

system accuracy. However, it was revealed that the optimization could impose constraints 

upon arbitrary SM dynamics selection in certain cases. 

This paper considers the same optimization problem from [11] for linear systems in a 

more general form in the presence of the aforementioned class of unmatched disturbances. 

A new optimization procedure is developed and possibilities and ways to achieve optimal 

behavior by SMC and ISMC are investigated. Traditional SMC exhibits even greater 

restrictions than those in [11], while ISMC offers the ability to achieve both minimization 

of the selected criterion and the desired SM dynamics. The feasibility and efficiency of 

the proposed sliding manifold design methods have been demonstrated on numerical 

examples and computer simulations. 

The remainder of this paper is organized as follows. Optimization of the adopted 

criterion is conducted in Section 2. Sections 3 and 4 present SMC and ISMC with 

corresponding optimal sliding manifolds design methods, respectively. Illustrative examples 

and simulation results are given in Section 5. The paper ends with some concluding remarks 

and references. 

2. STEADY-STATE VECTOR NORM MINIMIZATION 

Consider a linear time-invariant dynamic system given by: 

 ( ) ( ) ( ) ( )x t Ax t Bu t d t   , (1) 
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where nx   is the state vector, mu   (m<n) is the control and nd   is a norm-

bounded external disturbance vector, i.e. tdtd m  ,)( . The system matrices are of 

appropriate dimensions and have full ranks. The pair (A,B) is assumed to be controllable 

and rank(B)=m. Let the vector d(t) be an unknown constant or slowly varying disturbance, 

i.e. d(t)=d. Also, the matching condition [2] is not satisfied, i.e. ][rank][rank dBB  . 

The control task is to bring the system state from an arbitrary initial condition into the 

origin with the desired dynamics. This task is easy to accomplish in the absence of 

disturbance by conventional linear state feedback control. However, in the presence of a 

constant or slowly varying immeasurable external disturbance, system trajectory will 

reach some nonzero steady-state 0)(lim)(   txx t . This raises the question of which 

attainable steady-state is the best under the given circumstances when a criterion is 

defined. The following analysis gives the answer. 

In case of constant or slowly varying disturbances, it may be assumed that 0)(lim  txt
 , 

for sufficiently faster closed loop dynamics. By letting t  in (1) it holds: 

 0)()(  dBuAx , (2) 

Let the optimization criterion be proposed in general form: 

 )()(T  QxxJ , (3) 

where Q is a positive definite symmetric matrix. For Q=I, (3) becomes 2| |)(| |  xJ , i.e. 

squared steady-state Euclid vector norm. Minimization of J provides minimal distance of 

the steady-state )(min x  from the origin, i.e. minimal steady-state error. Algebraic 

constraint (2) is to be taken into consideration in minimization of (3). Hence, the extended 

criterion function becomes: 

 ])()([)()( TT dBuAxlQxxJ  . (4) 

Constraint (2) is incorporated into (4) by means of a Lagrange multiplier vector 
nl  . 

Steady-state )(min x  and the corresponding control )(min u  that minimizes J are 

solutions of the following set of equations: 

 .0)()(,0
)(

,0)(2
)(

TT 













dBuAx

l

J
lB

u

J
lAQx

x

J
 (5) 

Minimization of the proposed optimization criterion is described in the forthcoming 

theorem. 

Theorem 1: A unique steady-state )(x  and the associated control )(u  of system 

(1) that minimize criterion (3) under given assumptions are given as: 

 1T1T1T

min )(,)()(   AAQAdABBABu sss , (6) 

 ssn ABBABBIPdPAx T1T

11

1

min )(,)(   . (7) 

Proof: The optimal values are reached by successive solving of (5). lAQx T1

2
1)(   

follows from the first equation, which is used in the third equation to find l as 
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])([2 dBuAl s  . Multiplying l from the left by B
T
, the second equation of (5) gives 

the control in the form (6). Finally, substitution of the obtained l and control (6) into 

x()yields (7).■ 

Remark 1: From (7) it follows that if disturbance d in (1) is matched, i.e. d=Bj (where 

j is some vector), then steady state 0)(min x  is feasible. 

For the forthcoming analysis and design, it is required to establish property and rank 

of matrix 1P . 

Lemma 1: Matrix 1P  is a projector, having mnP )(rank 1 . 

Proof: A projection matrix P is a square idempotent matrix (P
2
 = P) that separates 

space into two complementary subspaces. Since nnPP  1

2

1 , 1P  is a projector. Then, 

according to projector theory, it follows: 

 mnBnABBABBnP ss   )(rank])([rank)(rank T1T

1 . (8) 

This completes the proof.■ 

3. SLIDING MODE CONTROL 

In traditional SMC, SM is mainly organized upon linear sliding manifolds. They are 

represented by the intersection of m sliding hyperplanes, defined by the switching 

function vector s: 

 T

21 ],,,[,,0)( m

nm ssssCCxxs   , (9) 

under restrictions that rank(C)=m and 0)det( CB . The sliding manifold includes the 

state space origin as the equilibrium point. To establish SM in a finite time it is sufficient, for a 

well-known Lyapunov function candidate 2/TssV  , to provide 0,0  tssV T   by an 

appropriate vector control usually having discontinuous nature. According to the total 

time derivative of V by virtue of (9) and (1), it can be proved easily that, for example, the 

following control: 

 mm ICdFsFCAxCBu )| || |(],sgn[)( 1    (10) 

guaranties occurrence and existence of SM, where 0 , T

1 ]sgnsgn[sgn msss  , 

Im is identity matrix of dimension m and ||C|| is induced spectral matrix norm of C. 

System dynamics in SM can be obtained using equivalent control method. Linear 

equivalent control [1] is a fictive linear control that provides sliding along the manifold 

(9). It can be determined from the well-known condition: 

 )()(00 1 dAxCCBuss equu eq
 


 . (11) 

Substitution of (11) into (1) gives the full-order SM dynamics: 

 CCBBIPtCxtPdtPAxtx n

1)(,0)(),()()(  . (12) 

Existence of the disturbance term in (12) testifies to the sensitivity of the SM dynamics 

upon unmatched disturbances. System trajectories will not converge into the origin, but 
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will be driven away somewhere along the sliding manifold by the unmatched disturbance. 

Also, it is obvious that the matrix P primarily determines SM behavior. It is shown in [12] 

that matrix P is a projector having rank(P) = n  m. 

3.1 Optimal sliding manifold design for traditional SMC 

The primary objective of the switching function matrix C is to provide the desired SM 

dynamics, which is determined by the n-m nonzero eigenvalues of the system matrix PA 

in (12). The usual additional requirement is to have a fully decupled control in which 

every sliding variable is controlled by its own control input. This feature is gained by the 

condition CB = Im. 

From the aspect of minimizing the impact of unmatched disturbances onto system 

behavior, which is taken in this paper by criterion (3), matrix C also has an exclusive role. 

In other words, C should be found to provide minimization of (3). This can be ensured by 

securing minimal stead-state xmin() in (7) to lie on the sliding manifold (9). Hence, 

Cxmin() = 0 must hold for any unknown disturbance vector. According to (7), the 

previous requirement gives condition: 

 01

1  PCA , (13) 

which imposes certain constraints on elements selection in matrix C. The possibility of 

simultaneous achievement of a desired SM dynamics and minimization of criterion (3) by 

traditional SMC is given in the following lemma. 

Lemma 2: Dynamic system (1) will reach in SM the minimal steady-state (7) if the 

switching function matrix C is in the form: 

 0)]det([,][0  BIHIHCC mm , (14) 

where mmC 0  is a freely chosen matrix whereas matrix 
)( mnmH   is determined 

from condition (13). Consequently, SM dynamics (12) is predefined by projector: 

 ][)]([ 1

mmn IHBIHBIP   (15) 

for any C0 and cannot be arbitrary specified. 

Proof: Matrix C must be determined from the condition (13) that constructs sliding 

manifold through the minimal steady-state for any unmatched disturbance vector. Since 

according to Lemma 1 mnP )(rank 1 , equation (13) forms a system of )( mnm   

linearly independent equations with nm   unknowns, which are the elements of matrix C. 

Hence, )( mnm   elements of C can be uniquely expressed in terms of the remaining 

mm  part of C, denoted as 0C . Then C can be decomposed as ][ 00 CHCC  , which 

can be expressed as (14). Replacement of such C into P in (12) gives the projector matrix 

P in a new form (15). P does not depend on 0C  due to 0

1

0 CC  cancelation, meaning that 

SM dynamics is fixed regardless of the selection of 0C .■ 

This inability of SM dynamics adjustment during minimization is in a compliance with 

the results given in [11] for the case of directed disturbance vector of lower dimension, 

where it is shown that in certain cases constraints may arise in SM dynamic selection. 
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Remark 2: If 0)]det([ BIH m  SM cannot be organized along the sliding manifold 

that leads the system state into the minimal steady-state (7). 

Proof: As mentioned earlier, 0)det( CB  is the SM necessary condition. C that provides 

0)(min Cx  is ][0 mIHCC  . Then )]det([)det()det( 0 BIHCCB m . Since C0 can 

be arbitrary chosen, 0)det( 0 C  can be always fulfilled. This means that SM condition 

reduces to 0)]det([ BIH m . Otherwise, SM cannot be organized along that manifold.■ 

The remaining degree of freedom 0C  in C can be used for providing decentralized SMC. 

Theorem 2: Optimal sliding manifold (9) for system (1), which minimizes criterion (3) 

in the sense and under conditions of Theorem 1 and Lemma 2 and ensures decentralized 

control, is attained by the following matrix C: 

 

  ][]0[ 1

1 BPAIC mnm , (16) 

where superscript + denotes matrix pseudoinverse. 

Proof: To provide system (1) to have minimal steady-state (7) in SM under unmatched 

disturbances, C should satisfy (13). Decentralized control condition CB = Im introduces 

additional m  m linearly independent equations to the previous set of equations. Now, the 

joint system of equations, presented as: 

 ]0[][ 1

1

mnm IBPAC 

  , (17) 

consists of m  n linearly independent equations with m  n unknowns. Hence, C can be 

uniquely found as (16) by using matrix pseudoinverse.■ 

A way to achieve the ability of adjusting SM dynamics in the minimization of the 

steady-state is implementation of ISMC. 

4. INTEGRAL SLIDING MODE CONTROL 

ISMC [3] emerged as an effort to eliminate the reaching phase, present in traditional 

SMC. System is expanded with m integrators, whose outputs are adjusted so that the SM 

starts from the initial time instant. The switching function includes both the state variables 

and integrators outputs. Thus, the SM dynamics is of full n-th order, instead of the reduced 

n-m order. 

Starting from the system (1), integral sliding manifold s=0 is defined by the following 

switching function 

 

t

ExDxtDxts
0

d)()0()()(  , (18) 

where nmED ,  are design matrices and rank(DB)=m. Note that s(0)=0. For 

 )( BKADE  , (19) 

(18) becomes: 

 ]d)()()0([
0

 

t

xBKAxxDs  , (20) 
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which can be understood as a scaled difference between the trajectories of actual and 

desired nominal system described by matrix (A-BK), [9]. Nominal stable dynamics can be 

selected by eigenvalues allocation of (A-BK), by feedback matrix K. Hence, (A-BK) is 

invertible for stable systems. 

Control that provides SM can be found using the same Lyapunov function candidate 

V = s
T
s / 2. It can be easily shown that: 

 mm IDdHsHxEDADBu )| || |(],sgn)[()( 1   , (21) 

with 0  provides 0,0  tV . Hence, control (21) enforces ISM. 

SM dynamics is obtained using equivalent control: 

 ])[()(00 1 DdxEDADBuss equu eq
 


 , (22) 

whose substitution into (1) by virtue of (19) yields: 

 )(])([)()()( 1 tdDDBBItxBKAtx  . (23) 

Disturbance term in (23), known as equivalent disturbance, shows sensitivity of the SM 

dynamics to unmatched disturbances. An unmatched disturbance prevents the system 

trajectory to converge into the origin, but to wander along the sliding manifold. In case of 

a constant or slowly varying disturbance, when 0)(lim  txt
  can be assumed, a nonzero 

steady-state 0)( x  occurs. By letting t  in (23), under above presumption, the 

following relation is obtained: 

 )(])([)()( 1   dDDBBIxBKA , (24) 

which can be used for the steady-state calculation. 

4.1. Optimal sliding manifold design for ISMC 

Matrices E and D should be determined during the in integral sliding manifold design. 

Since E according to (19) provides the desired SM dynamics, matrix D offers an 

additional degree of freedom in the manifold design. There are several recommendations 

how to selectD. A suitable choice of D presented in [13] is that D should satisfy the 

condition DB = Im, which results in a fully decupled control. A possible solution for D is 

left pseudo-inverse of B, i.e. D = B
+
. This choice was derived in [9] in order to minimize 

the equivalent disturbance norm. It was shown that the resulting equivalent disturbance is 

then equal to the unmatched part of the original disturbance, i.e. no amplification of 

unmatched disturbances occurs. 

In this paper the selection of matrix D will be derived to minimize the steady-state 

vector norm. Clearly from (24), D influences the impact of the unmatched disturbances 

onto the steady-state. In this way a properly designed ISMC can provide minimal steady-

state error. Note that a multiplication of (24) from left by D gives: 

 0)()(  xBKAD . (25) 

This requirement applies to every steady-state, and therefore also to xmin(). Hence, D 

should be found to satisfy (25) for x() = xmin(). The following theorem gives the solution. 
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Theorem 3: Optimal integral sliding manifold (18) for system (1), which minimizes 

criterion (3) in the sense and under conditions of Theorem 1 and ensures decentralized 

control, is attained by the following matrix D: 

 

  ])([]0[ 1

1 BPABKAID mnm . (26) 

Proof: To provide system (1) to have minimal steady-state (7) in ISM under 

unmatched disturbances, D should satisfy (25) for )()( min  xx . Substitution of (7) 

into (25) gives 0)( 1

1   dPABKAD . This condition will hold for any d if D satisfies 

matrix equality: 

 nmPABKAD 

  0)( 1

1 . (27) 

According to Lemma 1, mnP )(rank 1 , while the remaining matrices in the product 

(27) have full rank. Hence, the obtained system of equations (27), from which D should 

be determined, consists of 2)( mnmmnm   linearly independent equations with 

m  n unknowns. To obtain a unique solution for D, system (27) can be enhanced with a 

useful decentralized control condition mIDB   that brings another 2m  linearly independent 

equations. The joint system can be rewritten as: 

 1

1[( ) ] [0 ]m n mD A BK A P B I

  . (28) 

Now, the number of unknowns corresponds to the number of linearly independent 

equations and unique solution of (28) comes out by help of matrix pseudoinverse, given 

by (26).■ 

5. ILLUSTRATIVE EXAMPLES 

The developed sliding manifold design methods for SMC and ISMC have been tested 

on an example of a controllable system (1) with: 
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subjected to an unmatched disturbance vector. Q = I is chosen in the optimization 

criterion (3). For traditional SMC, Theorem 2 gives: 

 













032.0247.0464.0077.0

106.0178.088.0077.0
C  (30) 

and SM controller (10) is realized for 28372.1 IF  . SM dynamics is defined by two nonzero 

eigenvalues 1,2 = 2.084  j8.525  of the system matrix PA, and cannot be chosen. In case of 

ISMC, for the desired SM dynamics given by the spectrum   {6, 7, 8, 9}, D and E are 

obtained as: 
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193.1587.063.11003.0

492.2273.2983.24342.0
,

695.0003.0189.2401.0

87.16.002.634.0
ED  (31) 

according to (26) and (19). ISM controller (21) is realized for H = 11.79  I2. Although 

both control laws (10) and (21), having dominant switching component, may induce 

chattering in real systems, reason for their application is that the attained SM should as 

much as possible resemble an ideal one, which is the assumption of the conducted analysis. 

For a constant unmatched disturbance )4(]1101[)(  thtd T , Theorem 1 

gives the minimal steady state (7) as T

min ]201.0054.0018.0198.0[)( x , 

whose norm is 288.0| |)(| | min x . Fig. 1 shows that both controllers, SMC (dashed trace 

(1)) and ISMC (trace (2)), achieve analytically predicted minimal stead-state vector norm. 

However, SMC has a slower response than ISMC, since ISMC dynamics can always be 

chosen faster than the predefined dynamics resulting in SMC. Another disadvantage of 

SMC is the existence of the reaching phase, in which a system is sensitive to matched and 

unmatched disturbances. 

The obtained results are compared with the performance of ISM controller whose 

matrices D and E are selected according to the recommendation  BD  proposed in [9], 

Fig. 1 trace (3). For the same desired dynamics integral sliding manifold is defined by: 




























486.4389.22.11549.4

586.5072.742.24928.12
,

116.0184.001.0029.0

107.0248.0092.0223.0
ED ,(32) 

providing steady-state T]101.031.1048.067.0[)( x  having considerably larger 

norm 4754.1| |)(| | x . Both ISM controllers provide the same behavior until the moment 

of unmatched disturbance activation. Afterwards, ISMC (32) exhibits higher sensitivity to 

constant unmatched disturbances than the one with the optimal manifold (31). 

 

Fig. 1 State vector norms. 
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To emphasize limitations of traditional SMC in steady-state error minimization and 

efficiency of ISMC with the proposed sliding manifold design method, consider the 

following regulation problem. Let a control plant be given in the controllable canonical 

form: 
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 (33) 

The control task is to regulate the output y(t) to reach and maintain a desirable value 

yr = 1. Since 1xy  , error vector T

321 ])()()([)( txtxytxte r  is used as an input to 

the controllers. In traditional SMC optimal sliding manifold satisfies condition (13) and 

the corresponding matrix C can be decomposed as ]001[][ 010 cHICC  . However, 

it is obvious that 0)]det([ 1 BHI  and SM cannot be attained according to Remark 2. 

Hence, traditional SMC is unable to provide minimization in this case and only ISMC can 

be applied. SM dynamics has been set by desired eigenvalues }5,4,3{  . To 

minimize optimization criterion (3) (Q=I) by ISMC, a sliding manifold (18) must be 

constructed according to the results of Theorem 3. According to (26) and (19), D and E 

are obtained as: 

 [47 12 1] , [60 0 0]D E  . (34) 

Let the system be subjected to a matched f1(t) = 2sin(  t) and unmatched d(t) = 

[0.1  0.6  0.2]
T
  f2(t) disturbances. The unmatched disturbance consists of a constant and 

slowly varying component, i.e. )10()]1.0sin(1[)(2  thttf . Approximating the 

unmatched disturbance as constant having maximal value, i.e. )10(2)(2  thtf , the 

expected steady-state error 
T

min ]2.12.00[)( e (
T

min ]2.12.01[)( x ) and the 

corresponding minimal norm 2166.1| |)(| | min e  can be calculated according to (7). It is 

important to notice from the calculated )(min e  that the zero steady-state error is gained 

for the first coordinate. The proposed integral sliding manifold design also provides this 

valuable feature. Namely, it can be proven that the proposed integral sliding manifold 

design method always guaranties zero steady-state for the first coordinate in case of 

systems in controllable canonical form. This means that the first coordinate, which is 

usually the output in many systems, becomes insensitive to any constant unmatched 

disturbances in steady-state for the minimizing integral sliding manifold. Therefore the 

system output in this example is expected to be very little sensitive to slow sinusoidal 

unmatched disturbance. 

To see the difference, another integral sliding manifold has been designed according 

to [9] as: 

 [0 0 1] , [60 47 12]D E  . (35) 

The expected steady-state error vector norm can be calculated as 2796.1| |)(| | e , which 

is larger then the obtained minimal one. 
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The proposed sliding manifold design has been verified and illustrated by computer 

simulations. ISM controller (21) is realized with H obtained for dm = 1.2806 and  = 0.1. 

Error vector norms for two sliding manifolds, the optimal (34) and the other (35), are 

depicted in Fig. 2 by traces (1) and (2) respectively.  

 

Fig. 2 Error vector norms. 

It can be inferred that the state coordinates are insensitive to the matched disturbance 

but are affected by sinusoidal unmatched disturbance. After the transient period, the error 

vector norms stay below analytically predicted values for the constant disturbance.  

According to the output responses for the two sliding manifolds, given in Fig. 3, low 

sensitivity to unmatched disturbance is confirmed in case of the optimal manifold (trace (1)). 

As expected, a much larger output error occurs for the non-optimal manifold (trace (2)). 

 

Fig. 3 Output responses. 

Finally, conventional PI controller Gr(s) = kp(1 + 1/Ti s) has been also designed for 

comparison. To cope with the ISM controllers, the design requirement is to obtain as fast 

as possible critically damped response, which is ensured by kp = 2.1126 and Ti = 1 sec. 



180 B.R. VESELIĆ 

The resulting closed-loop dynamics is described by spectrum    {0.785, 0.785, 3.43}, 

which indicates that PI controller cannot be as fast as ISM controllers. Output response (Fig. 3, 

trace (3)) is significantly slower and exhibits poor performance with respect to the sinusoidal 

matched and unmatched disturbances. Hence, ISMC with the optimal sliding manifold is the 

superior choice over the conventional PI controller due to much faster dynamics, invariance to 

the matched disturbances as well as negligible output steady-state error. 

6. CONCLUSIONS 

According to the conducted analysis and computer simulations, traditional SMC 

exhibits significant limitations in minimizing the steady-state error norm in the presence 

of unmatched constant or slowly-varying disturbances. The application of the traditional 

SMC in the considered optimization problem denies the possibility of adjusting SM 

dynamics and in certain cases SMC cannot be even applied. 

On the other hand, ISMC eliminates all shortcomings present in SMC. The proposed 

integral sliding manifold design method very efficiently finds the sliding manifold that 

guarantees threefold goal: (i) minimize steady-state error norm in ISM under action of 

unmatched constant or slowly varying disturbances, (ii) ensures arbitrary predefined SM 

dynamics and (iii) provides fully decupled control. 

The presented numerical examples and related simulations have confirmed the analytically 

predicted results. 
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