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Abstract. As an important performance measure, in this paper the outage probability of 

dual- and triple-branch selection combining (SC) diversity system is compared. The analyzed 

system works over correlated Weibull fading channels in the presence of cochannel 

interference (CCI) where the output signal choice is done using desired signal algorithm. 

Results are graphically presented showing the influence of number of diversity branches, 

correlation coefficient and ratio of average powers of desired and interference signal.  
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1. INTRODUCTION 

Transmitted signal in wireless communication is corrupted by fading and cochannel 

interference (CCI) therefore the wireless systems can benefit greatly by channel estimation. 

Since channel estimation cannot be done perfectly, different fading models are used in 

order to predict as accurately as possible the signal at the receiving point. The most 

frequently used statistical models for describing the fading envelope of the received signal 

are Rayleigh, Rician, Nakagami and Weibull. This paper focuses on Weibull distribution 

since it is simple and flexible yet not exploited as much as the other models. It represents 

an excellent fit to experimental fading channel measurements for indoor [1], [2] and 

outdoor [3]-[5] environments. 
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 Diversity techniques provide inexpensive way to improve performance of wireless 

communication. The concept of diversity techniques is simultaneous reception of the same 

radio signal over two or more paths in order to increase the overall signal-to-noise ratio 

(SNR) [6]. The diversity paths can be separated by space, frequency or time and in all cases 

some redundancy in time, frequency and/or spatial domain is required [7]. Compared with 

other diversity techniques, space diversity is most commonly used technique since it is 

power- and bandwidth-efficient [8]. If the best of the received signals is selected or if they 

are properly combined, the outage time can be substantially reduced [9]. Depending on the 

communication system complexity restrictions and the amount of channel state information 

(CSI) available at the receiver, there are several principal types of combining techniques 

within space diversity. Combining techniques like maximal ratio combining (MRC) and 

equal-gain combining (EGC) require some amount of the channel state information of 

received signal and separate receiver chain for each branch of the diversity system that 

results in system complexity increase. On the other hand, selection combining (SC) 

receiver processes only one of the diversity branches at the time and it is much simpler 

and cheaper for practical realization [6]. 

In interference-limited environment, where the level of CCI is sufficiently high compared 

to noise, one of the following combining algorithms is used: the desired signal algorithm, the 

signal-to-interference ratio (SIR) algorithm and the total signal algorithm [10]. In this paper 

the algorithm based on desired signal is analyzed. L-branch EGC and MRC receivers 

operating over non identical Weibull fading channels have been considered in [11]. 

Performance analysis of digital communications receivers over Weibull fading channels that 

employ desired signal algorithm was investigated in [12] for dual-branch and in [13] for 

triple-branch diversity receiver. 

SC diversity in interference-limited environment under Weibull fading scenario (desired 

signal as well as CCI experience Weibull fading) was considered in [11], [14]-[17]. In [14], 

assuming that diversity branches are uncorrelated, analytical expression for the outage 

probability was derived. Independent fading assumes antenna elements to be placed 

sufficiently far apart. However, in practice due to insufficient spacing between antennas 

when diversity is applied on small terminals, correlation between diversity branches exists. 

Study investigating performance of dual-branch, triple-branch and L-branch SC diversity 

operating over correlated Weibull fading channels was reported in [15], [16] and [17], 

respectively.  

This paper presents the comparison of outage probability for dual-branch and triple-branch 

SC diversity system applying desired signal algorithm. Expressions for probability density 

function (PDF) for dual- and triple-branch at the output of selection combining receiver are 

presented and applied to analyze and compare the performance of those two systems. In this 

paper outage probability was used as performance measure indicator. Numerical results 

obtained for two previously mentioned systems are graphically presented for different 

correlation coefficient, fading severity and average SIR at the input, showing the system 

performance change when the number of diversity branches increases from two to three.  
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2. SYSTEM AND CHANNEL MODEL 

We consider a SC diversity system with two and three branches in interference-limited 

Weibull fading environment. In small size terminals, where diversity systems are applied, 

it is not possible to separate the branches completely. As a result, there is degradation of 

diversity gain.  

In such case, desired signal envelopes (x1, x2) and CCI envelopes (y1, y2) experience 

correlative Weibull fading with joint (PDF) for dual-branch system [19, eq. (11)] 
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and for triple-branch system [19, eq. (23) for L=3] 
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where ρ represents branch correlation coefficient (0≤ρ≤1), β is Weibull fading parameter 

which expresses fading severity (β>0), Ω i

di ix


  and Ω i

ci iy


  are the average powers 

of desired and interference signal at i-th branch ( 1,2)i  , respectively. ( )nI  is the 

modified Bessel of the first kind and n-th order [18, eq. (8.445)]. 

For the system that chooses the output signal according to DS algorithm, joint PDF of 

desired signal and interference at the output of dual-branch SC receiver is [12, eq. (4)] 
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where ( , )a b  represents incomplete Gama function [18, eq. (8.350/1)]. 

For triple-branch receiver joint PDF of desired signal and interference at the output is [13, 

eq. (4)] 

31 1 1 2

1 2

3 4 2 32 1

3 4

6 3 3 1

5 6

( 1)

1 1 2 2 2 3

, 0

( 1)

2 3 1 4 3

, 0

( 1)

3 5 1 5 6 2

, 0

( , ) exp[ ] ( 1, (1 ) ) ( 1, )

exp[ (1 ) ] ( 1, ) ( 1, )

exp[ ] ( 1, ) ( 1, (1

k

xy

k k

k k

k k

k

k k

f x y A B x Q x k k Q x k Q x

C x Q x k Q x k Q x

D x Q x k Q x k k Q

  

  

  

  

  

 







 









     



    

    





 2) ) ,x


 
    

(6) 

where 

1 2 3

2

d1 d2 d3(
,

Ω Ω Ω 1 ) x
A

  





 di

1
,

(1 )Ω
iQ




  
3 4

5

5

3 4

3 42 2

2( )

3
d1 d2 d315

( 1) ( 1)2
, 0 3 4 1 1 3 3

Ω Ω Ω (1 )
 exp ,

Ω Ω ( ! !)

k k

k k

k kc c

y
C y

k k Q Q








 






 



 
 

      
  


 

 

 

5 6

6

6

5 5 6

5 63 3

2

3
d1 d2 d316

1 ( 1)2
, 0 5 6 1 1 2 2

Ω Ω Ω (1 )
  xe .

Ω Ω ( !
p

( )!) (1 )

k k

k k k
k kc c

y
D y

k k Q Q








  






  


 
 
 

 
 

  



  

 

Instantaneous values of SIR on the first, second and third diversity branch are defined 

as z1=x1/y1, z2=x2/y2 and z3=x3/y3, respectively. The PDF of instantaneous SIR at the SC 

output can be calculated using following equation [12, eq (5)] 
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where |J| represents Jacobian of the transformation that can be calculated as 
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.
dx

J y
dz

   

By substituting (5) in (7) and after integration, final expression for the PDF of 

instantaneous SIR at the dual-branch receiver is derived as [12, eq. (6)] 
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where ( )  represents Gamma function [18, eq. (8.310/1)]. 

 

Following the same pattern, by substituting (6) in (7), final expression for the PDF of 

instantaneous SIR at the triple-branch receiver is [13, eq. (6)] 
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3. SYSTEM PERFORMANCE ANALYSIS 

The performance of dual- and triple-branch SC system operating over correlated Weibull 

fading channels is compared using analytically obtained expressions for the PDF of 

instantaneous SIR at the output. Outage probability is considered in this paper as performance 
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indicator since it is very useful performance measure in wireless communication systems 

especially when cochannel interference is present. The influence of fading severity, correlation 

coefficient and average powers is studied and numerical results for outage probability are 

compared for SC diversity system with two and three branches. 

3.1. Outage probability 

As a basic system performance measure, outage probability, Pout, can be defined as the 

probability that the output SIR drops below a specified threshold zth 
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This section analyses the behavior of balanced (S=Ωd1/ Ωc1=Ωd2/ Ωc2=Ωd3/ Ωc3) dual- 

and triple-branch SC diversity where Si=Ωdi/Ωci represents the average SIR at the input of 

the i-th branch of selection combiner. 
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Fig. 1 Influence of fading severity on outage probability for dual- and triple- branch SC system   

Fig. 1 represents outage probability of SC receiver with two and three branches that 

employs desired signal algorithm for different values of fading severity. Outage probability 

is lower therefore the system performance is better, for higher Weibull fading parameter β, 

for the values of outage threshold lower than 0 dB. For higher values of outage threshold, the 

system performance deteriorates as Weibull fading parameter increases. Also, it can be seen 

that the outage probability for the system with three branches is lower than the outage 

probability for the system with two branches. 

Relative decrease in outage probability due to larger number of diversity branches can 

be defined as 

1
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For proposed values of β=4.5, S=10 dB and ρ=0.7, relative decrease of outage probability 

is 2,3 28.94%  and for β=1.5, S=10 dB and ρ=0.7 there is 2,3 29.1%   relative decrease. 
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Fig. 2 Influence of correlation coefficient on outage probability  

for dual- and triple- branch SC system   

Fig. 2 illustrates the influence of distance between the diversity branches. The figure 

confirms that the system performance is better when the distance between the branches is 

greater. It is noticeable that the system performance is much better when a triple-branch 

receiver is used. In terms of correlation influence, for the system with no correlation, 

relative decrease of outage probability is 2,3 = 32.67% while, for the system with high 

correlation (ρ=0.9) the relative decrease is 2,3 = 21.6%. 

The influence of average SIR at the input on outage probability for correlated dual- and 

triple- branch SC system is presented on Fig. 3. The outage probability decreases as 

number of branches is higher, which is expected. Also, the increase of average SIR at the 

input results in better system performance. 
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Fig. 3 Influence of average SIR at the input on outage probability  

for dual- and triple- branch SC system   
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4. CONCLUSION 

This paper compares the outage probability of dual-branch and triple-branch SC 

receiver operating over correlated Weibull fading channels in the presence of Weibull 

distributed CCI for the case when desired signal decision algorithm is applied. Numerical 

results for outage probability were graphically presented describing the influence of 

correlation coefficient, fading severity and average SIR at the input on overall system 

performance for both diversity systems. The results obtained for dual-branch and triple-

branch receiver were compared showing that system reliability increases as the number of 

receiving branches changes from two to three.  
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