
Badisa Sowmya Sri* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.5, August – September 2016, 3861–3866.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 3861

High Throughput Implementation Of 64

Bit Modified Wallance Mac Using

Multioperand Adders
BADISA SOWMYA SRI

M.Tech Student, Dept of ECE

Avanthi Institute of Engineering & Technology

Visakhapatnam, A.P, India

S.V.SUDHEER KUMAR
Assistant Professor, Dept of ECE

Avanthi Institute of Engineering & Technology

Visakhapatnam, A.P, India

 Abstract: Although redundant addition is widely used to design parallel multioperand adders for ASIC

implementations, the use of redundant adders on Field Programmable Gate Arrays (FPGAs) has

generally been avoided. The main reasons are the efficient implementation of carry propagate adders

(CPAs) on these devices (due to their specialized carry-chain resources) as well as the area overhead of

the redundant adders when they are implemented on FPGAs. This project presents different approaches

to the efficient implementation of generic carry-save compressor trees.

In computing, especially digital signal processing, the multiply–accumulate operation is a common step

that computes the product of two numbers and adds that product to an accumulator. The hardware unit

that performs the operation is known as a multiplier–accumulator (MAC, or MAC unit); the operation

itself is also often called a MAC or a MAC operation. Power dissipation is one of the most important

design objectives in integrated circuit, after speed. Digital signal processing (DSP) circuits whose main

building block is a Multiplier-Accumulator (MAC) unit. High speed and low power MAC unit is desirable

for any DSP processor. This is because speed and throughput rate are always the concerns of DSP system.

MAC unit consists of adder, multiplier, and an accumulator it preserves a unique mapping between input

and output vector of the particular circuit. In this MAC operation is performed in two parts Partial

Product Generation (PPG) circuit and Multi-Operand Addition (MOA) circuit

Keywords: Multiplier–Accumulator (MAC); Partial Product Generation (PPG); Multi-Operand Addition;

I. INTRODUCTION

For many of the DSP and video processing

applications the multi-input addition is an

important operation. Using trees of carry-propagate

adders multi-input addition has traditionally been

implemented on FPGAs. Because to compressor

trees the traditional lookup table that is LUT

structure of FPGAs is not amenable so due does

that thing this approach has been used in ASIC

technology and these also used to implement

parallel multiplication and multi-input addition. To

map compressor trees onto the general logic of an

FPGA we developed a greedy heuristic in this

method. To design parallel multi operand adders

for ASIC implementations although redundant

addition is widely used, the use of redundant adders

on Field Programmable Gate Arrays that is simply

define as FPGAs has generally been avoided.

Generally the Binary multi operand adders are

arranged in two ways that is one in an array of rows

and the second one as in a tree-like structure.

Where to reduce m operands into a final one each

row of adders reduces one further operand in an

array configuration due to that m levels of adders

are required. In a m-operand adder tree the number

of logic levels is either log2(m) nor log2(m) − 1

levels for a signed-digit or a carry-save adder tree.

The tree configurations are usually preferred

because though the array a more regular routing the

hardware cost of both configurations is similar.

Where the multiplier unit is an inevitable

component in many of the digital signal processing

(DSP) applications are has involving

multiplications. Modified Wallace multiplier unit is

used for high performance digital signal with the

processing systems. The DSP applications include

many of the filtering, convolution, and inner

products. Most of the digital signal processing

methods use nonlinear in the functions such as

discrete cosine transform (DCT) or which can

discrete wavelet transforms (DWT). Because they

are basically accomplished by repetitive application

of multiplication and addition, the speed of the

Multiplication and addition arithmetic determines

the execution speed and performance of the entire

calculation. Multiplication-and-accumulate

operations are typical for digital filters. Therefore,

the functionality of the Multiplier unit enables

high-speed filtering and other processing typical

for DSP applications.

II. OVERVIEW

The first semiconductor chips held one transistor

each. Subsequent advances added more and more

transistors, and, as a consequence, more individual

functions or systems were integrated over time.

The first integrated circuits held only a few

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Innovative Technology and Research (IJITR)

https://core.ac.uk/display/228548874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Badisa Sowmya Sri* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.5, August – September 2016, 3861–3866.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 3862

devices, perhaps as many as ten diodes, transistors,

resistors and capacitors, making it possible to

fabricate one or more logic gates on a single

device. Now known retrospectively as "small-scale

integration" (SSI), improvements in technique led

to devices with hundreds of logic gates, known as

large-scale integration (LSI), i.e. systems with at

least a thousand logic gates. Current technology

has moved far past this mark and today's

microprocessors have many millions of gates and

hundreds of millions of individual transistors

At one time, there was an effort to name and

calibrate various levels of large-scale integration

above VLSI. Terms like Ultra-large-scale

Integration (ULSI) were used. But the huge number

of gates and transistors available on common

devices has rendered such fine distinctions moot.

Terms suggesting greater than VLSI levels of

integration are no longer in widespread use. Even

VLSI is now somewhat quaint, given the common

assumption that all microprocessors are VLSI or

better

III. MAC OPERATION

 The Multiplier-Accumulator (MAC) operation is

the key operation not only in DSP applications but

also in multimedia information processing and

various other applications. As mentioned above, as

like the MAC unit consist of multiplier, adder and

register/accumulator. In this paper, we used 64 bit

modified Wallace multiplier. The MAC inputs are

obtained from the memory location and given to

the multiplier block. This will be useful in 64 bit

digital signal processor. The input which is being

fed from the memory location is 64 bit. When the

input is given to the multiplier it starts computing

value and the output will be126 bits for the given

64 bit input and hence.

The function of the MAC unit is given by the

following equation:

F= ∑PiQi (1)

The output of carry save adder is 127 bit i.e. one bit

is for the carry that is define as 126bits+ 1 bit.

Then, the output is given to the accumulator

register. In this design is parallel in Parallel Out

that is PIPO where the accumulator register used.

All the output values in parallel since the bits are

huge and also carry save adder produces, where the

input bits are taken in parallel and output is taken

in parallel PIPO register is used. Fed back as one of

the input to the carry save adder the output of the

accumulator register is taken out. The figure

1shows the basic architecture of MAC unit.

Figure 1: Basic Architecture of MAC unit

IV. VLSI

VLSI stands for "Very Large Scale Integration".

This is the field which Involves packing more and

more logic devices into smaller and smaller areas.

 Simply we say Integrated circuit is many

transistors on one chip.

 Design/manufacturing of extremely small,

complex circuitry using modified

semiconductor material.

 Integrated circuit (IC) may contain millions of

transistors, each a few mm in size.

 Applications wide ranging: most electronic

logic devices.

V. VLSI DESIGN FLOW

Digital Circuit

Digital ICs of SSI and MSI types have become

universally standardized and have been accepted

for use. Whenever a designer has to realize a digital

function, he uses a standard set of ICs along with a

minimal set of additional discrete circuitry.

Consider a simple example of realizing a function

as

Q n+1 = Q n + (A B)

Here on, A, and B are Boolean variables, with Q n

being the value of Q at the nth time step. Here A B

signifies the logical AND of A and B; the ‘+’

symbol signifies the logical OR of the logic

variables on either side. A circuit to realize the

function is shown in Figure. The circuit can be

realized in terms of

VLSI and systems

These advantages of integrated circuits translate

into advantages at the system level:

Badisa Sowmya Sri* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.5, August – September 2016, 3861–3866.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 3863

 Smaller physical size. Smallness is often an

advantage in itself-consider portable

televisions or handheld cellular telephones.

 Lower power consumption. Replacing a

handful of standard parts with a single chip

reduces total power consumption. Reducing

power consumption has a ripple effect on the

rest of the system: a smaller, cheaper power

supply can be used; since less power

consumption means less heat, a fan may no

longer be necessary; a simpler cabinet with

less shielding for electromagnetic shielding

may be feasible, too.

 Reduced cost. Reducing the number of

components, the power supply requirements,

cabinet costs, and so on, will inevitably

reduce system cost. The ripple effect of

integration is such that the cost of a system

built from custom ICs can be less, even

though the individual ICs cost more than the

standard parts they replace.

Understanding why integrated circuit technology

has such profound influence on the design of

digital systems requires understanding both the

technology of IC manufacturing and the economics

of ICs and digital system

VI. OPERATORS

Arithmetic Operators:

These perform arithmetic operations. The + and -

can be used as either unary (-z) or binary (x-y)

operators.

Example: reg[3:0] a, c, f, g, count;

+ (addition)

- (subtraction)

* (multiplication)

/ (division)

% (modulus)

f = a + c;

g = c - n;

count = (count +1)%16; //Can count 0 to 15.

Relational Operators:

Relational operators compare two operands and

return a single bit 1or 0. These operators synthesize

into comparators.

< (less than)

<= (less than or equal to)

> (greater than)

>= (greater than or equal to)

== (equal to)

!= (not equal to)

Example :if (x = = y) e = 1;

Else e = 0;

// Compare in 2’s compliment; a>b

reg [3:0] a,b;

if (a[3]= = b[3]) a[2:0] > b[2:0];

Else b[3];

Wire and reg variables are positive Thus (-3’b001)

= = 3’b111 and (-3d001)>3d110. However for

integers 1< 6.

Bit-wise Operators:

Bit-wise operators do a bit-by-bit comparison

between two operands. However set “Reduction

Operators”.

~ (bitwise NOT)

& (bitwise AND)

| (bitwiseOR)

^ (bitwise XOR)

~^ or ^~ (bitwise XNOR)

Example : module and2 (a, b, c);

input [1:0] a, b;

output [1:0] c;

assign c = a & b;

end module

Logical Operators:

Logical operators return a single bit 1 or 0. They

are the same as bit-wise operators only for single

bit operands. They can work on expressions,

integers or groups of bits, and treat all values that

are nonzero as “1”. Logical operators are typically

used in conditional (if ... else) statements since they

work with expressions.

! (logical NOT)

&& (logical AND)

|| (logical OR)

Example :

wire[7:0] x, y, z; // x, y and z are multibit variables.

reg a;

. . .

if ((x == y) && (z)) a = 1; // a = 1 if x equals y,

and z is nonzero.

else a = !x; // a =0 if x is anything but zero.

Badisa Sowmya Sri* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.5, August – September 2016, 3861–3866.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 3864

Reduction Operators

 Reduction operators operate on all the bits of

an operand vector and return a single-bit value.

These are the unary (one argument) form of the bit-

wise operators above.

& (reduction AND)

| (reduction OR)

~& (reduction NAND)

~| (reduction NOR)

^ (reduction XOR)

~^ or ^~ (reduction XNOR)

Example : module chk_zero(a,z);

 input [2:0] a;

 output z;

 assign z = ~| a;

 Endmodule

Shift Operators

Shift operators shift the first operand by the

number of bits specified by the second operand.

Vacated positions are filled with zeros for both left

and right shifts (There is no sign extension).

<< (shift left)

>> (shift right)

Example:

assign c = a << 2; /* c = a shifted left 2 bits;

vacant positions are filled with 0’s */

Concatenation Operator:

The concatenation operator combines two or more

operands to form a larger vector

{ } (concatenation)

Example:

Wire [1:0] a, b; wire [2:0] x; wire [3;0] y, Z;

assign x = {1’b0, a}; // x[2]=0, x[1]=a[1],

x[0]=a[0]

assign y = {a, b}; /* y[3]=a[1], y[2]=a[0],

y[1]=b[1],

y[0]=b[0] */

assign {cout, y} = x + Z; // Concatenation of a

result

Replication Operator:

The replication operator makes multiple copies of

an item.

{n{item}} (n fold replication of an

item)

Example :

wire [1:0] a, b; wire [4:0] x;

Assign x = {2{1’b0}, a}; // Equivalent to x = {0,

0,a }

Assign y = {2{a}, 3{b}}; //Equivalent to y =

{a,a,b,b}

Operator Precedence:

The below table shows the precedence of operators

from highest to lowest. Operators on the same level

evaluate from left to right. It is strongly

recommended to use parentheses to define order of

precedence and improve the readability of your

code.

a) Operator Priority:

A clear understanding of the operator precedence

makes room for a compact design description. But

it may lead to ambiguity and to inadvertent errors.

Whenever one is not sure of the operator priorities,

it is better to resort to the use of parentheses and

ensure clarity and accuracy of expressions.

Entering Synthesis Options

Synthesis options enable you to modify the

behavior of the synthesis tool to make

optimizations according to the needs of the design.

One commonly used option is to control synthesis

to make optimizations based on area or speed.

Other options include controlling the maximum

fan-out of a flip-flop output or setting the desired

frequency of the design.

To enter synthesis options, do the following:

1. In the Hierarchy pane of the Project Navigator

Design panel, select stopwatch.vhd (or

stopwatch.v).

2. In the Processes pane, right-click the Synthesize

process, and select Process Properties.

3. Under the Synthesis Options tab, set the Netlist

Hierarchy property to a value of Rebuilt.

4. Click OK.

The RTL Viewer allows you to select the portions

of the design to display as schematic. When the

schematic is displayed, double-click on the symbol

to push into the schematic and view the various

design elements and connectivity. Right-click the

schematic to view the various operations that can

be performed in the schematic viewer.

Badisa Sowmya Sri* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.5, August – September 2016, 3861–3866.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 3865

Processes available for synthesis using the Synplify

and Synplify Pro software are as follows:

• View Synthesis Report

Lists the synthesis optimizations that were

performed on the design and gives a brief timing

and mapping report.

• View RTL Schematic

Accessible from the Launch Tools hierarchy, this

process displays the Synplify or Synplify Pro

software with a schematic view of your HDL code.

• View Technology Schematic

Accessible from the Launch Tools hierarchy, this

process displays the Synplify or Synplify Pro

software with a schematic view of your HDL code

mapped to the primitives associated with the target

technology.

Entering Synthesis Options and Synthesizing the

Design

To synthesize the design, set the global synthesis

options as follows:

1. In the Hierarchy pane of the Project Navigator

Design panel, select stopwatch.vhd (or

stopwatch.v).

2. In the Processes pane, right-click Synthesize,

and select Process Properties.

3. In the Synthesis Options dialog box, select the

Write Vendor Constraint File box.

4. Click OK to accept these values.

5. Double-click the Synthesize process to run

synthesis.

Note: This step can also be done by selecting

stopwatch.vhd (or stopwatch.v), clicking

Synthesize in the Processes pane, and selecting

Process > Run.

Analyzing the Signals

Now the DCM signals can be analyzed to verify

that they work as expected. The CLK0_OUT must

be 50 MHz and the CLKFX_OUT should be

approximately 26 MHz. The DCM outputs are

valid only after the LOCKED_OUT signal is high;

therefore, the DCM signals are analyzed only after

the LOCKED_OUT signal has gone high.

ISim can add markers to measure the distance

between signals. To measure the

CLK0_OUT, do the following:

1. If necessary, zoom in on the waveform using the

local Zoom toolbar buttons.

2. In the local waveform viewer toolbar, click the

Snap to Transition toolbar button.

3. Click on the first rising edge transition on the

CLK0_OUT signal after the LOCKED_OUT signal

has gone high, then drag the cursor to the right to

the next rising edge transition of the CLK0_OUT

signal.

4. At the bottom of the waveform window, the start

point time, end point time, and delta times are

shown. The delta should read 20.0 ns. This

converts to 50 MHz which is the input frequency

from the test bench, which in turn is the DCM

CLK0 output.

5. Measure CLKFX_OUT using the same steps as

above. The measurement should read 38.5 ns. This

equals approximately 26 MHz.

Adding Dividers

xilinx has the capability to add dividers in the

Wave window to make it easier to differentiate the

signals. To add a divider called DCM Signals, do

the following:

1. Right-click anywhere in the signal section of the

Wave window. If necessary, undock the window

and maximize the window for a larger view of the

waveform.

2. Select Insert Divider.

3. Enter DCM Signals in the Divider Name box.

4. Click OK.

Badisa Sowmya Sri* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.5, August – September 2016, 3861–3866.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 3866

VII. RESULTS

Schematics:

Rtl Schematics:

Waveforms:

VIII. CONCLUSION

The Design of high performance 64 bit

Multiplier-and-Accumulator (MAC) was

implemented in this paper. The total MAC unit

operates at a frequency of 215 MHz’s with a

total power dissipation of 155.532 mW. Since

the delay of 64 bit MAC is less, this design

can be used in the system which requires high

performance in processors involving large

number of bits of the operation. The

functionality of the MAC is verified using XILINX

ISE 12.3i and synthesized using XILINX

synthesizer.

IX. REFERENCES

[1] Javier Hormigo, Julio Villalba, Member,

IEEE, and Emilio L. Zapata, “ Multioperand

RedundantAdders on FPGAs” ieee

transactions on computers, vol. 62, no. 10,

october 2013

[2] B. Cope, P. Cheung, W. Luk, and L. Howes,

“Performance Comparison of Graphics

Processors to Reconfigurable Logic: ACase

Study,” IEEE Trans. Computers, vol. 57, no.

4, pp. 433-446,Apr. 2010.

[3] S. Dikmese, A. Kavak, K. Kucuk, S. Sahin,

A. Tangel, and H. Dincer, “Digital Signal

Processor against Field Programmable Gate

Array Implementations of Space-Code

Correlator Beam former for Smart

Antennas,” IET Microwaves, Antennas

Propagation, vol. 4, no. 5,pp. 573-577, May

2010.

[4] S. Roy and P. Banerjee, “An Algorithm for

Trading off Quantization Error with

Hardware Resources for MATLAB-based

FPGA Design, ”IEEE Trans. Computers,

vol. 54, no. 5, pp. 666-676, July 2005.

[5] F. Schneider, A. Agarwal, Y.M. Yoo, T.

Fukuoka, and Y. Kim,“A Fully

Programmable Computing Architecture for

Medical Ultrasound Machines,” IEEE

Trans. Information Technology in

Biomedicine, vol. 14, no. 2, pp. 536-540,

Mar. 2010.

[6] J. Hill, “The Soft-Core Discrete-Time

Signal Processor Peripheral[Applications

Corner],” IEEE Signal Processing

Magazine, vol. 26,no. 2, pp. 112-115, Mar.

2007.

[7] J.S. Kim, L. Deng, P. Mangalagiri, K. Irick,

K. Sobti, M. Kandemir,V. Narayanan, C.

Chakrabarti, N. Pitsianis, and X. Sun, “An

Automated Framework for Accelerating

Numerical Algorithms on Reconfigurable

Platforms Using Algorithmic/Architectural

Optimization,” IEEE Trans. Computers, vol.

56, no. 12, pp. 1654-1665, Dec. 2007.

[8] H. Lange and A. Koch, “Architectures and

Execution Models for Hardware/Software

Compilation and their System-Level

Realization,” IEEE Trans. Computers, vol.

57, no. 10, pp. 1363-1355, Oct. 2010.

[9] L. Zhuo and V. Prasanna, “High-

Performance Designs for Linear Algebra

Operations on Reconfigurable Hardware,”

IEEE Trans. Computers, vol. 55, no. 6, pp.

1055-1051, Aug. 2006.

[10] C. Mancillas-Lopez, D. Chakraborty, and

F.R. Henriquez, “Reconfigurable Hardware

Implementations of Tweakable Enciphering

Schemes,” IEEE Trans. Computers,, vol. 57,

no. 11, pp. 1545-1561, Nov. 2010.

[11] T. Guneysu, T. Kasper, M. Novotny, C.

Paar, and A. Rupp, “Cryptanalysis with

COPACOBANA,” IEEE Trans. Computers,

vol. 55, no. 11, pp. 1476-1513, Nov. 2006.

