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Abstract. The paper presents a comprehensive survey of contemporary methods, 
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environment and gives their comparison according to various criteria, such as 
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of indoor LBS applications available on the market are presented based on the 

reviewed localization technologies. Prominent research directions in this domain are 

categorized and discussed. 
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1. INTRODUCTION 

The proliferation of wireless communication and mobile devices with sensing 

capabilities has given rise to mobile and pervasive systems and services that offer novel 

opportunities for users behaving and acting in the environment. The range of services, 

often referred as location-based (LBS) and context-aware services, have emerged in many 

different domains, such as personal navigation, mobile tourist guides, vehicle tracking, 

traffic monitoring, pervasive healthcare, emergency management, environment protection, 

analysis of animal behavior, etc. [1][2]. At the heart of these services lies the ability to 
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sense and determine in real-time the location of mobile users [3]. In open space 

(outdoors), mobile devices/users are most commonly and accurately positioned by GPS 

technology and satellite-based infrastructure that provide location as a point in a 

geographic reference system. The current satellite positioning systems are: NAVSTAR 

Global Positioning System
1
, GLONASS

2
 and Galileo

3
, which is expected to be fully 

operational in 2020. The main disadvantage of GPS-based positioning is its dependency 

on a direct line-of-sight with the satellites and thus unavailability in indoor spaces, as well 

as in natural/urban canyons. Also, the accuracy of positioning methods based on cellular 

networks (e.g. Cell-ID or TOA – Time of Arrival) is not sufficient for use indoors.  

Nevertheless, people spend most of their time indoors (80-90% ), in offices, shopping 

malls, hospitals, metros, museums, etc., hence the possibility to determine locations and 

trajectories of people and objects inside buildings and other closed structures becomes 

increasingly important. For advanced indoor LBSs supporting museum/fair guides, fire 

rescues, emergency management, or simply ordinary businesses, quality and effectiveness 

of services demand knowing immediately where people and resources are inside buildings 

and other complexes and how to navigate to certain locations [4]. It is of great importance 

to provide seamless integration and handover of different localization technologies while 

users move from open space to various closed environments and vice-versa, and efficient 

adaptation of indoor LBSs to changing environments, contexts and situations. 

With advances in sensor technologies and wireless communications, various indoor 

localization methods and systems have been developed over the past years. In indoor 

environments, positioning is mainly achieved through the use of radio technologies, such 

as Wireless Local Area Networks (WLAN, Wi-Fi), Bluetooth, Zigbee, Ultra-wideband 

(UWB), and Radio-frequency identification (RFID), or infrared (IR) and ultrasound 

technologies [5][6]. In 2011, twenty-two international companies formed the In-Location 

Alliance [7] to standardize and commercialize the indoor localization technologies and 

systems. The alliance currently includes large multi-national companies such as Nokia, 

Samsung, Qualcomm and Sony, and more than a hundred other high tech companies, 

showing the importance of indoor LBS research and development domain.  

This paper presents a survey of the state-of-the-art methods, technologies and systems for 

indoor localization and tracking and reviews of some advanced indoor LBS applications 

based on these methods and technologies. The paper is organized as follows. Section 2 

describes methods and algorithms for pervasive positioning. Section 3 presents indoor 

localization systems and technologies, gives their comparative classification, and presents 

representative examples of indoor LBS applications. The prominent research directions are 

categorized and discussed in Section 4. Finally, Section 5 gives a conclusion. 

2. METHODS AND TECHNIQUES FOR INDOOR LOCALIZATION 

The core of any localization method relies on the real-time measurement of one to 

several parameters, such as angles, distances, or distance differences [8]. Measurement 

parameters reflect the location of a target object relative to a single point or several fixed 

                                                           
1 http://www.gps.gov/ 
2 http://www.glonass-ianc.rsa.ru/en/ 
3 http://www.esa.int/esaNA/galileo.html 
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points in the environment with the known locations. Such parameters are measured using 

physical characteristics of electromagnetic radio and infrared signals, as well as 

ultrasound signals, such as their travel time, velocity or attenuation. After the determination 

of the required parameters, the target object’s location can be calculated using the 

measurement results and the known locations of the fixed points.  

There are four principal techniques and methods for location calculation and estimation: 

 The proximity technique (see Fig. 1a) derives the location of a target object with 

respect to its vicinity to the location of the known object(s). A target object receives 

the signal from a given node, so the location of the node or the symbolic cell 

identification defines the location of a target. 

 The triangulation technique uses the triangle geometry to compute locations of a target 

object. It is applied via lateration (actually trilateration) (see Fig. 1b), that uses distance 

measurements to points with the known locations, or via angulation (sometimes also 

referred as triangulation) (see Fig. 1c), which measures angles relative to points with the 

known arrangement. Since electromagnetic/ultrasound signals move with the known and 

nearly constant speed, the determination of the time difference between sending and 

receiving a signal enables computation of the spatial distance between a transmitter and a 

receiver. Known distances from three or more transmitters provide accurate positioning 

of the target object. For the angulation technique, antennas with direction capabilities are 

used. Given two or more directions from fixed locations to the same object, the location 

of the target object can be computed. 

 Scene analysis techniques involve examination and matching a video/image or 

electromagnetic characteristics viewed/sensed from a target object. The analysis of 

electromagnetic “scene” sensed by a target object defined by electromagnetic signals 

and their strengths from different transmitters, provides the determination of location 

using a pattern matching, radio map technique. Using video cameras, a positioning 

system can detect significant patterns in a video data stream to determine the user’s 

location. If users wear badges with certain labels, they can be detected in video images 

and thus localized and tracked in indoor environment covered by a camera. At the 

other extreme are techniques involving the matching of perspective video images of 

the environment captured by a camera, worn by a person or mounted on a mobile 

robot platform, to 3D models stored in an image/video database of the mobile device.  

 Dead reckoning techniques provide estimation of the location of a target object based 

on the last known location, assuming that the direction of motion and either the 

velocity of the target object or the traveled distance are known. 

 

N

 
  a)      b)    c) 

Fig. 1 Location sensing techniques a) proximity b) trilateration  c) angulation 
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Indoor localization technologies, based on one or more positioning techniques and 

methods, possess different characteristics that determine their suitability for specific 

indoor LBS and context-aware applications.  

Indoor localization and tracking technologies can be based on either an existing 

communication network, or a dedicated network/infrastructure that is solely used to 

receive/transmit positioning signals. Mobile devices worn by a person or mounted on a 

robot can be active when transmitting a signal themselves, or passive when just receiving 

a signal. The location can be determined in the mobile device itself, in the wireless 

network, or within the dedicated positioning infrastructure.  

Indoor localization systems differ in accuracy, precision, scope, the type of determined 

location: geometric or symbolic, and the cost. An estimated location is considered accurate if 

it corresponds, as much as possible, to the true location of the target object. Precision refers 

to the repeatability of the measurement and indicates how sharply a location can be 

defined for the sequence of location determinations. The accuracy of a localization system 

could be defined by an uncertainty area, i.e. the location is actually defined as an ellipse 

(ellipsoid) around the determined location.  

An indoor localization system delivers the target object’s location with regard to a 

spatial reference system or to a defined symbolic space. Geometric location is determined 

in the defined geographic/geometric reference system, such as WGS-84 or a local 

coordinate system, and can be either absolute or relative to a reference point. The 

localization and tracking of moving indoor objects can be either in 2-D, 3-D, if the object 

can be localized in the entire volume of 3-D space, or in 2.5-D, when the object location 

is tracked at discrete levels, e.g. floors, of the 3
rd

 spatial dimension. For the purpose of 

indoor navigation and tracking the symbolic location is more appropriate. Thus, indoor 

localization systems mainly determine symbolic locations in terms of cell identifiers, 

buildings, room numbers, objects in the room, etc. Indoor localization systems differ also 

in scope of location determination. Since the majority of localization methods depend on 

the propagation properties of electromagnetic signals their effectiveness and efficiency 

depend on the environment. While satellite-based (GPS) and cellular network-based 

positioning systems are intended for outdoor space with the scope that may be the whole 

Earth, a certain region or a metropolitan area, indoor localization systems are characterized 

by a much narrow scope, such as a university campus, a building or a room. There exist a 

variety of indoor localization technologies and solutions intended for indoor spaces that 

require some kind of infrastructure that is usually not available in open space. An indoor 

localization system determines also the cost needed for a system to be fully operative, 

such as the time and space for installation and maintenance of the required infrastructure, 

as well as the price of equipment that is required. For example, the need for specialized 

hardware and/or network installations, leads to higher deployment and maintenance costs 

and poor scalability. 

Indoor localization methods and technologies can be classified according to the scope 

of infrastructure needed for localization, the type of such infrastructure if any and their 

suitability for indoor or limited outdoor spaces. Also, according to the part of the system 

where the location is calculated/estimated, i.e., whether a mobile device locates itself or is 

tracked, indoor localization systems can be centralized or distributed. All mentioned 

characteristics significantly determine the usability of particular indoor localization 

technologies for specific indoor LBS applications.  
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Thus, according to the wireless communication and sensing technologies employed, 

indoor localization technologies can be classified as: 

 Wireless communication-based localization technologies (Wi-Fi, Bluetooth, UWB, 

Zigbee, RFID, IR, ultrasound, etc.) are based on wireless communication or stand-

alone infrastructure (WLAN and WPAN) constrained to indoor and limited outdoor 

spaces, providing determination of location either at the mobile device or in the 

infrastructure.  

 Dead reckoning localization technologies use motion sensors (accelerometer, digital 

compass, gyroscope, etc.) and odometers to determine location at the device without 

the need for infrastructure, with the scope limited by the accumulated error. 

 Video scene analysis represents localization technologies based on the processing of 

video signals to detect specific tags in the scene (barcodes) or match the scene with 

prerecorded images/video to determine the location at either the mobile device itself, 

or to track target objects moving in the scene. 

3. INDOOR LOCALIZATION AND TRACKING TECHNOLOGIES AND SYSTEMS  

Over the last twenty years, many indoor localization technologies have been proposed, 

developed and experimentally evaluated by both academia and industry that provide 

appropriate location data to tracking and navigation capabilities of indoor location-based 

and context-aware services. But there is still a lack of wide acceptance and large scale 

deployments of indoor localization systems. 

The most popular indoor localization systems use Wi-Fi technology, because of wide 

availability of Wi-Fi network infrastructure [9]. Wi-Fi positioning systems use a radio 

propagation model to determine the distance to the various access points and then 

triangulation techniques (TOA, TDOA) to estimate location of a mobile device. Multipath 

distortion and variability of Wi-Fi signal strength in time limit the accuracy of such 

techniques. Most currently available Wi-Fi positioning solutions are based on the scene 

analysis technique, called the fingerprinting technique. The method uses the Received 

Signal Strength Indication (RSSI) to measure the strength of signals received from the 

surrounding access points at discrete locations in space. Such a radio map has to be built 

before the system is operational. The calculation of the location consists of measuring the 

RSSI from several access points (AP) and then attempting to match these measurements 

with the RSSI values of the previously calibrated location points stored in a radio map 

database. Depending on the pre-built radio map and the density of calibration points, the 

accuracy of the fingerprinting technique is expected to be in the range of 1 to 10 m [6][9]. 

The major limitation of the Wi-Fi based fingerprinting localization systems is the 

construction of the RSSI radio map that needs to be generated in advance and updated 

after furniture reallocation, removal/reallocation of the existing access points and 

installation of new ones, or algorithmically adapted, as proposed in [10]. The fundamental 

problem in Wi-Fi fingerprinting is that heterogeneous mobile devices measure radio 

signal strength differently. In that case, either a calibration for each new wireless device is 

needed or specialized methods, such as hyperbolic location fingerprinting, presented in 

[11], need to be implemented. 
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One of the first Wi-Fi localization systems was RADAR [12]. Recently many Wi-Fi 

based localization systems emerged. Hensen at al. in [13] describe SmartCampusAAU as 

a platform that enables indoor positioning and navigation based on Wi-Fi fingerprinting 

technique and supports both device- and infrastructure-based positioning. The localization 

platform is available on all major mobile platforms (Android, iPhone and Windows 

Phone). The work of Laoudias et al. in [14] presents the localization approach based on 

signal strength differences, that is more robust to device variations and maintains the 

localization accuracy regardless of the number and type of contributing devices. Besides 

research works, several commercial localization systems are also available on the market, 

such as Ekahau Real-Time Location System [15], Skyhook Wireless [16] and Navizon 

indoor location solutions [17]. 

On the other hand, UWB communication technology has emerged, providing better 

positioning accuracy than Wi-Fi. It is suitable for high-precision real-time positioning 

using TOA, TDOA, AOA and fingerprinting. UWB signals are less sensitive to multipath 

distortion and environment than conventional RF-based positioning systems, so they can 

achieve higher accuracy. At bandwidths of at least 500MHz and high time resolution in 

the order of nanoseconds, it is possible to obtain accuracy of ranging and localization at 

cm‐level [18]. A MUSIC-based method proposed in [19] can achieve high localization 

accuracy, in the order of 1 cm, by using spatially distributed antennas that transmit the 

same UWB impulse sequence used for self-localization of IR UWB nodes [20]. However, 

the high cost of UWB equipment and infrastructure deployment results in its limited 

availability for positioning [21]. To date, several UWB positioning systems have been 

implemented and deployed, such as the Ubisense system [22] and PulsON [23] system 

developed by Time Domain. 

Bluetooth is a wireless technology that can be used for localization and tracking, 

mainly indoors. Bluetooth positioning systems have similar working principles as the self-

localization schemes of sensor networks. The operation principle of both types of systems 

is based on obtaining the range information to anchor devices or access points and 

exploring unknown device locations using various algorithms. The majority of the 

available research and commercial systems are based on trilateration using the RSSI for 

calculating distances between Bluetooth devices, although several reported systems have 

explored proximity, cell-based approach. A comprehensive evaluation of all Bluetooth 

signal parameters and their suitability for localization purposes is provided in [24]. 

Bluetooth localization methods are primarily based on RSSI and Link Quality (LQ) 

measurements. Cell-based methods rely on the proximity (visibility) of Bluetooth beacons 

for determining the location of a device and are gaining popularity with the 

implementation of Bluetooth LE (Low Energy) standard. The localization accuracy of the 

system is 1 - 5 m (< 0.3 m for Bluetooth LE) and depends on the positioning technique used 

and the characteristics (density, layout, etc.) of the deployed infrastructure of Bluetooth 

devices and beacons [6][25]. Current examples of Bluetooth positioning systems are 

ZONITH Indoor Positioning System [26], TOPAZ [27]  and Apple iBeacon [28].  

In general, RFID systems are designed so that the reader detects the vicinity of a tag 

and retrieves the data stored in that tag. Therefore, the absolute location of the tag is not 

known but the RFID system is aware that a tag is placed at a certain range that depends on 

the type of the system used, either active or passive RFID [29]. Besides the proximity 

technique that provides symbolic location of the tag according to a reader location, there 
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are several methods for performing accurate positioning using active RFID technology. 

These methods employ techniques such as AOA, TDOA and RSSI that achieves accuracy 

in the range of 1-5 m, or even bellow 1m, depending on the density of tag deployment and 

RFID reading ranges [30]. The examples of location sensing systems using the RFID 

technology are SpotON [31] and LANDMARC [32]. 

The ZigBee technology is an emerging wireless communication standard for PAN/LAN 

intended for applications which do not need significant data throughput, but require low-

power consumption. As such, ZigBee is widely used in smart home environments. The 

localization is usually performed using proximity and TOA methods based on distances from 

the surrounding ZigBee nodes calculated using RSSI. Several recent research papers 

propose and evaluate localization algorithms and systems based on ZigBee achieving the 

accuracy of 1-10 m [5]. Larranaga et al. in [33] present a flexible indoor localization 

system based on ZigBee Wireless Sensor Networks based on RSSI level measurements. 

The localization system consists of two phases: calibration phase, which is performed 

whenever a blind ZigBee node needs to be located and actual localization phase with 

accuracy 3m on average. Hu et al. in [34] propose an algorithm based on signal 

preprocessing and calibration to correct multipath propagation and improve ZigBee based 

indoor localization. Bras et al. in [35] describe a ZigBee location protocol, implemented 

by reducing end nodes communication intervals and developing a proper router and 

coordinator firmware. This protocol provides two localization methods based on proximity 

and multi-RSSI reference nodes location that provides support for triangulation and 

fingerprinting. 

Dedicated positioning methods, commonly based on infrared and ultrasound technologies, 

provide a high degree of accuracy, but require expensive equipment limited to a small scale 

that usually have high installation and maintenance costs [5]. In infrared (IR)-based systems, 

each tracked person is wearing a small infrared device that emits a unique pulse signal 

representing its unique identifier. The signals are detected by at least one particular IR 

sensor in the vicinity. A location server estimates IR device location by aggregating data 

obtained from fixed IR sensors deployed within the indoor environment. The Active 

Badge system [36], as the first IR positioning system, works this way and provides 

symbolic location information at the room or smaller level depending on deployed IR 

sensor infrastructure. Ultrasound-based systems use an ultrasound time-of-flight lateration 

technique to provide more accurate physical positioning than by using infrared signals 

and sensors. The existence of NLoS (Non Line of Sight) conditions and multipath 

propagation in indoor environments are the main problems in the development of reliable 

ultrasound-based indoor localization system, achieving accuracy in the range of 1 cm – 

1m [37]. The prominent examples are Active Bat system and the Cricket indoor location 

system [5]. 

Many existing indoor localization approaches reviewed so far require infrastructure 

(e.g., Bluetooth beacons) to achieve reliable accuracy. There are also passive positioning 

systems that do not require specialized infrastructure. Such systems sense naturally 

occurring signals or physical phenomena and are based on, for example, magnetic 

compasses sensing the Earth’s magnetic field, inertial sensors measuring acceleration and 

the heading of an object in motion, and vision systems sensing a scene and its features or 

recognizing specific visual patterns (barcodes). In order to be functional they require indoor 

map information. Dead reckoning is the process of estimating the current location of a 
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moving device using the location calculated at some previous time instant, and the velocity, 

speed or heading estimate till the current time instant. The dead reckoning-based localization 

systems, also known as Inertial Navigation Systems (INS), can be used for both indoor and 

outdoor positioning. In indoor environment such systems use accelerometers to obtain 

human velocity rate information through step detection and step length estimation. Also, 

digital compass and gyroscope measurements are used for direction and angular rate 

information. All measured data is processed to continuously calculate the location, 

direction (bearing), and velocity of a moving object without the need for external references, 

but taking into account the known indoor map constraints. On the other hand, the velocity of 

indoor vehicles or robots is calculated by appropriate odometers. However, even very small 

errors in the rate information provided by inertial sensors cause an unbounded growth in the 

error of the integrated measurements, usually referred as the “drift error”.  

Dead reckoning based systems have been implemented in various indoor tracking 

domains, such as for pedestrian navigation [38] and mobile robot localization [39] [40].  

Hardegger et al. in [41] present Smart ActionSLAM, an Android smartphone application 

that performs location tracking in home and office environments that uses the integrated 

motion sensors of the smartphone and an optional foot-mounted inertial measurement unit to 

perform personal localization and tracking. A mobile robot localization system that 

combines INS and odometry, and use Kalman filters to estimate the orientation and velocity 

of mobile robots to calculate their more accurate positions, is presented in [39]. Localization 

systems that do not require pre-deployed infrastructure, or with which such an infrastructure 

could be deployed fast by e.g. ultrasound bacons, are particularly suitable for use by 

emergency responders such as firefighters. The conditions they work in are significantly 

more demanding, caused by darkness, smoke, fire, power outages, etc., so special efforts 

have been put to the research and development of appropriate localization and navigation 

systems based on dead reckoning, but also ultrasound and RFID [42]. 

Visual positioning systems use low cost 2D tags (e.g., barcodes) with the encoded 

information that can be recorded and processed by a mobile device with a built-in camera, 

as in the system proposed in [43]. The symbolic location of a device is estimated by 

finding the tag’s identifier and associated location in a deployment database, or by 

decoding the location information embedded in the tag itself [44]. Positioning systems 

based on video scene analysis are based on computer vision technology to recognize 

tracked objects in video data. Easy Living by Microsoft Research provides one example 

of this approach [45] where a video surveillance system tracks moving objects recognized 

in the video scenes. Also, the mobile device can use video scene analysis to estimate its 

location by comparing a snapshot of a scene generated by itself with a number of pre-

observed simplified images of the scene taken from different positions and perspectives. 

An improved performance and sub-meter (1 cm – 1 m) accuracy of camera-based 

localization systems has promoted them as promising positioning solutions for 

applications in industry, as well as robot and pedestrian localization and navigation [46]. 

Murillo et al. in [47] present a wearable omnidirectional vision system and a novel two-

phase localization approach running on it for personal localization and guidance. It is 

based on real time visual odometry SLAM (Simultaneous Localization and Mapping) 

method adapted to catadioptric images augmented with topological-semantic information.  

The important characteristics of indoor localization systems and related technologies 

are reviewed in Table 1. 
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Indoor LBSs deliver local spatially-referenced information and spatial–processing 

power to mobile users in accordance with their past, current and predicted location, or to 

the locations of the moving/stationary objects of their interest. Depending on services’ 

requirements and the context of their usage, different indoor localization technologies and 

systems are used at the heart of such services. There are a lot of classifications and 

taxonomies of location-based services presented in the literature so far [1][48], while new 

services continue to emerge. This is an attempt to make a classification of indoor LBSs, 

the localization technologies and systems they are based on, and to present some 

prominent examples of such applications.  

Table 1 A review of indoor localization technologies and systems 

System Technique Methods Accuracy Calculated at Location type Scalability Cost 

Mobile 

device 

Infrastr- 

ucture 

Geo 

metric 

Sym 

bolic 

Wi-Fi   

 

Proximity 

Trilateration 

Angulation  

Scene anal.  

Cell-ID 

TOA 

TDOA 

AOA 

RSSI 

10-100 m 

(Prox.) 

1-10 m 

 

RSSI 

 

TOA 

TDOA 

AOA 

Prox. 

  high low 

UWB Trilateration 

Angulation 

RSSI 

TOA,TD

OA, AOA 

1cm-1 m     low high 

Bluetooth Proximity 

Scene anal.  

Trilateration  

Cell-ID 

RSSI 

TOA 

1-5 m  

TOA 

RSSI 

 Prox.   Prox. high low 

RFID Proximity 

Trilateration 

Scene anal.  

Cell-ID 

RSSI 

1-5 m     medium low 

Zigbee Proximity 

Trilateration 

 

Cell-ID 

RSSI 

1-10 m    RSSI  Prox.    Prox. low medium 

Infrared Proximity 

Trilateration 

Cell-ID 

TOA 

1cm-5m   TOA  Prox.   low medium 

Ultrasound Trilateration 

 

TOA, 

TDOA 

 1cm-1m     low high 

Video 

scene 

analysis  

Scene anal. 

Angulation 

Computer 

vision 

1cm-1m     low high 

Barcodes Proximity 

Angulation 

Pattern 

recognitin 

1-10 m     medium high 

Sensor 

networks 

Proximity 

Trilateration 

Cell-ID 

RSSI 

10 cm-1 m     medium medium 

INS, PNS Dead 

reckoning 

 1-10 m     high low 
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The location-based service requirements and applications of localization technologies 

and methods in various indoor LBSs available on the market are reviewed in Table 2 

along with the accuracy required by a particular service (Very high, from 0-1m; High, 

from 1-5m; Medium, from 5-15m; and Low, greater than 15m). 

Table 2 Applications of localization technologies and systems in indoor LBSs. 

Application domains Indoor localization 

technologies 

Accuracy  Indoor LBS and system examples 

Asset tracking RFID, Infrared (IR), 

Barcode Scanning 

Very high MultiLUX 

http://www.multilux.eu/  

Location-based  

advertising 

Bluetooth beacons 

(iBeacon) 

Low Mobile to Mortar™ - inMarket 

http://www.inmarket.com/  

Shopping assistance 

system 

Bluetooth, WiFi High StoreMode - PointInside 

http://www.pointinside.com/  

aisle411 - Walgreen stores  
http://aisle411.com/ 

Museum, fairs, airports, 

guided tours 

Wi-Fi fingerprinting, 

Bluetooth LE 

Medium awiloc® – Fraunhofer IIS 

http://www.iis.fraunhofer.de/en/bf/ln/

technologie/rssi/mf.html  

School, university 

campus 

Wi-Fi fingerprinting, 

Wi-Fi TOA/TDOA 

Medium SmartCampusAUU 

http://smartcampus.cs.aau.dk/   

Campus Guide (MazeMap) 

https://use.mazemap.com/  

Hospitals, healthcare, 

Ambient Assistant 

Living (AAL) 

Wi-Fi fingerprinting, 

RFID, IR 

High Radiance skyView 

http://www.radianse.com/  

Versus Advantages 

www.versustech.com/  

Emergency response and 

rescue management 

Ultrasound,  

dead reckoning 

Medium Pathfinder- SummitSafety 

http://www.summitsafetyinc.com  

Robotics  Dead reckoning, 

infrared, UWB, 

vision sensors 

Very high Adept MobileRobots 

http://www.mobilerobots.com  

Indoor sports Bluetooth LE Very high SportIQ - http://www.sportiq.fi/  

using HAIP – http://quuppa.com/  

Smart home ZigBee High CC2431 - Texas Instruments 
www.ti.com/corp/docs/landing/cc2431/  

Augmented reality LLA Markers 

(barcodes), INS 

High Junaio 

http://www.junaio.com/  

http://www.multilux.eu/
http://www.inmarket.com/
http://www.pointinside.com/
http://aisle411.com/
http://www.iis.fraunhofer.de/en/bf/ln/technologie/rssi/mf.html
http://www.iis.fraunhofer.de/en/bf/ln/technologie/rssi/mf.html
http://smartcampus.cs.aau.dk/
https://use.mazemap.com/
http://www.radianse.com/
http://www.versustech.com/
http://www.summitsafetyinc.com/
http://www.mobilerobots.com/
http://www.sportiq.fi/
http://quuppa.com/
http://www.ti.com/corp/docs/landing/cc2431/
http://en.wikipedia.org/wiki/Augmented_reality
http://www.junaio.com/
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 5. RESEARCH CHALLENGES  

Localization technologies and location data collection systems provide many 

resources for the development of mobile and pervasive computing and applications.  Still, 

a lot of open issues and future research directions should be explored for the development 

of the next generation of location-based applications and services. 

5.1. Seamless integration of localization methods and systems 

When considering the accuracy, availability and scope of a localization system while 

reducing its power consumption and cost, the integration of several localization 

technologies and systems is an option that might be relevant in many contexts. The goal 

of such integration is to improve the accuracy, availability and scale of single indoor 

localization systems while reducing cost. Moreover, the integration should also provide 

seamless handover of integrated localization systems that selects the most suitable 

positioning method with appropriate accuracy, granularity and resource consumption 

according to the user’s context and situation and application requirements. Khider et al. in 

[49] present the indoor localization system based on Particle Filter approach and sensor 

fusion that combines GNSS, foot mounted inertial sensors, electronic compasses, baro-

altimeters, indoor maps and active RFID tags to improve the accuracy and availability of 

the determined location. Other examples of integrated indoor localization systems are the 

integration of GPS and Wi-Fi based positioning [50], Bluetooth-based positioning and 

IR-based positioning technique in Topaz system [27] and a combination of IR and RFID 

localization to achieve higher accuracy in healthcare in Versus RTLS [51] . 

5.2. Handling massive location data sets 

With the rapid advances in mobile positioning technologies, a huge volume of location 

data is acquired wirelessly transmitted in the form of continuous data streams that need to 

be processed both off-line and online, so called Big Mobility Data. Such data with high 

arrival rate must be continuously monitored, processed and analyzed at the server side. 

Continuous location data streams define trajectories of moving objects that provide 

unprecedented information to understand their mobility and behavior [52]. Within this 

research direction, methods and algorithms of mobility data stream management are  

investigated, as well as application of high-performance and data-intensive computing 

techniques and systems for handling massive trajectory data collections, both on-line and 

offline, such as cloud computing techniques (MapReduce), GPGPU (OpenCL, CUDA) 

and cluster/grid (MPI) [53]. 

5.3. Participatory location-based sensing 

With the proliferation of mobile phones with increasing sensing capabilities in 

everyday use, an important source of sensor data has become the users with their mobile 

devices [54]. Thanks to an increasing number of built-in sensors: ambient light, 

orientation, accelerometer, sound, camera, velocity, GPS, but also user-generated content 

(video, photo, sound, text, etc.), each mobile device can continuously capture, process, 

analyze and transmit spatially and temporally referenced data describing the context and 

the situation of the user [55]. We need efficient methods, techniques, algorithms and 
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systems that provide collection, monitoring, processing and analyzing of large volumes of 

moving sensor data that define the context and situation in an indoor environment relevant 

to a particular application domain [56].  

5.4. Semantic location and trajectory data  

Once the location of an indoor moving object is known, in either geometric or 

symbolic form, many other pieces of information can be inferred to enrich such location 

information. The research aims to develop methods and software tools to provide 

collection, processing and analysis of indoor location and trajectory semantics. Semantic 

locations and trajectories enable development of advanced indoor LBSs which can 

provide more intelligent, proactive and valuable services to users navigating in indoor, 

but also in outdoor environments [57]. Processing, analysis and mining of semantic 

indoor locations/trajectories provide insights in semantics of movement and recognition 

of user activities, behavior and prediction of a future movement [52].  

5.5. Privacy in indoor location-based services 

Although indoor location determination provides many valuable location-based 

applications and services to mobile users, revealing people’s locations to potentially 

untrusted service providers poses significant privacy concerns. There is a trade-off 

between the quality of services offered by an indoor LBS provider and the privacy of a 

user’s location. The research in this direction focuses on the protection of sensitive 

locations against LBS providers and untrusted members of collaborative geo-social 

networks [58]. As such, it is highly related to all other research directions. Releasing 

locations and trajectories to the public or a third party could pose serious privacy 

concerns, so privacy protection in a LBS and location/trajectory data collection has 

increasingly drawn attention from the research community and industry [59]. 

6. CONCLUSIONS 

This paper gives an overview of the methods, technologies and systems involved in 

the development of indoor location-based services for mobile users and moving objects 

navigated and tracked in the indoor environment. As no localization system is equally 

accessible and available everywhere, compromises between accuracy, scope, latency, 

privacy and costs may result in a system that seamlessly integrate two or more localization 

technologies and systems with regard to the corresponding application domain. For 

example, depending on the application requirements, the indoor LBS can employ Wi-Fi 

fingerprinting, Bluetooth beacons, and/or dead  reckoning technologies to achieve 

medium/low accuracy, high availability and coverage, as well as minimal costs for indoor 

installations. If the indoor LBS requires higher accuracy within small coverage, there is a 

need for extensive node (RFID, infrared, ultrasound, UWB, optical tags, etc.) deployment 

and maintenance of a costly infrastructure. Thus, depending on indoor LBS application 

requirements the appropriate trade-off between indoor localization characteristics should 

be made and integration of localization technologies and systems should be developed. 

Research challenges in pervasive localization and tracking cover not only data 

collection methods which are reaching a relatively mature level, but also semantic and 
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technical research avenues where the objective will be to make the best possible use of 

the data. This is why location-based and context-aware services and systems are the 

object of several exciting research efforts, from semantic to participatory sensing and 

privacy, and where several international projects are performed, such as the EU projects 

MOVE
4
 (Knowledge Discovery from Moving Objects) and MODAP

5
 (Mobility, Data 

Mining, and Privacy) [60]. No doubts that other research projects will soon emerge at the 

international level as opportunities cover many different location-based application 

domains that can be successfully applied to indoor and outdoor environments. 
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