
Chapyala Lavanya* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.5, August – September 2016, 3752 – 3754.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 3752

Constructing A FA for Hardware

Hastening For DSP
CHAPYALA LAVANYA

M.Tech Student, Dept of ECE

Indur Institute of Engineering & Technology

Siddipet, T.S, India

N.SAI KUMAR

Associate Professor, Dept of ECE

Indur Institute of Engineering & Technology

Siddipet, T.S, India

Abstract: CS representation continues to be broadly accustomed to design fast arithmetic circuits because

of its natural benefit of getting rid of the big carry-propagation chains. Hardware acceleration continues

to be demonstrated a very promising implementation technique for digital signal processing (DSP)

domain. However, research activities have proven the arithmetic optimizations at greater abstraction

levels compared to structural circuit one considerably effect on the data path performance. Instead of

adopting a monolithic application-specific integrated circuit design approach, within this brief, we

present a manuscript accelerator architecture composed of flexible computational models that offer the

execution of a big group of operation templates present in DSP popcorn kernels. Extensive experimental

evaluations reveal that the suggested accelerator architecture provides average gains as high as 61.91% in

area-delay product and 54.43% in energy consumption in comparison using the condition-of-art flexible

data paths. We differentiate from previous creates flexible accelerators by enabling computations to

become strongly carried out with carry-save (CS) formatted data. Advanced arithmetic design concepts,

i.e., recoding techniques, are employed enabling CS optimizations to become carried out inside a bigger

scope compared to previous approaches.

Keywords: Arithmetic Optimizations; Carry-Save (CS) Form; Data Path Synthesis; Flexible Accelerator;

Operation Chaining;

I. INTRODUCTION

Many scientists have suggested using domain-

specific coarse-grained reconfigurable accelerators,

to be able to increase ASICs’ versatility without

considerably compromising their performance. The

incorporation of heterogeneity through specialized

hardware accelerators improves performance and

reduces energy consumption. Modern embedded

systems target high-finish application domain

names needing efficient implementations of

computationally intensive digital signal processing

(DSP) functions. Although application-specific

integrated circuits (ASICs) make up the ideal

acceleration solution when it comes to performance

and power, their inflexibility results in elevated

plastic complexity, as multiple instantiated ASICs

are necessary to accelerate various popcorn kernels

[1]. High-performance flexible data paths happen

to be suggested to efficiently map primitive or

chained procedures based in the initial data-flow

graph (DFG) of the kernel. The templates of

complex chained procedures are generally removed

from the kernel’s DFG or specified by a predefined

behavior template library. Design choices around

the accelerator’s data path highly impact its

efficiency. Existing creates coarse-grained recon-

figural data paths mainly exploit architecture-level

optimizations, e.g., elevated instruction-level

parallelism (ILP). The domain-specific architecture

generation calculations and vary the kind and

quantity of computation models achieving a

personalized design structure. Flexible

architectures were suggested exploiting ILP and

operation chaining. Lately, Ansaloni et al. adopted

aggressive operation chaining to allow the

computation of entire sub expressions using

multiple ALUs with heterogeneous arithmetic

features. These reconfigurable architectures

exclude arithmetic optimizations throughout the

architectural synthesis and think about them limited

to the interior circuit structure of primitive

components, e.g., adders, throughout the logic

synthesis. However, research activities have proven

the arithmetic optimizations at greater abstraction

levels compared to structural circuit one

considerably effect on the data path performance.

Timing-driven optimizations according to carry-

save (CS) arithmetic were carried out in the

publish-Register Transfer Level (RTL) design

stage. Common sub expression elimination in CS

computations can be used to optimize straight line

DSP circuits. Verma et al. developed

transformation techniques around the application’s

DFG to make best use of CS arithmetic prior the

particular data path synthesis [2]. These CS

optimization approaches target inflexible data path,

i.e., ASIC, implementations. Lately, Xydis et al.

suggested an adaptable architecture mixing the ILP

and pipelining techniques using the CS-aware

operation chaining. However, all of the

aforementioned solutions feature a natural

limitation, i.e., CS optimization is bounded to

merging only additions/subtractions. A CS to

binary conversion is placed before each operation

that is different from addition/subtraction, e.g.,

multiplication, thus, allocating multiple CS to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Innovative Technology and Research (IJITR)

https://core.ac.uk/display/228548685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapyala Lavanya* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.5, August – September 2016, 3752 – 3754.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 3753

binary conversions that heavily degrades

performance because of time-consuming carry

propagations[3]. Within this brief, we advise a

higher-performance architectural plan for that

synthesis of flexible hardware DSP accelerators by

mixing optimization techniques from both

architecture and arithmetic amounts of abstraction.

We introduce an adaptable data path architecture

that exploits CS enhanced templates of chained

procedures. The suggested architecture comprises

flexible computational models (FCUs), which let

the execution of a big group of operation templates

present in DSP popcorn kernels. The suggested

accelerator architecture provides average gains as

high as 61.91% in area-delay product and 54.43%

in energy consumption in comparison to condition-

of-art flexible data paths, sustaining efficiency

toward scaly technologies.

Fig.1. The Abstract view of FCU

II. PROPOSED ACCELERATOR

CS representation continues to be broadly

accustomed to design fast arithmetic circuits

because of its natural benefit of getting rid of the

big carry-propagation chains. CS arithmetic

optimizations, arrange the application’s DFG and

reveal multiple input additive procedures (i.e.,

chained additions within the initial DFG), which

may be planned onto CS compressors. The aim

would be to increase the range that the CS

computation is carried out inside the DFG.

However, each time a multiplication node is

interleaved within the DFG, whether CS to binary

conversion is invoked or even the DFG is changed

while using distributive property [3]. Thus, these

CS optimization approaches have limited effect on

DFGs centered by multiplications, e.g., filtering

DSP programs. Within this brief, we tackle this

limitation by exploiting the CS to modified Booth

(MB) recoding every time a multiplication must be

carried out inside a CS-enhanced data path. Thus,

the computations through the multiplications are

processed using CS arithmetic and also the

procedures within the targeted data path are

transported out without needing any intermediate

carry-propagate adder for CS to binary conversion,

thus enhancing performance. The suggested

flexible accelerator architecture is presented. Each

FCU works on CS operands and fosters data within

the same form1 for direct reuse of intermediate

results. Each FCU works on 16-bit operands. This

type of bit-length is sufficient which are more DSP

data paths, however the architectural idea of the

FCU could be straight modified for smaller sized or

bigger bit-measures. The amount of FCUs is

decided at design time in line with the ILP and area

constraints enforced through the designer. The

CStoBin module is really a ripple-carry adder and

converts the CS form towards the two’s

complement one [4]. The register bank includes

scratch registers and it is employed for storing

intermediate results and discussing operands one of

the FCUs. Different DSP popcorn kernels (i.e.,

different register allocation and knowledge

communication designs per kernel) could be

planned to the suggested architecture using

publish-RTL data path interconnection discussing

techniques. The control unit drives the general

architecture (i.e., communication between your

data port and also the register bank, configuration

words from the FCUs and selection signals for

those multiplexers) in every clock cycle. The

dwelling from the FCU continues to be made to

enable high-performance flexible operation

chaining with different library of operation

templates The suggested FCU allows intratemplate

operation chaining by fusing the additions carried

out before/following the multiplication and

performs any partial operation template from the

complex procedures: The multiplier’s product

includes 17 bits. The multiplier features a

compensation way of lowering the error enforced

in the product’s precision through the truncation

technique. However, since all of the FCU inputs

contain 16 bits and provided there are no

overflows, To be able to efficiently map DSP

popcorn kernels to the suggested FCU-based

accelerator, the semiautomatic synthesis

methodology presented, continues to be modified.

Initially, a CS-aware transformation is carried out

to the original DFG, merging nodes of multiple

chained additions/subtractions to 4:2 compressors.

A design generation around the changed DFG

groups the CS nodes using the multiplication

procedures to create FCU template procedures. The

designer chooses the FCU procedures since the

DFG for minimized latency. Since quantity of

FCUs is bound, an origin-restricted scheduling is

recognized as using the available FCUs and

CStoBin modules figuring out the resource

constraint set. The clustered DFG is scheduled, to

ensure that each FCU operation is designated to

some specific control step. A listing-based

scheduler continues to be adopted thinking about

the mobility2 of FCU procedures [5]. The FCU

procedures are scheduled based on climbing down

mobility. The scheduled FCU procedures are bound

onto FCU instances and proper configuration bits

are produced. After finishing register allocation, a

Chapyala Lavanya* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.5, August – September 2016, 3752 – 3754.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 3754

FSM is produced to be able to implement the

control unit from the overall architecture.

III. RESULTS

Fig: RTL SCHEMATIC

Fig: Simulation Forms

IV. CONCLUSION

The suggested flexible accelerator architecture has

the capacity to work on both conventional two’s

complement and CS-formatted data operands, thus

enabling high levels of computational density to

become accomplished. Within this brief, we

introduced an adaptable accelerator architecture

that exploits the incorporation of CS arithmetic

optimizations to allow fast chaining of additive and

multiplicative procedures. Theoretical and

experimental analyses have proven the suggested

solution forms a competent design compromise

point delivering enhanced latency/area and

implementations. Case study is dependent on the

system gate model. Regarding both execution

latency and also the area complexity and thinking

about all of the DSP popcorn kernels, the suggested

FCU-based architecture outperforms those built

around the FCC and also the RAU. Not

surprisingly, the timing constraints and also the

results of cell sizing implied through the Design

Compiler synthesis tool, in some instances lead to

incongruences between your experimental and also

the theoretical studies

V. REFERENCES

[1] M. D. Galanis, G. Theodoridis, S.

Tragoudas, and C. E. Goutis, “A high-

performance data path for synthesizing DSP

kernels,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 25, no. 6,

pp. 1154–1162, Jun. 2006.

[2] A. K. Verma, P. Brisk, and P. Ienne, “Data-

flow transformations to maximize the use of

carry-save representation in arithmetic

circuits,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 27, no. 10,

pp. 1761–1774, Oct. 2008.

[3] M. Stojilovic, D. Novo, L. Saranovac, P.

Brisk, and P. Ienne, “Selective flexibility:

Creating domain-specific reconfigurable

arrays,” IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst., vol. 32, no. 5, pp.

681–694, May 2013.

[4] N. Moreano, E. Borin, C. de Souza, and G.

Araujo, “Efficient data path merging for

partially reconfigurable architectures,” IEEE

Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 24, no. 7, pp. 969–

980,Jul. 2005.

[5] N. H. E. Weste and D. M. Harris, CMOS

VLSI Design: A Circuits and Systems

Perspective, 4th ed. Reading, MA, USA:

Addison-Wesley, 2010.

