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 Abstract: Although redundant addition is widely used to design parallel multioperand adders for ASIC 

implementations, the use of redundant adders on Field Programmable Gate Arrays (FPGAs) has 

generally been avoided. The main reasons are the efficient implementation of carry propagate adders 

(CPAs) on these devices (due to their specialized carry-chain resources) as well as the area overhead of 

the redundant adders when they are implemented on FPGAs. This project presents different approaches 

to the efficient implementation of generic carry-save compressor trees.  

In computing, especially digital signal processing, the multiply–accumulate operation is a common step 

that computes the product of two numbers and adds that product to an accumulator. The hardware unit 

that performs the operation is known as a multiplier–accumulator (MAC, or MAC unit); the operation 

itself is also often called a MAC or a MAC operation. Power dissipation is one of the most important 

design objectives in integrated circuit, after speed. Digital signal processing (DSP) circuits whose main 

building block is a Multiplier-Accumulator (MAC) unit. High speed and low power MAC unit is desirable 

for any DSP processor. This is because speed and throughput rate are always the concerns of DSP system. 

MAC unit consists of adder, multiplier, and an accumulator it preserves a unique mapping between input 

and output vector of the particular circuit. In this MAC operation is performed in two parts Partial 

Product Generation (PPG) circuit and Multi-Operand Addition (MOA) circuit 

Keywords: Multiplier–Accumulator (MAC); Partial Product Generation (PPG); Multi-Operand Addition;  

I. INTRODUCTION 

For many of the DSP and video processing 

applications the multi-input addition is an 

important operation. Using trees of carry-propagate 

adders multi-input addition has traditionally been 

implemented on FPGAs. Because to compressor 

trees the traditional lookup table that is LUT 

structure of FPGAs is not amenable so due does 

that thing this approach has been used in ASIC 

technology and these also used to implement 

parallel multiplication and multi-input addition. To 

map compressor trees onto the general logic of an 

FPGA we developed a greedy heuristic in this 

method. To design parallel multi operand adders 

for ASIC implementations although redundant 

addition is widely used, the use of redundant adders 

on Field Programmable Gate Arrays that is simply 

define as FPGAs has generally been avoided.  

Generally the Binary multi operand adders are 

arranged in two ways that is one in an array of rows 

and the second one as in a tree-like structure. 

Where to reduce m operands into a final one each 

row of adders reduces one further operand in an 

array configuration due to that m levels of adders 

are required. In a m-operand adder tree the number 

of logic levels is either log2(m) nor log2(m) − 1 

levels for a signed-digit or a carry-save adder tree. 

The tree configurations are usually preferred 

because though the array a more regular routing the 

hardware cost of both configurations is similar. 

Where the multiplier unit is an inevitable 

component in many of the digital signal processing 

(DSP) applications are has involving 

multiplications. Modified Wallace multiplier unit is 

used for high performance digital signal with the 

processing systems. The DSP applications include 

many of the filtering, convolution, and inner 

products. Most of the digital signal processing 

methods use nonlinear in the functions such as 

discrete cosine transform (DCT) or which can 

discrete wavelet transforms (DWT). Because they 

are basically accomplished by repetitive application 

of multiplication and addition, the speed of the 

Multiplication and addition arithmetic determines 

the execution speed and performance of the entire 

calculation. Multiplication-and-accumulate 

operations are typical for digital filters. Therefore, 

the functionality of the Multiplier unit enables 

high-speed filtering and other processing typical 

for DSP applications. 

II. OVERVIEW 

The first semiconductor chips held one transistor 

each. Subsequent advances added more and more 

transistors, and, as a consequence, more individual 

functions or systems were integrated over time. 

The first integrated circuits held only a few 
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devices, perhaps as many as ten diodes, transistors, 

resistors and capacitors, making it possible to 

fabricate one or more logic gates on a single 

device. Now known retrospectively as "small-scale 

integration" (SSI), improvements in technique led 

to devices with hundreds of logic gates, known as 

large-scale integration (LSI), i.e. systems with at 

least a thousand logic gates. Current technology 

has moved far past this mark and today's 

microprocessors have many millions of gates and 

hundreds of millions of individual transistors  

At one time, there was an effort to name and 

calibrate various levels of large-scale integration 

above VLSI. Terms like Ultra-large-scale 

Integration (ULSI) were used. But the huge number 

of gates and transistors available on common 

devices has rendered such fine distinctions moot. 

Terms suggesting greater than VLSI levels of 

integration are no longer in widespread use. Even 

VLSI is now somewhat quaint, given the common 

assumption that all microprocessors are VLSI or 

better   

III. MAC OPERATION 

 The Multiplier-Accumulator (MAC) operation is 

the key operation not only in DSP applications but 

also in multimedia information processing and 

various other applications. As mentioned above, as 

like the MAC unit consist of multiplier, adder and 

register/accumulator. In this paper, we used 64 bit 

modified Wallace multiplier. The MAC inputs are 

obtained from the memory location and given to 

the multiplier block. This will be useful in 64 bit 

digital signal processor. The input which is being 

fed from the memory location is 64 bit. When the 

input is given to the multiplier it starts computing 

value and the output  will be126 bits for the given 

64 bit input and hence. 

The function of the MAC unit is given by the 

following equation: 

F= ∑PiQi   (1) 

The output of carry save adder is 127 bit i.e. one bit 

is for the carry that is define as 126bits+ 1 bit. 

Then, the output is given to the accumulator 

register. In this design is parallel in Parallel Out 

that is PIPO where the accumulator register used. 

All the output values in parallel since the bits are 

huge and also carry save adder produces, where the 

input bits are taken in parallel and output is taken 

in parallel PIPO register is used. Fed back as one of 

the input to the carry save adder the output of the 

accumulator register is taken out. The figure 

1shows the basic architecture of MAC unit. 

 

Figure 1: Basic Architecture of MAC unit 

IV. VLSI 

VLSI stands for "Very Large Scale Integration". 

This is the field which Involves packing more and 

more logic devices into smaller and smaller areas. 

 Simply we say Integrated circuit is many 

transistors on one chip. 

 Design/manufacturing of extremely small, 

complex circuitry using modified 

semiconductor material. 

 Integrated circuit (IC) may contain millions of 

transistors, each a few mm in size. 

 Applications wide ranging: most electronic 

logic devices. 

V. VLSI DESIGN FLOW 

Digital Circuit 

Digital ICs of SSI and MSI types have become 

universally standardized and have been accepted 

for use. Whenever a designer has to realize a digital 

function, he uses a standard set of ICs along with a 

minimal set of additional discrete circuitry. 

Consider a simple example of realizing a function 

as 

Q n+1 = Q n + (A B) 

Here on, A, and B are Boolean variables, with Q n 

being the value of Q at the nth time step. Here A B 

signifies the logical AND of A and B; the ‘+’ 

symbol signifies the logical OR of the logic 

variables on either side. A circuit to realize the 

function is shown in Figure. The circuit can be 

realized in terms of  

VLSI and systems 

These advantages of integrated circuits translate 

into advantages at the system level: 
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 Smaller physical size. Smallness is often an 

advantage in itself-consider portable 

televisions or handheld cellular telephones. 

 Lower power consumption. Replacing a 

handful of standard parts with a single chip 

reduces total power consumption. Reducing 

power consumption has a ripple effect on the 

rest of the system: a smaller, cheaper power 

supply can be used; since less power 

consumption means less heat, a fan may no 

longer be necessary; a simpler cabinet with 

less shielding for electromagnetic shielding 

may be feasible, too. 

 Reduced cost. Reducing the number of 

components, the power supply requirements, 

cabinet costs, and so on, will inevitably 

reduce system cost. The ripple effect of 

integration is such that the cost of a system 

built from custom ICs can be less, even 

though the individual ICs cost more than the 

standard parts they replace. 

Understanding why integrated circuit technology 

has such profound influence on the design of 

digital systems requires understanding both the 

technology of IC manufacturing and the economics 

of ICs and digital system 

VI. OPERATORS 

Arithmetic Operators: 

These perform arithmetic operations. The + and - 

can be used as either unary (-z) or binary (x-y) 

operators. 

Example: reg[3:0] a, c, f, g, count; 

+  (addition) 

-  (subtraction) 

*  (multiplication) 

/  (division) 

%  (modulus) 

f = a + c; 

g = c - n; 

count = (count +1)%16; //Can count 0 to 15. 

Relational Operators: 

Relational operators compare two operands and 

return a single bit 1or 0. These operators synthesize 

into comparators. 

<  (less than) 

<=  (less than or equal to) 

>  (greater than) 

>=  (greater than or equal to) 

==  (equal to) 

!=  (not equal to) 

Example :if (x = = y) e = 1; 

Else e = 0; 

// Compare in 2’s compliment; a>b 

reg [3:0] a,b; 

if (a[3]= = b[3]) a[2:0] > b[2:0]; 

Else b[3]; 

Wire and reg variables are positive Thus (-3’b001) 

= = 3’b111 and (-3d001)>3d110. However for 

integers  1< 6. 

Bit-wise Operators: 

Bit-wise operators do a bit-by-bit comparison 

between two operands. However set “Reduction 

Operators”. 

~   (bitwise NOT) 

&   (bitwise AND) 

|   (bitwiseOR) 

^              (bitwise XOR) 

~^ or ^~ (bitwise XNOR) 

Example : module and2 (a, b, c); 

input [1:0] a, b; 

output [1:0] c; 

assign c = a & b; 

end module 

Logical Operators: 

Logical operators return a single bit 1 or 0. They 

are the same as bit-wise operators only for single 

bit operands. They can work on expressions, 

integers or groups of bits, and treat all values that 

are nonzero as “1”. Logical operators are typically 

used in conditional (if ... else) statements since they 

work with expressions. 

!  (logical NOT) 

&&  (logical AND) 

||  (logical OR) 

Example : 

wire[7:0] x, y, z; // x, y and z are multibit variables. 

reg a; 

. . . 

if ((x == y) && (z)) a = 1; // a = 1 if      x equals y, 

and z is nonzero. 

else a = !x; // a =0 if x is anything but zero. 
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Reduction Operators 

         Reduction operators operate on all the bits of 

an operand vector and return a single-bit value. 

These are the unary (one argument) form of the bit-

wise operators above. 

&    (reduction AND) 

|    (reduction OR) 

~&    (reduction NAND) 

~|    (reduction NOR) 

^    (reduction XOR) 

~^ or ^~   (reduction XNOR) 

Example : module chk_zero(a,z); 

 input [2:0] a; 

 output z; 

 assign z = ~| a;  

 Endmodule 

Shift Operators 

Shift operators shift the first operand by the 

number of bits specified by the second operand. 

Vacated positions are filled with zeros for both left 

and right shifts (There is no sign extension). 

<<  (shift left) 

>>  (shift right) 

Example: 

assign c = a << 2; /* c = a shifted left 2 bits; 

vacant positions are filled with 0’s */ 

Concatenation Operator:  

The concatenation operator combines two or more 

operands to form a larger vector 

{ }     (concatenation) 

Example: 

Wire [1:0] a, b; wire [2:0] x; wire [3;0] y, Z; 

assign x = {1’b0, a}; // x[2]=0, x[1]=a[1], 

x[0]=a[0] 

assign y = {a, b}; /* y[3]=a[1], y[2]=a[0], 

y[1]=b[1], 

y[0]=b[0] */ 

assign {cout, y} = x + Z; // Concatenation of a 

result 

Replication Operator: 

The replication operator makes multiple copies of 

an item. 

{n{item}}  (n fold replication of an 

item) 

Example :  

wire [1:0] a, b; wire [4:0] x; 

Assign x = {2{1’b0}, a}; // Equivalent to x = {0, 

0,a } 

Assign y = {2{a}, 3{b}}; //Equivalent to y = 

{a,a,b,b} 

Operator Precedence: 

The below table shows the precedence of operators 

from highest to lowest. Operators on the same level 

evaluate from left to right. It is strongly 

recommended to use parentheses to define order of 

precedence and improve the readability of your 

code. 

a) Operator Priority: 

A clear understanding of the operator precedence 

makes room for a compact design description. But 

it may lead to ambiguity and to inadvertent errors. 

Whenever one is not sure of the operator priorities, 

it is better to resort to the use of parentheses and 

ensure clarity and accuracy of expressions.  

Entering Synthesis Options 

Synthesis options enable you to modify the 

behavior of the synthesis tool to make 

optimizations according to the needs of the design. 

One commonly used option is to control synthesis 

to make optimizations based on area or speed. 

Other options include controlling the maximum 

fan-out of a flip-flop output or setting the desired 

frequency of the design. 

To enter synthesis options, do the following: 

1. In the Hierarchy pane of the Project Navigator 

Design panel, select stopwatch.vhd (or 

stopwatch.v). 

2. In the Processes pane, right-click the Synthesize 

process, and select Process Properties. 

3. Under the Synthesis Options tab, set the Netlist 

Hierarchy property to a value of Rebuilt. 

4. Click OK. 

The RTL Viewer allows you to select the portions 

of the design to display as schematic. When the 

schematic is displayed, double-click on the symbol 

to push into the schematic and view the various 

design elements and connectivity. Right-click the 

schematic to view the various operations that can 

be performed in the schematic viewer.  
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Processes available for synthesis using the Synplify 

and Synplify Pro software are as follows: 

• View Synthesis Report 

Lists the synthesis optimizations that were 

performed on the design and gives a brief timing 

and mapping report. 

• View RTL Schematic 

Accessible from the Launch Tools hierarchy, this 

process displays the Synplify or Synplify Pro 

software with a schematic view of your HDL code. 

• View Technology Schematic 

Accessible from the Launch Tools hierarchy, this 

process displays the Synplify or Synplify Pro 

software with a schematic view of your HDL code 

mapped to the primitives associated with the target 

technology. 

Entering Synthesis Options and Synthesizing the 

Design 

To synthesize the design, set the global synthesis 

options as follows: 

1.  In the Hierarchy pane of the Project Navigator 

Design panel, select stopwatch.vhd (or 

stopwatch.v). 

2.  In the Processes pane, right-click Synthesize, 

and select Process Properties. 

3.  In the Synthesis Options dialog box, select the 

Write Vendor Constraint File box. 

4.  Click OK to accept these values. 

5.  Double-click the Synthesize process to run 

synthesis. 

Note: This step can also be done by selecting 

stopwatch.vhd (or stopwatch.v), clicking 

Synthesize in the Processes pane, and selecting 

Process > Run. 

Analyzing the Signals 

Now the DCM signals can be analyzed to verify 

that they work as expected. The CLK0_OUT must 

be 50 MHz and the CLKFX_OUT should be 

approximately 26 MHz. The DCM outputs are 

valid only after the LOCKED_OUT signal is high; 

therefore, the DCM signals are analyzed only after 

the LOCKED_OUT signal has gone high. 

ISim can add markers to measure the distance 

between signals. To measure the 

CLK0_OUT, do the following: 

1. If necessary, zoom in on the waveform using the 

local Zoom toolbar buttons. 

2. In the local waveform viewer toolbar, click the 

Snap to Transition toolbar button. 

 

3. Click on the first rising edge transition on the 

CLK0_OUT signal after the LOCKED_OUT signal 

has gone high, then drag the cursor to the right to 

the next rising edge transition of the CLK0_OUT 

signal. 

4. At the bottom of the waveform window, the start 

point time, end point time, and delta times are 

shown. The delta should read 20.0 ns. This 

converts to 50 MHz which is the input frequency 

from the test bench, which in turn is the DCM 

CLK0 output. 

 

5. Measure CLKFX_OUT using the same steps as 

above. The measurement should read 38.5 ns. This 

equals approximately 26 MHz. 

Adding Dividers 

xilinx has the capability to add dividers in the 

Wave window to make it easier to differentiate the 

signals. To add a divider called DCM Signals, do 

the following: 

1. Right-click anywhere in the signal section of the 

Wave window. If necessary, undock the window 

and maximize the window for a larger view of the 

waveform. 

2. Select Insert Divider. 

3. Enter DCM Signals in the Divider Name box. 

4. Click OK. 
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VII. RESULTS 

Schematics: 

 

Rtl Schematics: 

 

Waveforms: 

 

VIII. CONCLUSION 

The Design  of  high  performance  64  bit 

Multiplier-and-Accumulator  (MAC)  was  

implemented  in  this  paper. The  total  MAC  unit  

operates  at  a  frequency  of  215  MHz’s  with a 

total  power dissipation  of 155.532  mW.  Since  

the  delay  of  64  bit MAC is  less,  this  design  

can  be  used  in  the  system which  requires  high  

performance  in  processors  involving  large  

number  of  bits  of  the  operation. The 

functionality of the MAC is verified using XILINX 

ISE 12.3i and synthesized using XILINX 

synthesizer. 
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